Knowledge

Plasma acceleration

Source 📝

609:
arrives at the target front it will then propagate through this underdense region and be reflected from the front surface of the target propagating back through the preplasma. Throughout this process the laser has heated up the electrons in the underdense region and accelerated them via stochastic heating. This heating process is incredibly important, producing a high temperature electron populations is key for the next steps of the process. The importance of the preplasma in the electron heating process has recently been studied both theoretically and experimentally showing how longer preplasmas lead to stronger electron heating and an enhancement in TNSA. The hot electrons propagate through the solid target and exit it through the rear end. In doing so, the electrons produce an incredibly strong electric field, in the order of TV/m, through charge separation. This electric field, also referred to as the sheath field due to its resemblance with the shape of a sheath from a sword, is responsible for the acceleration of the ions. On the rear face of the target there is a small layer of contaminants (usually light hydrocarbons and water vapor). These contaminants are ionised by the strong electric field generated by the hot electrons and then accelerated. Which leads to an energetic ion beam and completes the acceleration process.
198:
A particle injected into such a plasma would be accelerated by the charge separation field, but since the magnitude of this separation is generally similar to that of the external field, apparently nothing is gained in comparison to a conventional system that simply applies the field directly to the particle. But, the plasma medium acts as the most efficient transformer (currently known) of the transverse field of an electromagnetic wave into longitudinal fields of a plasma wave. In existing accelerator technology various appropriately designed materials are used to convert from transverse propagating extremely intense fields into longitudinal fields that the particles can get a kick from. This process is achieved using two approaches: standing-wave structures (such as resonant cavities) or traveling-wave structures such as disc-loaded waveguides etc. But, the limitation of materials interacting with higher and higher fields is that they eventually get destroyed through ionization and breakdown. Here the plasma accelerator science provides the breakthrough to generate, sustain, and exploit the highest fields ever produced in the laboratory.
453:
experience a massive attractive force back to the center of the wake by the positive plasma ions chamber, bubble or column that have remained positioned there, as they were originally in the unexcited plasma. This forms a full wake of an extremely high longitudinal (accelerating) and transverse (focusing) electric field. The positive charge from ions in the charge-separation region then creates a huge gradient between the back of the wake, where there are many electrons, and the middle of the wake, where there are mostly ions. Any electrons in between these two areas will be accelerated (in self-injection mechanism). In the external bunch injection schemes the electrons are strategically injected to arrive at the evacuated region during maximum excursion or expulsion of the plasma electrons.
202: 1215: 465:
plasma at close to the speed of light. The bubble is the region cleared of electrons that is thus positively charged, followed by the region where the electrons fall back into the center and is thus negatively charged. This leads to a small area of very strong potential gradient following the laser pulse.
608:
The scheme employs a solid target that interacts firstly with the laser prepulse, this ionises the target turning it into a plasma and causing a pre-expansion of the target front. Which produces an underdense plasma region at the front of the target, the so-called preplasma. Once the main laser pulse
472:
It is this "wakefield" that is used for particle acceleration. A particle injected into the plasma near the high-density area will experience an acceleration toward (or away) from it, an acceleration that continues as the wakefield travels through the column, until the particle eventually reaches the
443:
What makes the system useful is the possibility of introducing waves of very high charge separation that propagate through the plasma similar to the traveling-wave concept in the conventional accelerator. The accelerator thereby phase-locks a particle bunch on a wave and this loaded space-charge wave
197:
in equilibrium. However, if a strong enough external electric or electromagnetic field is applied, the plasma electrons, which are very light in comparison to the background ions (by a factor of 1836), will separate spatially from the massive ions creating a charge imbalance in the perturbed region.
456:
A beam-driven wake can be created by sending a relativistic proton or electron bunch into an appropriate plasma or gas. In some cases, the gas can be ionized by the electron bunch, so that the electron bunch both creates the plasma and the wake. This requires an electron bunch with relatively high
632:
of the acceleration tube. This limits the amount of acceleration over any given length, requiring very long accelerators to reach high energies. In contrast, the maximum field in a plasma is defined by mechanical qualities and turbulence, but is generally several orders of magnitude stronger than
464:
If the fields are strong enough, all of the ionized plasma electrons can be removed from the center of the wake: this is known as the "blowout regime". Although the particles are not moving very quickly during this period, macroscopically it appears that a "bubble" of charge is moving through the
452:
or the electrostatic fields from the exciting fields (electron or laser). Plasma ions are too massive to move significantly and are assumed to be stationary at the time-scales of plasma electron response to the exciting fields. As the exciting fields pass through the plasma, the plasma electrons
188:
A plasma consists of a fluid of positive and negative charged particles, generally created by heating or photo-ionizing (direct / tunneling / multi-photon / barrier-suppression) a dilute gas. Under normal conditions the plasma will be macroscopically neutral (or quasi-neutral), an equal mix of
600:
The main laser-solid acceleration scheme is Target Normal Sheath Acceleration, TNSA as it is usually referred as. TNSA like other laser based acceleration techniques is not capable of directly accelerating the ions. Instead it is a multi-step process consisting of several stages each with its
1180:
Maier, Andreas R.; Delbos, Niels M.; Eichner, Timo; Hübner, Lars; Jalas, Sören; Jeppe, Laurids; Jolly, Spencer W.; Kirchen, Manuel; Leroux, Vincent; Messner, Philipp; Schnepp, Matthias; Trunk, Maximilian; Walker, Paul A.; Werle, Christian; Winkler, Paul (18 August 2020).
