Knowledge

Multiangle light scattering

Source 📝

208:
when studying anisotropic particles. Earlier measurements, before the introduction of lasers, were performed using focused, though unpolarized, light beams from sources such as Hg-arc lamps. Another required element is an optical cell to hold the sample being measured. Alternatively, cells incorporating means to permit measurement of flowing samples may be employed. If single-particles scattering properties are to be measured, a means to introduce such particles one-at-a-time through the light beam at a point generally equidistant from the surrounding detectors must be provided.
220:
also collected data sequentially as a single detector was moved from one collection angle to the next. The MALS implementation is of course much faster, but the same types of data are collected and are interpreted in the same manner. The two terms thus refer to the same concept. For differential light scattering measurements, the light scattering photometer has a single detector whereas the MALS light scattering photometer generally has a plurality of detectors.
1156: 984: 1197: 33: 1167:(SEC), MALS measurements began to be used in conjunction with an on-line concentration detector to determine absolute molar mass and size of sample fractions eluting from the column, rather than depending on calibration techniques. These flow mode MALS measurements have been extended to other separation techniques such as 1310:
is the mean square radius of branched and linear macromolecules with identical molar masses. By utilizing MALS in conjunction with a concentration detector as described above, one create a log-log plot of the root-mean-square radius vs molar mass. The slope of this plot yields the branching ratio, g.
346:
Scattering data is usually represented in terms of the so-called excess Rayleigh ratio defined as the Rayleigh ratio of the solution or single particle event from which is subtracted the Rayleigh ratio of the carrier fluid itself and other background contributions, if any. The Rayleigh Ratio measured
1213:
As MALS can provide molar mass and size of molecules, it permits study into protein-protein binding, oligomerization and the kinetics of self-assembly, association and dissociation. By comparing the molar mass of a sample to its concentration, one can determine the binding affinity and stoichiometry
995:
in his paper "Apparatus and Methods for Measurement and Interpretation of the Angular Variation of Light Scattering; Preliminary Results on Polystyrene Solutions" involved using a single detector rotated about a sample contained within a transparent vessel. MALS measurements from non-flowing samples
231:
The application of the Litton detector by Salzman et al. provided measurement at 32 small scattering angles between 0° and 30°, and averaging over a broad range of azimuthal angles as the most important angles are the forward angles for static light scattering. By 1980, Bartholi et al. had developed
139:
Until the advent of lasers and their associated fine beams of narrow width, the width of conventional light beams used to make such measurements prevented data collection at smaller scattering angles. In recent years, since all commercial light scattering instrumentation use laser sources, this need
1182:
The angular dependence of light scattering data is shown below in a figure of mix of polystyrene spheres which was separated by SEC. The two smallest samples (farthest to the right) eluted last and show no angular dependence. The sample, second to the right shows a linear angular variation with the
377:
from which scattered light reaches the detector is determined by the detector's field of view generally restricted by apertures, lenses and stops. Consider now a MALS measurement made in a plane from a suspension of N identical particles/molecules per ml illuminated by a fine beam of light produced
219:
The traditional differential light scattering measurement was virtually identical to the currently used MALS technique. Although the MALS technique generally collects multiplexed data sequentially from the outputs of a set of discrete detectors, the earlier differential light scattering measurement
164:
Measurements were generally expressed as scattered intensities or scattered irradiance. Since the collection of data was made as the detector was placed at different locations on the arc, each position corresponding to a different scattering angle, the concept of placing a separate detector at each
160:
measurement. Historically, such measurements were made using a single detector rotated in an arc about the illuminated sample. The first commercial instrument (formally called a "scattered photometer") was the Brice-Phoenix light scattering photometer introduced in the mid-1950s and followed by the
1314:
In addition to branching, the log-log plot of size vs. molar mass indicates the shape or conformation of a macromolecule. An increase in the slope of the plot indicates a variation in conformation of a polymer from spherical to random coil to linear. Combining the mean-square radius from MALS with
247:
Company, in 1983, followed in 1984 with the sale of the first 15 detector flow instrument (Dawn-F) to AMOCO. By 1988, a three-dimensional configuration was introduced specifically to measure the scattering properties of single aerosol particles. At about the same time, the underwater device was
207:
or focused light beam (usually from a laser source producing a collimated beam of monochromatic light) that illuminates a region of the sample. In modern instruments, the beam is generally plane-polarized perpendicular to the plane of measurement, though other polarizations may be used especially
143:
The "multi-angle" term refers to the detection of scattered light at different discrete angles as measured, for example, by a single detector moved over a range that includes the particular angles selected or an array of detectors fixed at specific angular locations. A discussion of the physical
1204:
Coupling MALS with an in-line concentration detector following a sample separation means like SEC permits the calculation of the molar mass of the eluting sample in addition to its root-mean-square radius. The figure below represents a chromatographic separation of BSA aggregates. The 90° light
279:
is the simplest and describes elastic scattering of light or other electromagnetic radiation by objects much smaller than the incident wavelength. This type of scattering is responsible for the blue color of the sky during the day and is inversely proportional to the fourth power of wavelength.
