Knowledge

Superoscillation

Source 📝

47:. Chremmos and Fikioris have proposed a method for constructing superoscillations that approximate a desired polynomial with arbitrary accuracy within a given interval. In 2013 experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams has been demonstrated. Two years later, in 2015, it was shown experimentally that super-oscillations can generate features that are many-fold smaller than the diffraction limit. The experiment was done using visible light, demonstrating enhanced resolution of 35 nm. Kempf and Ferreira proved that superoscillations come at the expense of a dynamical range that has to increase exponentially with the number of superoscillations and polynomially with the frequency of the superoscillations. 672: 42:
In 2007, Huang experimentally observed optical superoscillation phenomenon in the diffraction patterns of light transmitted through quasi-periodic nanohole arrays. Optical foci much smaller than the diffraction limit were observed. The results matched simulations without evanescent waves. In 2009,
43:
Huang et al further developed theoretical models to design superoscillation masks that can achieve extreme light concentration and imaging with arbitrary resolution. A practical method for constructing superoscillations and a discussion of their potential for quantum field theory were given by
84:
Berry, M V, 1994, 'Faster than Fourier', in 'Quantum Coherence and Reality; in celebration of the 60th Birthday of Yakir Aharonov' (J S Anandan and J L Safko, eds.) World Scientific, Singapore, pp 55-65.
50:
Superoscillatory wave forms are being considered as a possible practical tool for engineering applications, such as optical superresolution, i.e., resolution beyond the diffraction limit.
713: 737: 645: 706: 134:
Huang, Fu Min; Zheludev, Nikolay; Chen, Yifang; Javier Garcia De Abajo, F. (2007). "Focusing of light by a nanohole array".
392:
Greenfield, Elad; Schley, Ran; Hurwitz, Ilan; Nemirovsky, Jonathan; Makris, Konstantinos G.; Segev, Mordechai (2013).
699: 638: 732: 32: 64: 83: 679: 593: 556: 506: 462: 405: 358: 301: 240: 153: 617: 522: 431: 374: 348: 317: 291: 264: 230: 169: 143: 116: 44: 609: 541: 423: 394:"Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams" 256: 36: 24: 601: 564: 514: 470: 413: 366: 309: 248: 203: 161: 108: 540:
Thomson, Laura C.; Boissel, Yannick; Whyte, Graeme; Yao, Eric; Courtial, Johannes (2008).
451:"Nanoscale shaping and focusing of visible light in planar metal–oxide–silicon waveguides" 370: 221:
Huang, Fu Min; Zheludev, Nikolay I. (2009). "Super-Resolution without Evanescent Waves".
95:
Berry, M. V.; Dennis, M. R. (2009). "Natural superoscillations in monochromatic waves in
597: 569: 560: 510: 466: 409: 362: 305: 244: 157: 112: 683: 28: 726: 378: 187:
Huang, Fu Min; Chen, Yifang; Garcia De Abajo, F Javier; Zheludev, Nikolay I. (2007).
120: 621: 526: 435: 336: 321: 268: 207: 173: 671: 59: 20: 491: 188: 449:
David, Asaf; Gjonaj, Bergin; Blau, Yochai; Dolev, Shimon; Bartal, Guy (2015).
518: 475: 450: 613: 427: 260: 418: 393: 148: 296: 252: 165: 605: 313: 353: 235: 23:
can contain local segments that oscillate faster than its fastest
542:"Simulation of superresolution holography for optical tweezers" 282:
Kempf, Achim (2000). "Black holes, bandwidths and Beethoven".
31:, and has been made more popularly known through the work of 646:"Puzzling Quantum Scenario Appears Not to Conserve Energy" 584:
Zheludev, Nikolay I. (2008). "What diffraction limit?".
687: 189:"Optical super-resolution through super-oscillations" 35:, who also notes that a similar result was known to 19:
is a phenomenon in which a signal which is globally
337:"Superoscillations with arbitrary polynomial shape" 341:Journal of Physics A: Mathematical and Theoretical 101:Journal of Physics A: Mathematical and Theoretical 492:"Superoscillations: Faster Than the Nyquist Rate" 707: 8: 335:Chremmos, Ioannis; Fikioris, George (2015). 196:Journal of Optics A: Pure and Applied Optics 639:Ars Technica article about superoscillation 714: 700: 568: 474: 417: 352: 295: 234: 147: 76: 27:. The idea is originally attributed to 499:IEEE Transactions on Signal Processing 490:Ferreira, P.J.S.G.; Kempf, A. (2006). 7: 668: 666: 14: 670: 644:McCormick, Katie (2022-05-16). 284:Journal of Mathematical Physics 371:10.1088/1751-8113/48/26/265204 1: 570:10.1088/1367-2630/10/2/023015 113:10.1088/1751-8113/42/2/022003 686:. You can help Knowledge by 754: 738:Mathematical physics stubs 665: 208:10.1088/1464-4258/9/9/S01 519:10.1109/TSP.2006.877642 476:10.1364/OPTICA.2.001045 136:Applied Physics Letters 65:Optical superresolution 682:-related article is a 549:New Journal of Physics 680:mathematical physics 419:10.1364/oe.21.013425 598:2008NatMa...7..420Z 561:2008NJPh...10b3015T 511:2006ITSP...54.3732F 467:2015Optic...2.1045D 410:2013OExpr..2113425G 404:(11): 13425–13435. 363:2015JPhA...48z5204C 306:2000JMP....41.2360K 245:2009NanoL...9.1249H 158:2007ApPhL..90i1119H 25:Fourier components 695: 694: 505:(10): 3732–3740. 461:(12): 1045–1048. 253:10.1021/nl9002014 166:10.1063/1.2710775 37:Ingrid Daubechies 745: 733:Fourier analysis 716: 709: 702: 674: 667: 659: 657: 656: 626: 625: 606:10.1038/nmat2163 586:Nature Materials 581: 575: 574: 572: 546: 537: 531: 530: 496: 487: 481: 480: 478: 446: 440: 439: 421: 389: 383: 382: 356: 332: 326: 325: 314:10.1063/1.533244 299: 290:(4): 2360–2374. 279: 273: 272: 238: 229:(3): 1249–1254. 218: 212: 211: 202:(9): S285–S288. 193: 184: 178: 177: 151: 131: 125: 124: 92: 86: 81: 17:Superoscillation 753: 752: 748: 747: 746: 744: 743: 742: 723: 722: 721: 720: 663: 654: 652: 650:Quanta Magazine 643: 635: 630: 629: 583: 582: 578: 544: 539: 538: 534: 494: 489: 488: 484: 448: 447: 443: 391: 390: 386: 334: 333: 329: 281: 280: 276: 220: 219: 215: 191: 186: 185: 181: 149:physics/0611056 133: 132: 128: 94: 93: 89: 82: 78: 73: 56: 12: 11: 5: 751: 749: 741: 740: 735: 725: 724: 719: 718: 711: 704: 696: 693: 692: 675: 661: 660: 641: 634: 633:External links 631: 628: 627: 592:(6): 420–422. 576: 532: 482: 441: 398:Optics Express 384: 347:(26): 265204. 