468:
In the linear regime, plasma electrons aren't completely removed from the center of the wake. In this case, the linear plasma wave equation can be applied. However, the wake appears very similar to the blowout regime, and the physics of acceleration is the same.
156:
using the Facility for Advanced Accelerator Experimental Tests (FACET) published proof of the viability of plasma acceleration technology. It was shown to be able to achieve 400 to 500 times higher energy transfer compared to a general linear accelerator design.
633:
with RF accelerators. It is hoped that a compact particle accelerator can be created based on plasma acceleration techniques or accelerators for much higher energy can be built, if long accelerators are realizable with an accelerating field of 10 GV/m.
460:
Similar to a beam-driven wake, a laser pulse can be used to excite the plasma wake. As the pulse travels through the plasma, the electric field of the light separates the electrons and nucleons in the same way that an external field would.
291: 1689:
Gizzi, Leonida A.; Boella, Elisabetta; Labate, Luca; Baffigi, Federica; Bilbao, Pablo J.; Brandi, Fernando; Cristoforetti, Gabriele; Fazzi, Alberto; Fulgentini, Lorenzo; Giove, Dario; Koester, Petra (2021-07-02).
588:
Laser–solid-target-based ion acceleration has become an active area of research, especially since the discovery of the target normal sheath acceleration (TNSA). This new scheme offers further improvements in
636:
Current experimental devices show accelerating gradients several orders of magnitude better than current particle accelerators over very short distances, and about one order of magnitude better (1
477:
can travel at speeds much higher than the wave they surf on by traveling across it. Accelerators designed to take advantage of this technique have been referred to colloquially as "surfatrons".
735:
Joshi, C.; Mori, W. B.; Katsouleas, T.; Dawson, J. M.; Kindel, J. M.; Forslund, D. W. (1984). "Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves".
601:
associated difficulty to model mathematically. For this reason, so far there exists no perfect theoretical model capable of producing quantitative predictions for the TNSA mechanism.
612:
Responsible for the spiky, fast ion front of the expanding plasma is an ion wave breaking process that takes place in the initial phase of the evolution and is described by the
1577:
Higginson, A.; Gray, R. J.; King, M.; Dance, R. J.; Williamson, S. D. R.; Butler, N. M. H.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J. S.; Hawkes, S. J. (2018-02-20).
434: 175:
In August 2020 scientists reported the achievement of a milestone in the development of laser-plasma accelerators and demonstrate their longest stable operation of 30 hours.
1365:
Snavely, R. A.; Key, M. H.; Hatchett, S. P.; Cowan, T. E.; Roth, M.; Phillips, T. W.; Stoyer, M. A.; Henry, E. A.; Sangster, T. C.; Singh, M. S.; Wilks, S. C. (2000-10-02).
1467:
Roth, M.; Cowan, T. E.; Key, M. H.; Hatchett, S. P.; Brown, C.; Fountain, W.; Johnson, J.; Pennington, D. M.; Snavely, R. A.; Wilks, S. C.; Yasuike, K. (2001-01-15).
407: 376: 321: 345: 2131: 1341: 1764:
Ch. Sack and H.Schamel, Plasma expansion into vacuum - A hydrodynamic approach, Phys. Reports 156 (1987) 311-395 | doi:10.1016/0370-1573(87)90039-1|
508:: The electron plasma wave arises based on different frequency generation of two laser pulses. The "Surfatron" is an improvement on this technique. 215: 597:
and sources for fundamental research. Nonetheless, the maximum energies achieved so far with this scheme are in the order of 100 MeV energies.
971: 473:
speed of the wakefield. Even higher energies can be reached by injecting the particle to travel across the face of the wakefield, much like a
1556: 644: 146: 457:
charge and thus strong fields. The high fields of the electron bunch then push the plasma electrons out from the center, creating the wake.
652: 153: 624:
The advantage of plasma acceleration is that its acceleration field can be much stronger than that of conventional radio-frequency (RF)
444:
accelerates them to higher velocities while retaining the bunch properties. Currently, plasma wakes are excited by appropriately shaped
1805: 1904:
Blumenfeld, Ian; et al. (2007). "Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator".