223:
Another type of MALS device was developed in 1974 by Salzmann et al. based on a light pattern detector invented by George et al. for Litton Systems Inc. in 1971. The Litton detector was developed for sampling the light energy distribution in the rear focal-plane of a spherical lens for sampling
211:
Although most MALS-based measurements are performed in a plane containing a set of detectors usually equidistantly placed from a centrally located sample through which the illuminating beam passes, three-dimensional versions also have been developed wherein the detectors lie on the surface of a
1146:
When plotted one can extrapolate to both zero angle and zero concentration, and analysis of the plot will give the mean square radius of the sample molecules from the initial slope of the c=0 line and the molar mass of the molecule at the point where both concentration and angle equal zero.
272:
The interpretation of scattering measurements made at the multiangular locations relies upon some knowledge of the a priori properties of the particles or molecules measured. The scattering characteristics of different classes of such scatterers may be interpreted best by application of an
169:
have different response and hence needs to be normalized in this scheme. An interesting system based upon the use of high speed film was developed by Brunsting and Mullaney in 1974. It permitted the entire range of scattered intensities to be recorded on the film with a subsequent
212:
sphere with the sample controlled to pass through its center where it intersects the path of the incident light beam passing along a diameter of the sphere. The former framework is used for measuring aerosol particles while the latter was used to examine marine organisms such as
776: 248:
built to measure the scattered light properties of single phytoplankton. Signals were collected by optical fibers and transmitted to individual photomultipliers. Around December 2001, an instrument was commercialized, which measures 7 scattering angles using a
196:, both of which are referred to by the initials DLS. The latter refers to a technique that is quite different, measuring the fluctuation of scattered light due to constructive and destructive interference, the frequency being linked to the thermal motion, 322:, then such particles may be considered as composed of very small elements, each of which may be represented as a Rayleigh-scattering particle. Thus each small element of the larger particle is assumed to scatter independently of any other. 996:
such as this are commonly referred to as "batch measurements". By creating samples at several known low concentrations and detecting scattered light about the sample at varying angles, one can create a Zimm plot by plotting :
621: 255:
The literature associated with measurements made by MALS photometers is extensive. both in reference to batch measurements of particles/molecules and measurements following fractionation by chromatographic means such as
473: 857: 232:
a new approach to measuring the scattering at discrete scattering angles by using an elliptical reflector to permit measurement at 30 polar angles over the range 2.5° ≤ θ ≤ 177.5° with a resolution of 2.1°.
2498: 2345:
Podzimek, Stepan (1994). "The Use of GPC Coupled with a Multiangle Laser Light Scattering Photometer for the Characterization of Polymers. On the Determination of Molecular Weight, Size and Branching".
637: 188:
expressed in milli-barns/steradian. Differential cross section measurements were commonly made, for example, to study the structure of the atomic nucleus by scattering from them nucleons, such as
912: 1222:
The branching ratio of a polymer relates to the number of branch units in a randomly branched polymer and the number of arms in star-branched polymers and was defined by Zimm and Stockmayer as
1279: 1089: 174:
scan providing the relative scattered intensities. The then-conventional use of a single detector rotated about an illuminated sample with intensities collected at specific angles was called
1141: 1040: 2028:"Absolute on-line molecular mass analysis of basic fibroblast growth factor and its multimers by reversed-phase liquid chromatography with multi-angle laser light scattering detection" 958: 1381: 1147:
Improvements to the Zimm plot, which incorporate all collected data (commonly referred to as a "global fit"), have largely replaced the Zimm plot in modern batch analyses.
1437:
B. A. Zimm (1948). "Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions".
2233:
V.A. Erma (1969). "Exact solution for the scattering of electromagnetic waves from bodies of arbitrary shape: III. Obstacles with arbitrary electromagnetic properties".
51: 1340: 1308: 1858:
M. Bartholdi; G. C. Salzman; R. D. Hiebert & M. Kerker (1980). "Differential light scattering photometer for rapid analysis of single particles in flow".
378:
by a laser. Assuming that the light is polarized perpendicular to the plane of the detectors. The scattered light intensity measured by the detector at angle
515: 2179:
V.A. Erma (1968a). "An exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape: I. Case of cylindrical symmetry".
991:
MALS is most commonly used for the characterization of mass and size of molecules in solution. Early implementations of MALS such as those discussed by
343:
Lorenz–Mie theory may be generalized to spherically symmetric particles per reference. More general shapes and structures have been treated by Erma.
631:" of the suspending fluid, i.e. Rayleigh–Gans approximation, the scattering function in the scattering plane is the relatively complex quantity 165:
angular location of interest was well understood, though not implemented commercially until the late 1970s. Multiple detectors having different
239:
systems began in 1977 when Science Spectrum, Inc. patented a flow-through capillary system for a customized bioassay system developed for the
2076: 2010: 388: 783: 2373:
Waghwani HK, Douglas, T (March 2021). "Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage".
1183:
intensity increasing at lower scattering angles. The largest sample, on the left, elutes first and shows non-linear angular variation.