327: 274: 213: 179: 126: 87: 75: 74: 72: 69: 68: 67: 62: 55: 52: 29:Yakir Aharonov 13: 10: 9: 6: 4: 3: 2: 750: 739: 736: 734: 731: 730: 728: 717: 712: 710: 705: 703: 698: 697: 691: 689: 685: 681: 676: 673: 669: 664: 651: 647: 642: 640: 637: 636: 632: 623: 619: 615: 611: 607: 603: 599: 595: 591: 587: 580: 577: 571: 566: 562: 558: 555:(2): 023015. 554: 550: 543: 536: 533: 528: 524: 520: 516: 512: 508: 504: 500: 493: 486: 483: 477: 472: 468: 464: 460: 456: 452: 445: 442: 437: 433: 429: 425: 420: 415: 411: 407: 403: 399: 395: 388: 385: 380: 376: 372: 368: 364: 360: 355: 350: 346: 342: 338: 331: 328: 323: 319: 315: 311: 307: 303: 298: 297:gr-qc/9907084 293: 289: 285: 278: 275: 270: 266: 262: 258: 254: 250: 246: 242: 237: 232: 228: 224: 217: 214: 209: 205: 201: 197: 190: 183: 180: 175: 171: 167: 163: 159: 155: 150: 145: 142:(9): 091119. 141: 137: 130: 127: 122: 118: 114: 110: 107:(2): 022003. 106: 102: 98: 91: 88: 85: 80: 77: 70: 66: 63: 61: 58: 57: 53: 51: 48: 46: 40: 38: 34: 33:Michael Berry 30: 26: 22: 18: 688:expanding it 677: 662: 653:. Retrieved 649: 589: 585: 579: 552: 548: 535: 502: 498: 485: 458: 454: 444: 401: 397: 387: 344: 340: 330: 287: 283: 277: 226: 223:Nano Letters 222: 216: 199: 195: 182: 139: 135: 129: 104: 100: 96: 90: 79: 60:Nyquist rate 49: 41: 21:band-limited 16: 15: 97:Ddimensions 45:Achim Kempf 727:Categories 655:2022-05-17 354:1504.04822 71:References 379:119137509 236:0812.0508 121:120985111 622:30418364 614:18497841 527:17467946 436:31157421 428:23736595 322:14858993 269:14091064 261:19182908 174:10434523 54:See also 594:Bibcode 557:Bibcode 507:Bibcode 463:Bibcode 406:Bibcode 359:Bibcode 302:Bibcode 241:Bibcode 154:Bibcode 620:  612:  525:  455:Optica 434:  426:  377:  320:  267:  259:  172:  119:  678:This 618:S2CID 545:(PDF) 523:S2CID 495:(PDF) 432:S2CID 375:S2CID 349:arXiv 318:S2CID 292:arXiv 265:S2CID 231:arXiv 192:(PDF) 170:S2CID 144:arXiv 117:S2CID 684:stub 610:PMID 424:PMID 257:PMID 602:doi 565:doi 515:doi 471:doi 414:doi 367:doi 310:doi 249:doi 204:doi 162:doi 109:doi 99:". 729:: 648:. 616:. 608:. 600:. 588:. 563:. 553:10 551:. 547:. 521:. 513:. 503:54 501:. 497:. 469:. 457:. 453:. 430:. 422:. 412:. 402:21 400:. 396:. 373:. 365:. 357:. 345:48 343:. 339:. 316:. 308:. 300:. 288:41 286:. 263:. 255:. 247:. 239:. 225:. 198:. 194:. 168:. 160:. 152:. 140:90 138:. 115:. 105:42 103:. 39:. 715:e 708:t 701:v 690:. 658:. 624:. 604:: 596:: 590:7 573:. 567:: 559:: 529:. 517:: 509:: 479:. 473:: 465:: 459:2 438:. 416:: 408:: 381:. 369:: 361:: 351:: 324:. 312:: 304:: 294:: 271:. 251:: 243:: 233:: 227:9 210:. 206:: 200:9 176:. 164:: 156:: 146:: 123:. 111::

Index

band-limited
Fourier components
Yakir Aharonov
Michael Berry
Ingrid Daubechies
Achim Kempf
Nyquist rate
Optical superresolution
Berry, M V, 1994, 'Faster than Fourier', in 'Quantum Coherence and Reality; in celebration of the 60th Birthday of Yakir Aharonov' (J S Anandan and J L Safko, eds.) World Scientific, Singapore, pp 55-65.
doi
10.1088/1751-8113/42/2/022003
S2CID
120985111
arXiv
physics/0611056
Bibcode
2007ApPhL..90i1119H
doi
10.1063/1.2710775
S2CID
10434523
"Optical super-resolution through super-oscillations"
doi
10.1088/1464-4258/9/9/S01
arXiv
0812.0508
Bibcode
2009NanoL...9.1249H
doi
10.1021/nl9002014

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.