131: 2136: 1103: 672: 594: 480:
The wakefield acceleration can be categorized into several types according to how the electron plasma wave is formed:
75:
Once fully developed, the technology can replace many of the traditional accelerators with applications ranging from
1057: 659:
was achieved using the SLAC SLC beam (42 GeV) in just 85 cm using a plasma wakefield accelerator (8.9×10 g
1527:
Roth, Markus; Schollmeier, Marius (2013), McKenna, Paul; Neely, David; Bingham, Robert; Jaroszynski, Dino (eds.),
201: 845:"Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime" 161: 1962: 120: 2082: 1783: 1643: 1421: 1155: 127: 1692:"Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma" 209:
The acceleration gradient produced by a plasma wake is in the order of the wave breaking field, which is
613: 160:
A proof-of-principle plasma wakefield accelerator experiment using a 400 GeV proton beam from the
412: 2056: 2011: 1974: 1913: 1868: 1713: 1590: 1536: 1480: 1433: 1378: 1306: 1255: 1194: 1008: 913: 856: 791: 744: 701: 629: 625: 69: 1788: 448:
pulses or electron bunches. Plasma electrons are driven out and away from the center of wake by the
987:"Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics" 449: 84: 76: 119:
in 1979. The initial experimental designs for a "wakefield" accelerator were conceived at UCLA by
2047:
Joshi, C.; Katsouleas, T. (2003). "Plasma accelerators at the energy frontier and on tabletops".
2035: 1945: 1703: 1671: 1322: 1279: 1245: 1032: 998: 953: 760: 717: 50: 655:
requires 64 m to reach the same energy. Similarly, using plasmas an energy gain of more than 40
1366: 2027: 1990: 1937: 1929: 1886: 1801: 1747: 1729: 1663: 1624: 1606: 1552: 1504: 1496: 1468: 1449: 1402: 1394: 1024: 945: 937: 929: 882: 874: 825: 807: 65: 1535:, Scottish Graduate Series, Heidelberg: Springer International Publishing, pp. 303–350, 107:
The basic concepts of plasma acceleration and its possibilities were originally conceived by
2091: 2064: 2019: 1982: 1921: 1876: 1793: 1737: 1721: 1655: 1614: 1598: 1544: 1488: 1441: 1386: 1314: 1271: 1263: 1202: 1016: 921: 864: 815: 799: 752: 709: 637: 602: 590: 518: 135: 96: 57: 34: 1420:
Bulanov, S.V; Esirkepov, T.Zh; Khoroshkov, V.S; Kuznetsov, A.V; Pegoraro, F. (2002-07-01).
385: 354: 299: 1579:"Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme" 1275: 2096: 2077: 2060: 2015: 1978: 1917: 1872: 1717: 1594: 1540: 1484: 1437: 1382: 1310: 1259: 1198: 1078: 1020: 1012: 917: 860: 795: 748: 705: 1742: 1691: 1619: 1578: 820: 779: 348: 330: 324: 112: 108: 46: 1986: 1445: 60:
structures. These plasma acceleration structures are created using either ultra-short
2125: 1775: 517:: The formation of an electron plasma wave is achieved by a laser pulse modulated by 142: 2039: 1675: 1326: 1283: 1036: 902:"High-efficiency acceleration of an electron beam in a plasma wakefield accelerator" 721: 2116: 1949: 957: 869: 844: 764: 628:. In RF accelerators, the field has an upper limit determined by the threshold for 437: 88: 1548: 1297:
Katsouleas, T.; Dawson, J. M. (1983). "A Plasma Wave Accelerator - Surfatron I".
1659: 1390: 141:). This record was broken (by more than twice) in 2014 by the scientists at the 2111: 2002:
Katsouleas, T (2004). "Accelerator physics: Electrons hang ten on laser wake".
1822: 1725: 1602: 1528: 1492: 1267: 1219: 1207: 1182: 713: 1776:"A proposal for a 1 GeV plasma-wakefield acceleration experiment at SLAC" 1156:"Plasma accelerators could overcome size limitations of Large Hadron Collider" 1129: 1933: 1890: 1733: 1667: 1610: 1500: 1453: 1398: 1318: 1028: 933: 878: 811: 651:), and one conventional accelerator (highest electron energy accelerator) at 1797: 1367:"Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids" 2031: 1994: 1941: 1780:
Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167)
1751: 1628: 1508: 1406: 949: 886: 829: 1233: 986: 780:"Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV" 286:{\displaystyle E_{0}={\sqrt {\frac {m_{e}n_{e}c^{2}}{\varepsilon _{0}}}}.} 1130:"Important Milestone Reached on the Road to Future Particle Accelerators" 379: 190: 80: 54: 38: 17: 1925: 925: 1214: 803: 474: 2068: 1183:"Decoding Sources of Energy Variability in a Laser-Plasma Accelerator" 941: 901: 553: 1881: 1856: 1644:"Stochastic heating in ultra high intensity laser-plasma interaction" 756: 605:
simulations are usually employed to efficiently achieve predictions.