2206:
V.A. Erma (1968b). "Exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape: II. General case".
1916: 1472:
B. A. Brice; M. Halwer & R. Speiser (1950). "Photoelectric light scattering photometer for determining high molecular weights".
69: 771:{\displaystyle i(\theta )={\frac {k^{2}V^{2}\left|{m-1}\right|^{2}}{4\pi ^{2}}}G^{2}\left({2ka\sin {\frac {\theta }{2}}}\right)} 328:
theory is used to interpret the scattering of light by homogeneous spherical particles. The Rayleigh–Gans approximation and the
284: 627:
Even for a simple homogeneous sphere of radius a whose refractive index, n, is very nearly the same as the refractive index "n
2513: 2449:
Wang Y, Uchida M, Waghwani HK, Douglas, T (December 2020). "Synthetic Virus-like Particles for Glutathione Biosynthesis".
1176: 1164: 862: 261: 257: 109: 2508: 1400: 287:
is a means of interpreting MALS measurements with the assumption that the scattering particles have a refractive index,
148:, including some applications, data analysis methods and graphical representations associated therewith are presented. 1900:
L. V. Maldarelli, D. T. Phillips, W. L. Proctor, P. J. Wyatt, and T. C. Urquhart, Programmable action sampler system,
1227: 1172: 1045: 132:
was intended to reassure those used to making light scattering measurements with conventional light sources, such as
243:. The first commercial MALS instrument incorporating 8 discrete detectors was delivered to S.C. Johnson and Son, by 1106: 999: 2111:
P. J. Wyatt (1962). "Scattering of Electromagnetic Plane Waves from Inhomogeneous Spherically Symmetric Objects".
329: 325: 2027: 1620:
P. J. Wyatt (1968). "Differential Light Scattering: A Physical Method for Identifying Living Bacterial Cells".
1404: 1168: 917: 193: 1345: 180: 157: 145: 2002:
Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography
2503: 249: 983: 2092:
L. V. Lorenz (1890). "Light propagation in and outside a sphere illuminated by plane waves of light".
2319: 2242: 2215: 2188: 2151: 2120: 1867: 1773: 1721: 1712:
P. J. Wyatt; Y. J. Chang; C. Jackson; R. G. Parker; et al. (1988). "Aerosol Particle Analyzer".
1681: 1629: 1576: 1481: 1446: 105: 2518: 1408: 1396: 1205:
scattering signal from a MALS detector and the molar mass values for each elution slice are shown.
276: 97: 2474: 166: 133: 156:
The measurement of scattered light from an illuminated sample forms the basis of the so-called
2466: 2431: 2390: 2072: 2047: 2006: 1883: 1824: 1737: 1645: 1602: 1545: 1155: 2458: 2421: 2382: 2355: 2327: 2277: 2268:
Wyatt, P.J. (1993). "Light Scattering and the Absolute Characterization of Macromolecules".
2250: 2223: 2196: 2159: 2128: 2039: 1875: 1814: 1781: 1729: 1689: 1637: 1592: 1584: 1535: 1489: 1454: 1196: 295: 244: 225: 17: 1318: 1286: 2310:
Zimm, Bruno H. (1949). "The Dimensions of Chain Molecules Containing Branches and Rings".
352: 197: 113: 2323: 2246: 2219: 2192: 2155: 2124: 1871: 1777: 1725: 1685: 1633: 1580: 1485: 1450: 203:
A MALS measurement requires a set of ancillary elements. Most important among them is a
1597: 1564: 362:
is defined as the intensity of light per unit solid angle per unit incident intensity,
1588: 2492: 2478: 2281: 2043: 992: 616:{\displaystyle R(\theta )={\frac {I(\theta )r^{2}}{I_{0}\Delta V}}=Ni(\theta )/k^{2}} 213: 1412: 1392: 171: 140:
to mention the light source has been dropped and the term MALS is used throughout.
2066: 2000: 1819: 1802: 1540: 1523: 2410:"Virus-Like Particles (VLPs) as a Platform for HierarchicalCompartmentalization" 1803:"A Flow-System Multiangle Light-Scattering Instrument for Cell Characterization" 1524:"A Flow-System Multiangle Light-Scattering Instrument for Cell Characterization" 356: 273:
appropriate theory. For example, the following theories are most often applied.
2426: 2409: 2359: 1844: 2462: 2164: 2139: 1902: 1786: 1761: 1693: 1662:
Cf. L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, New York 1955).