92: 79:
to medical and industrial applications. Medical applications include
2023: 1342:"The potential of plasma wakefield acceleration | symmetry magazine" 647:
accelerates electrons to 1 GeV over about 3.3 cm (5.4×10 g
640:/m vs 0.1 GeV/m for an RF accelerator) at the one meter scale. 490:: The electron plasma wave is formed by an electron or proton bunch. 1708: 1250: 409:
is the plasma electron density (in particles per unit volume), and
1079:"World record: Plasma accelerator operates right around the clock" 1003: 575: 445: 169: 61: 1823:"Electron Linac Of Test Accelerator Facility For Linear collider" 972:"Researchers Hit Milestone in Accelerating Particles with Plasma" 134:
accelerated electrons to 2 GeV over about 2 cm (1.6×10
692:
Tajima, T.; Dawson, J. M. (1979). "Laser Electron Accelerator".
165: 116: 656: 499:: A laser pulse is introduced to form an electron plasma wave. 194: 42: 1238:
Nuclear Instruments and Methods in Physics Research Section A
68:. The technique offers a way to build affordable and compact 557: 64:
pulses or energetic particle beams that are matched to the
1469:"Fast Ignition by Intense Laser-Accelerated Proton Beams" 974:. SLAC National Accelerator Laboratory. November 5, 2014. 643:
For example, an experimental laser plasma accelerator at
149:, when they produced electron beams up to 4.25 GeV. 1857:"GeV electron beams from a centimetre-scale accelerator" 1422:"Oncological hadrontherapy with laser ion accelerators" 1220:
Creative Commons Attribution 4.0 International License
2078:"Focus on Laser- and Beam-Driven Plasma Accelerators" 415: 388: 357: 333: 302: 218: 1642:
Bourdier, A.; Patin, D.; Lefebvre, E. (2005-06-15).
1855:Leemans, W. P.; et al. (September 24, 2006). 1104:"Rekord: Längster Lauf eines Plasmabeschleunigers" 428: 401: 370: 339: 315: 285: 843:Leemans, W. P.; et al. (December 8, 2014). 1058:"AWAKE: Making waves in accelerator technology" 855:(24). American Physical Society (APS): 245002. 564:Plasma wakefield acceleration using positrons 549:Plasma wakefield acceleration using electrons 778:Wang, Xiaoming; et al. (June 11, 2013). 8: 1821:Takeda, S; et al. (November 27, 2014). 572:Plasma wakefield acceleration using protons 205:Wake created by an electron beam in a plasma 512:self-modulated laser wakefield acceleration 1533:Laser-Plasma Interactions and Applications 172:, started experiments at the end of 2016. 2095: 1880: 1787: 1741: 1707: 1618: 1249: 1234:"Path to AWAKE: Evolution of the concept" 1206: 1002: 868: 819: 420: 414: 393: 387: 362: 356: 332: 307: 301: 271: 260: 250: 240: 232: 223: 217: 527: 200: 2112:Plasma Wakefield Acceleration - A Guide 1782:. Vol. 1. IEEE. pp. 687–689. 684: 27:Charged particle acceleration technique 1218:Text and images are available under a 1522: 1520: 1518: 645:Lawrence Berkeley National Laboratory 147:Lawrence Berkeley National Laboratory 7: 2117:Riding the Plasma Wave of the Future 1774:Katsouleas, T.; et al. (1998). 991:Plasma Physics and Controlled Fusion 154:SLAC National Accelerator Laboratory 519:stimulated Raman forward scattering 2132:Plasma technology and applications 2076:Joshi, C. & Malka, V. (2010). 1912:(7129). Springer Nature: 741–744. 25: 1987:10.1038/scientificamerican0206-40 985:Assmann, R.; et al. (2014). 584:Target normal sheath acceleration 87:light sources for diagnostics or 1867:(10). Springer Nature: 696–699. 1213: 912:(7525). Springer Nature: 92–95. 429:{\displaystyle \varepsilon _{0}} 33:is a technique for accelerating 1965:(2006). "Plasma Accelerators". 