1508: 204: 93: 2254: 2227: 2200: 2132: 1801:
G. C. Salzmann; J. M. Crowell; C. A. Goad; K. M. Hansen; et al. (1975).
1672:
S. Fernbach (1958). "Nuclear Radii as Determined by Scattering of Neutrons".
1522:
G. C. Salzmann; J. M. Crowell; C. A. Goad; K. M. Hansen; et al. (1975).
120:
source is most often used, in which case the technique can be referred to as
96:
by a sample into a plurality of angles. It is used for determining both the
2470: 2435: 2394: 1887: 1741: 1649: 1493: 505:
is the vacuum wavelength of the incident light. The excess Rayleigh ratio,
192:. It is important to distinguish between differential light scattering and 2051: 1828: 1606: 1549: 1975: 1940: 1879: 1733: 332:
theory produce identical results for homogeneous spheres in the limit as
101: 1641: 2386: 468:{\displaystyle I(\theta )={\frac {I_{0}N\Delta V}{(kr)^{2}}}i(\theta )} 189: 2331: 1458: 1407:
or zeta potential. MALS techniques have been adopted for the study of
852:{\displaystyle G(\xi )={\frac {3}{\xi ^{2}}}(\sin \xi -\xi \cos \xi )} 2295:
Trainoff, S.P. (November 18, 2003). "U.S. Patent No. 6,651,009 B1".
1999:
A. M. Striegel; W. W. Yau; J. J. Kirkland & D. D. Bly (2009).
240: 117: 90: 1762:"Discrimination of Phytoplankton via Light-Scattering Properties" 252:
detector (BI-MwA: Brookhaven Instruments Corp, Hotlsville, NY).
1565:"Differential Light Scattering from Spherical Mammalian Cells" 26: 382:
in excess of that scattered by the suspending fluid would be
1342:
attained from DLS measurements yields the shape factor ρ =
228:
distribution of objects recorded on film transparencies.
200:
of the molecules or particles in solution or suspension.
47: 2499:
Scattering, absorption and radiative transfer (optics)
2065:
M. Schimpf; K. Caldwell; J. C. Giddings, eds. (2000).
1963: 1348: 1321: 1289: 1230: 1109: 1048: 1002: 920: 865: 786: 640: 518: 498:
is the refractive index of the suspending fluid, and
391: 2026:
I. V. Astafieva; G. A. Eberlein; Y. J. Wang (1996).
907:{\displaystyle k={\frac {2\pi n_{0}}{\lambda _{0}}}} 970:is the wavelength of the incident light in vacuum. 42:
may be too technical for most readers to understand
1375: 1334: 1302: 1273: 1135: 1083: 1034: 952: 906: 851: 770: 615: 467: 483:is the scattering function of a single particle, 2408:Waghwani HK, Uchida M, Douglas, T (April 2020). 1274:{\displaystyle g={\frac {R_{b}^{2}}{R_{l}^{2}}}} 1084:{\displaystyle \sin ^{2}{\frac {\theta }{2}}+kc} 161:Sofica photometer introduced in the late 1960s. 136:that low-angle measurements could now be made. 1136:{\displaystyle \sin ^{2}{\frac {\theta }{2}}} 1035:{\displaystyle {\frac {K^{*}c}{R_{\theta }}}} 8: 264:(RPC), and field flow fractionation (FFF). 1842:N. George, A. Spindel, J. T. Thomasson in 1563:A. Brunsting & P. F. Mullaney (1974). 89:) describes a technique for measuring the 2425: 2163: 1818: 1785: 1755: 1753: 1751: 1596: 1539: 1383:, for each macromolecular size fraction. 1365: 1355: 1349: 1347: 1326: 1320: 1294: 1288: 1263: 1258: 1248: 1243: 1237: 1229: 1123: 1114: 1108: 1062: 1053: 1047: 1024: 1010: 1003: 1001: 953:{\displaystyle V={\frac {4}{3}}\pi a^{3}} 944: 927: 919: 896: 885: 872: 864: 811: 802: 785: 753: 737: 727: 714: 699: 684: 673: 663: 656: 639: 607: 598: 565: 553: 534: 517: 444: 414: 407: 390: 369:, per unit illuminated scattering volume 70:Learn how and when to remove this message 54:, without removing the technical details. 1707: 1705: 1703: 1195: 1154: 982: 1432: 1430: 1428: 1424: 1095:is the concentration of the sample and 1376:{\displaystyle {\frac {r_{g}}{r_{h}}}} 1760:P. J. Wyatt & C. Jackson (1989). 52:make it understandable to non-experts 7: 1917:"Evolution of Wyatt Technology Corp" 1218:Branching and molecular conformation 1159:MALS signals for polystyrene spheres 1964:See, for example Chemical Abstracts 2348:Journal of Applied Polymer Science 1200:BSA Separation and MM distribution 571: 423: 178:after the quantum mechanical term 25: 2068:Field-Flow Fractionation Handbook 122:multiangle laser light scattering 2375:Journal of Materials Chemistry B 1391:Other MALS applications include 1099:is a stretch factor used to put 347:at a detector lying at an angle 224:geometric relationships and the 31: 1143:into the same numerical range. 979:Zimm plot and batch collection 846: 819: 796: 790: 650: 644: 595: 589: 546: 540: 528: 522: 462: 456: 441: 431: 401: 395: 1: 1589:10.1016/S0006-3495(74)85925-4 1177:reversed-phase chromatography 1165:size exclusion chromatography 262:reversed phase chromatography 258:size exclusion chromatography 176:differential light scattering 128:). The insertion of the word 2282:10.1016/0003-2670(93)80373-S 2044:10.1016/0021-9673(96)00134-3 1766:Limnology & Oceanography 1401:protein-protein interactions 1187:Utility of MALS measurements 18:Multi-angle light scattering 2032:Journal of Chromatography A 1173:ion exchange chromatography 298:of the surrounding medium, 285:Rayleigh–Gans approximation 144:phenomenon related to this 83:Multiangle light scattering 2535: 2427:10.1021/acs.biomac.0c00030 2360:10.1002/app.1994.070540110 1921:www.americanlaboratory.com 1820:10.1093/clinchem/21.9.1297 1541:10.1093/clinchem/21.9.1297 1214:of interacting molecules. 181:differential cross section 158:classical light scattering 2463:10.1021/acssynbio.0c00368 2165:10.1103/physrev.134.ab1.2 1787:10.4319/lo.1989.34.1.0096 1694:10.1103/RevModPhys.30.414 235:The commercialization of 2255:10.1103/physrev.179.1238 2228:10.1103/physrev.176.1544 2201:10.1103/physrev.173.1243 2133:10.1103/PhysRev.127.1837 1405:electrophoretic mobility 1315:the hydrodynamic radius 1169:field flow fractionation 373:. The scattering volume 194:dynamic light scattering 108:, by detecting how they 100:and the average size of 2094:Videnski.Selsk.Skrifter 2005:. John Wiley and Sons. 146:static light scattering 2270:Analytica Chimica Acta 2138:BalĂĄzs, Louis (1964). 1494:10.1364/JOSA.40.000768 1377: 1336: 1304: 1275: 1209:Molecular interactions 1201: 1160: 1137: 1085: 1036: 988: 954: 908: 853: 772: 617: 469: 2514:Scientific techniques 2451:ACS Synthetic Biology 1903:U.S. patent 4,140,018 1509:U.S. patent 3,624,835 1411:stability and use in 1378: 1337: 1335:{\displaystyle r_{h}} 1305: 1303:{\displaystyle R^{2}} 1276: 1199: 1158: 1138: 1086: 1037: 986: 955: 909: 854: 773: 618: 470: 1880:10.1364/AO.19.001573 1845:U.S. patent 3689772A 1734:10.1364/AO.27.000217 1346: 1319: 1287: 1228: 1107: 1046: 1000: 918: 914:,     863: 784: 638: 516: 389: 294:, very close to the 2509:Colloidal chemistry 2324:1949JChPh..17.1301Z 2247:1969PhRv..179.1238E 2220:1968PhRv..176.1544E 2193:1968PhRv..173.1243E 2156:1964PhRv..134....1B 2125:1962PhRv..127.1837W 1976:"MALS Bibliography" 1872:1980ApOpt..19.1573B 1778:1989LimOc..34...96W 1726:1988ApOpt..27..217W 1686:1958RvMP...30..414F 1642:10.1364/AO.7.001879 1634:1968ApOpt...7.1879W 1581:1974BpJ....14..439B 1486:1950JOSA...40..768B 1451:1948JChPh..16.1099Z 1409:pharmaceutical drug 1397:protein aggregation 1268: 1253: 1192:Molar mass and size 1163:With the advent of 778:,   where 509:, is then given by 277:Rayleigh scattering 98:absolute molar mass 2387:10.1039/d1tb00234a 1906:(1979) filed 1977. 1848:(1972) filed 1971. 1807:Clinical Chemistry 1528:Clinical Chemistry 1512:(1971) filed 1968. 