900:Litos, M.; et al. (2014). 620:Comparison with RF acceleration 152:In late 2014, researchers from 1648:Physica D: Nonlinear Phenomena 1340:Garisto, Daniel (2019-03-14). 1276:11858/00-001M-0000-002B-2685-0 870:10.1103/physrevlett.113.245002 1: 2097:10.1088/1367-2630/12/4/045003 1446:10.1016/S0375-9601(02)00521-2 1021:10.1088/0741-3335/56/8/084013 541:Laser wakefield acceleration 485:plasma wakefield acceleration 132:University of Texas at Austin 1549:10.1007/978-3-319-00038-1_12 1108:scinexx | Das Wissensmagazin 790:(1). Springer Nature: 1988. 503:laser beat-wave acceleration 494:laser wakefield acceleration 1660:10.1016/j.physd.2005.04.017 1391:10.1103/physrevlett.85.2945 1110:(in German). 21 August 2020 673:Dielectric wall accelerator 2153: 1726:10.1038/s41598-021-93011-3 1603:10.1038/s41467-018-03063-9 1493:10.1103/physrevlett.86.436 1268:10.1016/j.nima.2015.12.050 1208:10.1103/PhysRevX.10.031039 714:10.1103/PhysRevLett.43.267 438:permittivity of free space 164:is currently operating at 1529:"Ion Acceleration: TNSA" 1346:www.symmetrymagazine.org 1319:10.1109/TNS.1983.4336628 168:. The experiment, named 162:Super Proton Synchrotron 1798:10.1109/pac.1997.749806 1473:Physical Review Letters 1371:Physical Review Letters 849:Physical Review Letters 121:Chandrashekhar J. Joshi 2083:New Journal of Physics 544:BELLA, TREX, CLF, LUX 525:Some experiments are: 430: 403: 372: 341: 317: 287: 206: 184:Wakefield acceleration 1583:Nature Communications 1299:IEEE Trans. Nucl. Sci 1232:Caldwell, A. (2016). 784:Nature Communications 614:Sack-Schamel equation 533:Type of acceleration 431: 404: 402:{\displaystyle n_{e}} 373: 371:{\displaystyle m_{e}} 342: 318: 316:{\displaystyle E_{0}} 288: 204: 70:particle accelerators 630:dielectric breakdown 595:fusion fast ignition 413: 386: 355: 331: 300: 216: 128:Texas Petawatt laser 51:electron plasma wave 2137:Accelerator physics 2061:2003PhT....56f..47J 2016:2004Natur.431..515K 1979:2006SciAm.294b..40J 1967:Scientific American 1926:10.1038/nature05538 1918:2007Natur.445..741B 1873:2006NatPh...2..696L 1718:2021NatSR..1113728G 1595:2018NatCo...9..724H 1541:2013lpia.book..303R 1485:2001PhRvL..86..436R 1438:2002PhLA..299..240B 1383:2000PhRvL..85.2945S 1311:1983ITNS...30.3241K 1260:2016NIMPA.829....3C 1199:2020PhRvX..10c1039M 1013:2014PPCF...56h4013A 926:10.1038/nature13882 918:2014Natur.515...92L 861:2014PhRvL.113x5002L 796:2013NatCo...4.1988W 749:1984Natur.311..525J 706:1979PhRvL..43..267T 529: 450:ponderomotive force 378:is the mass of the 77:high energy physics 31:Plasma acceleration 1696:Scientific Reports 804:10.1038/ncomms2988 528: 426: 399: 368: 337: 313: 296:In this equation, 283: 207: 2069:10.1063/1.1595054 2010:(7008): 515–516. 1558:978-3-319-00038-1 1426:Physics Letters A 1377:(14): 2945–2948. 1187:Physical Review X 743:(5986): 525–529. 581: 580: 558:DESY FLASHForward 340:{\displaystyle c} 278: 277: 89:radiation therapy 66:plasma parameters 35:charged particles 16:(Redirected from 2144: 2101: 2099: 2072: 2043: 1998: 1954: 1953: 1901: 1895: 1894: 1884: 1882:10.1038/nphys418 1852: 1846: 1845: 1843: 1841: 1827: 1818: 1812: 1811: 1791: 1771: 1765: 1762: 1756: 1755: 1745: 1711: 1686: 1680: 1679: 1639: 1633: 1632: 1622: 1574: 1568: 1567: 1566: 1565: 1524: 1513: 1512: 1464: 1458: 1457: 1432:(2–3): 240–247. 1417: 1411: 1410: 1362: 1356: 1355: 1353: 1352: 1337: 1331: 1330: 1305:(4): 3241–3243. 1294: 1288: 1287: 1253: 1229: 1223: 1217: 1212: 1210: 1177: 1171: 1170: 1168: 1166: 1152: 1146: 1145: 1143: 1141: 1136:. 