1387:Other applications 1373: 1332: 1300: 1271: 1254: 1239: 1202: 1161: 1133: 1081: 1032: 989: 950: 904: 849: 768: 613: 465: 319:|m - 1| << 1 167:quantum efficiency 2457:(12): 3298–3310. 2414:Biomacromolecules 2381:(14): 3168–3179. 2332:10.1063/1.1747157 2078:978-0-471-18430-0 2012:978-0-471-20172-4 1866:(10): 1573–1581. 1628:(10): 1879–1896. 1459:10.1063/1.1746740 1445:(12): 1099–1116. 1371: 1269: 1151:SEC and flow mode 1131: 1070: 1030: 935: 902: 817: 761: 721: 578: 451: 80: 79: 72: 16:(Redirected from 2526: 2483: 2482: 2446: 2440: 2439: 2429: 2420:(6): 2060–2072. 2405: 2399: 2398: 2370: 2364: 2363: 2342: 2336: 2335: 2307: 2301: 2300: 2297:US Patent Office 2292: 2286: 2285: 2265: 2259: 2258: 2241:(5): 1238–1246. 2231: 2214:(5): 1544–1553. 2204: 2187:(5): 1243–1257. 2176: 2170: 2169: 2167: 2136: 2119:(5): 1837–1843. 2108: 2102: 2101: 2089: 2083: 2082: 2062: 2056: 2055: 2023: 2017: 2016: 1996: 1990: 1989: 1987: 1986: 1972: 1966: 1961: 1955: 1954: 1952: 1951: 1941:"museum | about" 1937: 1931: 1930: 1928: 1927: 1913: 1907: 1905: 1898: 1892: 1891: 1855: 1849: 1847: 1840: 1834: 1832: 1822: 1813:(9): 1297–1304. 1798: 1792: 1791: 1789: 1757: 1746: 1745: 1709: 1698: 1697: 1669: 1663: 1660: 1654: 1653: 1617: 1611: 1610: 1600: 1560: 1554: 1553: 1543: 1534:(9): 1297–1304. 1519: 1513: 1511: 1504: 1498: 1497: 1469: 1463: 1462: 1434: 1382: 1380: 1379: 1374: 1372: 1370: 1369: 1360: 1359: 1350: 1341: 1339: 1338: 1333: 1331: 1330: 1309: 1307: 1306: 1301: 1299: 1298: 1280: 1278: 1277: 1272: 1270: 1267: 1262: 1252: 1247: 1238: 1142: 1140: 1139: 1134: 1132: 1124: 1119: 1118: 1090: 1088: 1087: 1082: 1071: 1063: 1058: 1057: 1041: 1039: 1038: 1033: 1031: 1029: 1028: 1019: 1015: 1014: 1004: 959: 957: 956: 951: 949: 948: 936: 928: 913: 911: 910: 905: 903: 901: 900: 891: 890: 889: 873: 858: 856: 855: 850: 818: 816: 815: 803: 777: 775: 774: 769: 767: 763: 762: 754: 732: 731: 722: 720: 719: 718: 705: 704: 703: 698: 694: 678: 677: 668: 667: 657: 622: 620: 619: 614: 612: 611: 602: 579: 577: 570: 569: 559: 558: 557: 535: 474: 472: 471: 466: 452: 450: 449: 448: 429: 419: 418: 408: 339: 320: 316:and assume that 296:refractive index 245:Wyatt Technology 226:spectral density 75: 68: 64: 61: 55: 35: 34: 27: 21: 2534: 2533: 2529: 2528: 2527: 2525: 2524: 2523: 2489: 2488: 2487: 2486: 2448: 2447: 2443: 2407: 2406: 2402: 2372: 2371: 2367: 2344: 2343: 2339: 2309: 2308: 2304: 2294: 2293: 2289: 2267: 2266: 2262: 2235:Physical Review 2232: 2208:Physical Review 2205: 2181:Physical Review 2178: 2177: 2173: 2144:Physical Review 2137: 2113:Physical Review 2110: 2109: 2105: 2091: 2090: 2086: 2079: 2064: 2063: 2059: 2025: 2024: 2020: 2013: 1998: 1997: 1993: 1984: 1982: 1974: 1973: 1969: 1962: 1958: 1949: 1947: 1939: 1938: 1934: 1925: 1923: 1915: 1914: 1910: 1901: 1899: 1895: 1857: 1856: 1852: 1843: 1841: 1837: 1800: 1799: 1795: 1759: 1758: 1749: 1711: 1710: 1701: 1671: 1670: 1666: 1661: 1657: 1619: 1618: 1614: 1562: 1561: 1557: 1521: 1520: 1516: 1507: 1506:P. J. Wyatt in 1505: 1501: 1480:(11): 768–778. 1474:J. Opt. Soc. Am 1471: 1470: 1466: 1436: 1435: 1426: 1421: 1389: 1361: 1351: 1344: 1343: 1322: 1317: 1316: 1290: 1285: 1284: 1226: 1225: 1220: 1211: 1194: 1189: 1153: 1110: 1105: 1104: 1049: 1044: 1043: 1020: 1006: 1005: 998: 997: 981: 976: 968: 940: 916: 915: 892: 881: 874: 861: 860: 807: 782: 781: 733: 723: 710: 706: 680: 679: 669: 659: 658: 636: 635: 630: 603: 561: 560: 549: 536: 514: 513: 503: 496: 492: 488: 440: 430: 410: 409: 387: 386: 367: 333: 318: 314: 310: 303: 292: 270: 198:Brownian motion 154: 114:collimated beam 76: 65: 59: 56: 48:help improve it 45: 36: 32: 23: 22: 15: 12: 11: 5: 2532: 2530: 2522: 2521: 2516: 2511: 2506: 2501: 2491: 2490: 2485: 2484: 2441: 2400: 2365: 2337: 2302: 2287: 2260: 2171: 2103: 2084: 2077: 2071:. Wiley-IEEE. 2057: 2038:(2): 215–229. 