20 August 2020 1126: 1120: 1119: 1117: 1115: 1100: 1094: 1093: 1091: 1089: 1075: 1069: 1068: 1066: 1064: 1054: 1048: 1047: 1045: 1043: 1006: 982: 976: 975: 968: 962: 961: 897: 891: 890: 872: 840: 834: 833: 823: 775: 769: 768: 757:10.1038/311525a0 732: 726: 725: 689: 603:Particle-in-Cell 567:FACET, FACET II 530: 435: 433: 432: 427: 425: 424: 408: 406: 405: 400: 398: 397: 377: 375: 374: 369: 367: 366: 346: 344: 343: 338: 322: 320: 319: 314: 312: 311: 292: 290: 289: 284: 279: 276: 275: 266: 265: 264: 255: 254: 245: 244: 234: 233: 228: 227: 130:facility at the 49:associated with 21: 2152: 2151: 2147: 2146: 2145: 2143: 2142: 2141: 2122: 2121: 2108: 2075: 2046: 2024:10.1038/431515a 2001: 1961: 1958: 1957: 1903: 1902: 1898: 1854: 1853: 1849: 1839: 1837: 1825: 1820: 1819: 1815: 1808: 1789:10.1.1.389.1097 1773: 1772: 1768: 1763: 1759: 1688: 1687: 1683: 1641: 1640: 1636: 1576: 1575: 1571: 1563: 1561: 1559: 1526: 1525: 1516: 1466: 1465: 1461: 1419: 1418: 1414: 1364: 1363: 1359: 1350: 1348: 1339: 1338: 1334: 1296: 1295: 1291: 1231: 1230: 1226: 1179: 1178: 1174: 1164: 1162: 1154: 1153: 1149: 1139: 1137: 1128: 1127: 1123: 1113: 1111: 1102: 1101: 1097: 1087: 1085: 1077: 1076: 1072: 1062: 1060: 1056: 1055: 1051: 1041: 1039: 984: 983: 979: 970: 969: 965: 899: 898: 894: 842: 841: 837: 777: 776: 772: 734: 733: 729: 694:Phys. Rev. Lett 691: 690: 686: 681: 669: 662: 650: 622: 586: 416: 411: 410: 389: 384: 383: 358: 353: 352: 329: 328: 303: 298: 297: 267: 256: 246: 236: 235: 219: 214: 213: 186: 181: 139: 105: 28: 23: 22: 15: 12: 11: 5: 2150: 2148: 2140: 2139: 2134: 2124: 2123: 2120: 2119: 2114: 2107: 2106:External links 2104: 2103: 2102: 2073: 2044: 1999: 1956: 1955: 1896: 1861:Nature Physics 1847: 1813: 1806: 1766: 1757: 1681: 1634: 1569: 1557: 1514: 1479:(3): 436–439. 1459: 1412: 1357: 1332: 1289: 1224: 1172: 1147: 1121: 1095: 1070: 1049: 977: 963: 892: 835: 770: 727: 700:(4): 267–270. 683: 682: 680: 677: 676: 675: 668: 665: 660: 648: 621: 618: 585: 582: 579: 578: 573: 569: 568: 565: 561: 560: 550: 546: 545: 542: 538: 537: 534: 523: 522: 509: 500: 491: 423: 419: 396: 392: 365: 361: 349:speed of light 336: 325:electric field 310: 306: 294: 293: 282: 274: 270: 263: 259: 253: 249: 243: 239: 231: 226: 222: 185: 182: 180: 177: 145:Center at the 137: 113:John M. Dawson 109:Toshiki Tajima 104: 101: 97:hadron therapy 53:or other high- 47:electric field 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2149: 2138: 2135: 2133: 2130: 2129: 2127: 2118: 2115: 2113: 2110: 2109: 2105: 2098: 2093: 2090:(4): 045003. 2089: 2085: 2084: 2079: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2049:Physics Today 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1959: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1911: 1907: 1900: 1897: 1892: 1888: 1883: 1878: 1874: 1870: 1866: 1862: 1858: 1851: 1848: 1835: 1831: 1824: 1817: 1814: 1809: 1807:0-7803-4376-X 1803: 1799: 1795: 1790: 1785: 1781: 1777: 1770: 1767: 1761: 1758: 1753: 1749: 1744: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1710: 1705: 1701: 1697: 1693: 1685: 1682: 1677: 1673: 1669: 1665: 1661: 1657: 1654:(1–2): 1–31. 1653: 1649: 1645: 1638: 1635: 1630: 1626: 1621: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1573: 1570: 1560: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1523: 1521: 1519: 1515: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1463: 1460: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1416: 1413: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1361: 1358: 1347: 1343: 1336: 1333: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1290: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1252: 1247: 1243: 1239: 1235: 1228: 1225: 1221: 1216: 1209: 1204: 1200: 1196: 1193:(3): 031039. 