2018: 2011: 1991: 1967: 1956: 1932: 1908: 1893: 1860:Applied Optics 1850: 1835: 1793: 1747: 1720:(2): 217–221. 1714:Applied Optics 1699: 1680:(2): 414–418. 1674:Rev. Mod. Phys 1664: 1655: 1622:Applied Optics 1612: 1575:(6): 439–453. 1555: 1514: 1499: 1464: 1423: 1422: 1420: 1417: 1388: 1385: 1368: 1364: 1358: 1354: 1329: 1325: 1297: 1293: 1266: 1261: 1257: 1251: 1246: 1242: 1236: 1233: 1219: 1216: 1210: 1207: 1193: 1190: 1188: 1185: 1152: 1149: 1130: 1127: 1122: 1117: 1113: 1080: 1077: 1074: 1069: 1066: 1061: 1056: 1052: 1027: 1023: 1018: 1013: 1009: 980: 977: 975: 972: 966: 961: 960: 947: 943: 939: 934: 931: 926: 923: 899: 895: 888: 884: 880: 877: 871: 868: 859:,    848: 845: 842: 839: 836: 833: 830: 827: 824: 821: 814: 810: 806: 801: 798: 795: 792: 789: 779: 766: 760: 757: 752: 749: 746: 743: 740: 736: 730: 726: 717: 713: 709: 702: 697: 693: 690: 687: 683: 676: 672: 666: 662: 655: 652: 649: 646: 643: 628: 625: 624: 610: 606: 601: 597: 594: 591: 588: 585: 582: 576: 573: 568: 564: 556: 552: 548: 545: 542: 539: 533: 530: 527: 524: 521: 501: 494: 490: 486: 477: 476: 464: 461: 458: 455: 447: 443: 439: 436: 433: 428: 425: 422: 417: 413: 406: 403: 400: 397: 394: 365: 312: 308: 301: 290: 269: 266: 153: 150: 78: 77: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2531: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2496: 2494: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2445: 2442: 2437: 2433: 2428: 2423: 2419: 2415: 2411: 2404: 2401: 2396: 2392: 2388: 2384: 2380: 2376: 2369: 2366: 2361: 2357: 2353: 2349: 2341: 2338: 2333: 2329: 2325: 2321: 2317: 2313: 2312:J. Chem. Phys 2306: 2303: 2298: 2291: 2288: 2283: 2279: 2275: 2271: 2264: 2261: 2256: 2252: 2248: 2244: 2240: 2236: 2229: 2225: 2221: 2217: 2213: 2209: 2202: 2198: 2194: 2190: 2186: 2182: 2175: 2172: 2166: 2161: 2157: 2153: 2149: 2145: 2141: 2140:"Errata Ibid" 2134: 2130: 2126: 2122: 2118: 2114: 2107: 2104: 2099: 2095: 2088: 2085: 2080: 2074: 2070: 2069: 2061: 2058: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2022: 2019: 2014: 2008: 2004: 2003: 1995: 1992: 1981: 1980:www.wyatt.com 1977: 1971: 1968: 1965: 1960: 1957: 1946: 1945:www.wyatt.com 1942: 1936: 1933: 1922: 1918: 1912: 1909: 1904: 1897: 1894: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1861: 1854: 1851: 1846: 1839: 1836: 1830: 1826: 1821: 1816: 1812: 1808: 1804: 1797: 1794: 1788: 1783: 1779: 1775: 1772:(I): 96–112. 1771: 1767: 1763: 1756: 1754: 1752: 1748: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1708: 1706: 1704: 1700: 1695: 1691: 1687: 1683: 1679: 1675: 1668: 1665: 1659: 1656: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1616: 1613: 1608: 1604: 1599: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1559: 1556: 1551: 1547: 1542: 1537: 1533: 1529: 1525: 1518: 1515: 1510: 1503: 1500: 1495: 1491: 1487: 1483: 1479: 1475: 1468: 1465: 1460: 1456: 1452: 1448: 1444: 1440: 1439:J. Chem. Phys 1433: 1431: 1429: 1425: 1418: 1416: 1414: 1410: 1406: 1402: 1398: 1394: 1386: 1384: 1366: 1362: 1356: 1352: 1327: 1323: 1312: 1295: 1291: 1281: 1264: 1259: 1255: 1249: 1244: 1240: 1234: 1231: 1223: 1217: 1215: 1208: 1206: 1198: 1191: 1186: 1184: 1180: 1178: 1174: 1170: 1166: 1157: 1150: 1148: 1144: 1128: 1125: 1120: 1115: 1111: 1102: 1098: 1094: 1078: 1075: 1072: 1067: 1064: 1059: 1054: 1050: 1025: 1021: 1016: 1011: 1007: 994: 993:Bruno H. Zimm 985: 978: 973: 971: 969: 945: 941: 937: 932: 929: 924: 921: 897: 893: 886: 882: 878: 875: 869: 866: 843: 840: 837: 834: 831: 828: 825: 822: 812: 808: 804: 799: 793: 787: 780: 764: 758: 755: 750: 