1192: 1188: 1184: 1176: 1173: 1161: 1157: 1151: 1148: 1135: 1131: 1125: 1122: 1109: 1105: 1099: 1096: 1084: 1080: 1074: 1071: 1059: 1053: 1050: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1005: 1000: 997:(8): 084013. 996: 992: 988: 981: 978: 973: 967: 964: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 903: 896: 893: 888: 884: 880: 876: 871: 866: 862: 858: 854: 850: 846: 839: 836: 831: 827: 822: 817: 813: 809: 805: 801: 797: 793: 789: 785: 781: 774: 771: 766: 762: 758: 754: 750: 746: 742: 738: 731: 728: 723: 719: 715: 711: 707: 703: 699: 695: 688: 685: 678: 674: 671: 670: 666: 664: 658: 654: 646: 641: 639: 634: 631: 627: 619: 617: 615: 610: 606: 604: 598: 596: 592: 591:hadrontherapy 583: 577: 574: 571: 570: 566: 563: 562: 559: 555: 551: 548: 547: 543: 540: 539: 535: 532: 531: 526: 520: 516: 513: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 482: 481: 478: 476: 470: 466: 462: 458: 454: 451: 447: 441: 439: 421: 417: 394: 390: 381: 363: 359: 350: 334: 326: 308: 304: 280: 272: 268: 261: 257: 251: 247: 241: 237: 229: 224: 220: 212: 211: 210: 203: 199: 196: 192: 183: 178: 176: 173: 171: 167: 163: 158: 155: 150: 148: 144: 140: 133: 129: 124: 122: 118: 114: 110: 102: 100: 98: 94: 90: 86: 85:free-electron 82: 78: 73: 71: 67: 63: 59: 56: 52: 48: 44: 40: 36: 32: 19: 2087: 2081: 2055:(6): 47–51. 2052: 2048: 2007: 2003: 1973:(2): 40–47. 1970: 1966: 1909: 1905: 1899: 1864: 1860: 1850: 1838:. Retrieved 1833: 1829: 1816: 1779: 1769: 1760: 1702:(1): 13728. 1699: 1695: 1684: 1651: 1647: 1637: 1586: 1582: 1572: 1562:, retrieved 1532: 1476: 1472: 1462: 1429: 1425: 1415: 1374: 1370: 1360: 1349:. Retrieved 1345: 1335: 1302: 1298: 1292: 1241: 1237: 1227: 1190: 1186: 1175: 1163:. Retrieved 1159: 1150: 1138:. Retrieved 1133: 1124: 1112:. Retrieved 1107: 1098: 1086:. Retrieved 1082: 1073: 1061:. Retrieved 1052: 1040:. Retrieved 994: 990: 980: 966: 909: 905: 895: 852: 848: 838: 787: 783: 773: 740: 736: 730: 697: 693: 687: 642: 635: 626:accelerators 623: 611: 607: 599: 587: 536:Experiments 524: 521:instability. 514: 511: 505: 502: 496: 493: 487: 484: 479: 471: 467: 463: 459: 455: 442: 295: 208: 187: 174: 159: 151: 125: 106: 95:sources for 74: 45:, using the 30: 29: 1840:October 13, 1830:Part. Accel 1165:6 September 1140:6 September 1114:6 September 1088:6 September 1042:October 13, 351:in vacuum, 2126:Categories 1709:2106.00814 1589:(1): 724. 1564:2021-06-10 1351:2024-03-22 1251:1511.09032 679:References 37:, such as 1963:Joshi, C. 1934:0028-0836 1891:1745-2473 1836:: 153–159 1784:CiteSeerX 1734:2045-2322 1668:0167-2789 1611:2041-1723 1501:0031-9007 1454:0375-9601 1399:0031-9007 1029:1361-6587 1004:1401.4823 934:0028-0836 879:0031-9007 812:2041-1723 418:ε 269:ε 191:electrons 39:electrons 18:Surfatron 2040:11111762 2032:15457239 1995:16478025 1942:17301787 1752:34215775 1676:20452990 1629:29463872 1509:11177849 1407:11005974 1327:41359956 1284:42463366 1244:: 3–16. 1160:phys.org 1134:AZoM.com 1083:phys.org 1037:62802109 950:25373678 887:25541775 830:23756359 722:27150340 667:See also 554:FACET II 515:(SMLWFA) 380:electron 81:betatron 55:gradient 2057:Bibcode 2012:Bibcode 1975:Bibcode 1950:4334568 1914:Bibcode 1869:Bibcode 1743:8253820 1714:Bibcode 1620:5820283 1591:Bibcode 1537:Bibcode 1481:Bibcode 1434:Bibcode 1379:Bibcode 1307:Bibcode 1256:Bibcode 1195:Bibcode 1063:20 July 1009:Bibcode 958:4469182 942:1463003 914:Bibcode 857:Bibcode 821:3709475 792:Bibcode 765:4361301 745:Bibcode 702:Bibcode 552:FACET, 436:is the 347:is the 323:is the 179:Concept 123:et al. 103:History 2038:  2030:  2004:Nature 1993:  1948:  1940:  1932:  1906:Nature 1889:  1804:  1786:  1750:  1740:  1732:  1674:  1666:  1627:  1617:  1609:  1555:  1507:  1499:  1452:  1405:  1397:  1325:  1282:  1035:  1027:  956:  948:  940:  932:  906:Nature 885:  877:  828:  818:  810:  763:  737:Nature 720:  506:(LBWA) 497:(LWFA) 488:(PWFA) 475:surfer 93:proton 58:plasma 2036:S2CID 1946:S2CID 1826:(PDF) 1704:arXiv 1672:S2CID 1323:S2CID 1280:S2CID 1246:arXiv 1033:S2CID 999:arXiv 954:S2CID 761:S2CID 718:S2CID 576:AWAKE 446:laser 170:AWAKE 143:BELLA 62:laser 2028:PMID 1991:PMID 1938:PMID 1930:ISSN 1887:ISSN 1842:2018 1802:ISBN 1748:PMID 1730:ISSN 1664:ISSN 1625:PMID 1607:ISSN 1553:ISBN 1505:PMID 1497:ISSN 1450:ISSN 1403:PMID 1395:ISSN 1167:2020 1142:2020 1116:2020 1090:2020 1065:2017 1044:2018 1025:ISSN 946:PMID 938:OSTI 930:ISSN 883:PMID 875:ISSN 826:PMID 808:ISSN 653:SLAC 195:ions 193:and 166:CERN 126:The 117:UCLA 111:and 91:and 83:and 43:ions 2092:doi 2065:doi 2020:doi 2008:431 1983:doi 1971:294 1922:doi 1910:445 1877:doi 1794:doi 1738:PMC 1722:doi 1656:doi 1652:206 1615:PMC 1599:doi 1545:doi 1489:doi 1442:doi 1430:299 1387:doi 1315:doi 1272:hdl 1264:doi 1242:829 1203:doi 1017:doi 922:doi 910:515 865:doi 853:113 816:PMC 800:doi 753:doi 741:311 710:doi 663:). 657:GeV 638:GeV 115:of 41:or 2128:: 2088:12 2086:. 2080:. 2063:. 2053:56 2051:. 2034:. 2026:. 2018:. 2006:. 1989:. 1981:. 1969:. 1944:. 1936:. 1928:. 1920:. 1908:. 1885:. 1875:. 1863:. 1859:. 1834:30 1832:. 1828:. 1800:. 1792:. 1778:. 1746:. 1736:. 1728:. 1720:. 1712:. 1700:11 1698:. 1694:. 1670:. 1662:. 1650:. 1646:. 1623:. 1613:. 1605:. 1597:. 1585:. 1581:. 1551:, 1543:, 1531:, 1517:^ 1503:. 1495:. 1487:. 1477:86 1475:. 1471:. 1448:. 1440:. 1428:. 1424:. 1401:. 1393:. 1385:. 1375:85 1373:. 1369:. 1344:. 1321:. 1313:. 1303:30 1301:. 1278:. 1270:. 1262:. 1254:. 1240:. 1236:. 1201:. 1191:10 1189:. 1185:. 1158:. 1132:. 1106:. 1081:. 1031:. 1023:. 1015:. 1007:. 995:56 993:. 989:. 952:. 944:. 936:. 928:. 920:. 908:. 904:. 881:. 873:. 863:. 851:. 847:. 824:. 814:. 806:. 798:. 786:. 782:. 759:. 751:. 739:. 716:. 708:. 698:43 696:. 616:. 593:, 556:, 440:. 382:, 327:, 99:. 72:. 2100:. 2094:: 2071:. 2067:: 2059:: 2042:. 2022:: 2014:: 1997:. 1985:: 1977:: 1952:. 1924:: 1916:: 1893:. 1879:: 1871:: 1865:2 1844:. 1810:. 1796:: 1754:. 1724:: 1716:: 1706:: 1678:. 1658:: 1631:. 1601:: 1593:: 1587:9 1547:: 1539:: 1511:. 1491:: 1483:: 1456:. 1444:: 1436:: 1409:. 1389:: 1381:: 1354:. 1329:. 1317:: 1309:: 1286:. 1274:: 1266:: 1258:: 1248:: 1222:. 1211:. 1205:: 1197:: 1169:. 1144:. 1118:. 1092:. 1067:. 1046:. 1019:: 1011:: 1001:: 960:. 924:: 916:: 889:. 867:: 859:: 832:. 802:: 794:: 788:4 767:. 755:: 747:: 724:. 712:: 704:: 661:n 649:n 422:0 395:e 391:n 364:e 360:m 335:c 309:0 305:E 281:. 273:0 262:2 258:c 252:e 248:n 242:e 238:m 230:= 225:0 221:E 138:n 136:g 20:)

Index

Surfatron
charged particles
electrons
ions
electric field
electron plasma wave
gradient
plasma
laser
plasma parameters
particle accelerators
high energy physics
betatron
free-electron
radiation therapy
proton
hadron therapy
Toshiki Tajima
John M. Dawson
UCLA
Chandrashekhar J. Joshi
Texas Petawatt laser
University of Texas at Austin
gn
BELLA
Lawrence Berkeley National Laboratory
SLAC National Accelerator Laboratory
Super Proton Synchrotron
CERN
AWAKE

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.