747: 744: 741: 738: 734: 728: 724: 715: 711: 707: 700: 695: 691: 688: 685: 681: 674: 670: 664: 660: 653: 647: 641: 634: 633: 632: 608: 604: 599: 592: 586: 583: 580: 574: 566: 562: 554: 550: 543: 537: 531: 525: 519: 512: 511: 510: 508: 504: 497: 482: 459: 453: 445: 437: 434: 426: 420: 415: 411: 404: 398: 392: 385: 384: 383: 381: 376: 372: 368: 361: 358: 354: 350: 344: 341: 337: 331: 327: 323: 321: 315: 304: 297: 293: 286: 281: 278: 274: 267: 265: 263: 259: 253: 251: 246: 242: 238: 233: 229: 227: 221: 217: 215: 214:phytoplankton 209: 206: 201: 199: 195: 191: 187: 183: 182: 177: 173: 168: 162: 159: 151: 149: 147: 141: 137: 135: 131: 127: 123: 119: 115: 111: 110:scatter light 107: 103: 99: 95: 92: 88: 84: 74: 71: 63: 53: 49: 43: 40:This article 38: 29: 28: 19: 2504:Spectroscopy 2454: 2450: 2444: 2417: 2413: 2403: 2378: 2374: 2368: 2351: 2347: 2340: 2318:(12): 1301. 2315: 2311: 2305: 2296: 2290: 2273: 2269: 2263: 2238: 2234: 2211: 2207: 2184: 2180: 2174: 2150:(7AB): AB1. 2147: 2143: 2116: 2112: 2106: 2097: 2093: 2087: 2067: 2060: 2035: 2031: 2021: 2001: 1994: 1983:. Retrieved 1979: 1970: 1959: 1948:. Retrieved 1944: 1935: 1924:. Retrieved 1920: 1911: 1896: 1863: 1859: 1853: 1838: 1810: 1806: 1796: 1769: 1765: 1717: 1713: 1677: 1673: 1667: 1658: 1625: 1621: 1615: 1572: 1568: 1558: 1531: 1527: 1517: 1502: 1477: 1473: 1467: 1442: 1438: 1413:nanomedicine 1393:nanoparticle 1390: 1313: 1282: 1224: 1221: 1212: 1203: 1181: 1162: 1145: 1100: 1096: 1092: 990: 974:Applications 964: 962: 626: 506: 499: 484: 480: 478: 379: 374: 370: 363: 359: 348: 345: 342: 335: 324: 317: 306: 305:. If we set 299: 288: 282: 275: 271: 254: 236: 234: 230: 222: 218: 210: 202: 185: 179: 175: 172:densitometer 163: 155: 142: 138: 134:Hg-arc lamps 129: 125: 121: 86: 82: 81: 66: 57: 41: 357:solid angle 2519:Scattering 2493:Categories 2354:: 91–103. 1985:2017-02-23 1950:2017-02-23 1926:2017-02-23 1569:Biophys. J 1419:References 353:subtending 338:| → 0 334:|1 − 330:Lorenz–Mie 326:Lorenz–Mie 237:multiangle 205:collimated 152:Background 2479:227167991 1399:studies, 1126:θ 1121:⁡ 1065:θ 1060:⁡ 1026:θ 1012:∗ 987:Zimm plot 938:π 894:λ 879:π 844:ξ 841:⁡ 835:ξ 832:− 829:ξ 826:⁡ 809:ξ 794:ξ 756:θ 751:⁡ 712:π 689:− 648:θ 593:θ 572:Δ 544:θ 526:θ 460:θ 424:Δ 399:θ 102:molecules 94:scattered 2471:33232156 2436:32319761 2395:33885621 2276:: 1–40. 1888:20221079 1742:20523583 1650:20068905 1395:sizing, 190:neutrons 106:solution 60:May 2014 2320:Bibcode 2243:Bibcode 2216:Bibcode 2189:Bibcode 2152:Bibcode 2121:Bibcode 2100:: 1–62. 2052:8765649 1868:Bibcode 1829:1149235 1774:Bibcode 1722:Bibcode 1682:Bibcode 1630:Bibcode 1607:4134589 1598:1334522 1577:Bibcode 1550:1149235 1482:Bibcode 1447:Bibcode 485:k = 2πn 260:(SEC), 116:from a 46:Please 2477:  2469:  2434:  2393:  2075:  2050:  2009:  1886:  1827:  1740:  1648:  1605:  1595:  1548:  1283:Where 1175:, and 1091:where 479:where 268:Theory 2475:S2CID 307:m = n 241:USFDA 130:laser 126:MALLS 118:laser 91:light 2467:PMID 2432:PMID 2391:PMID 2073:ISBN 2048:PMID 2007:ISBN 1884:PMID 1833:> 1825:PMID 1738:PMID 1646:PMID 1603:PMID 1546:PMID 1103:and 963:and 507:R(θ) 481:i(θ) 351:and 283:The 186:σ(θ) 112:. A 87:MALS 2459:doi 2422:doi 2383:doi 2356:doi 2328:doi 2278:doi 2274:272 2251:doi 2239:179 2224:doi 2212:176 2197:doi 2185:173 2160:doi 2148:134 2129:doi 2117:127 2040:doi 2036:740 1876:doi 1815:doi 1782:doi 1730:doi 1690:doi 1638:doi 1593:PMC 1585:doi 1536:doi 1490:doi 1455:doi 1112:sin 1051:sin 1042:vs 838:cos 823:sin 748:sin 493:, n 250:CCD 104:in 50:to 2495:: 2473:. 2465:. 2453:. 2430:. 2418:21 2416:. 2412:. 2389:. 2377:. 2352:54 2350:. 2326:. 2316:17 2314:. 2272:. 2249:. 2237:. 2222:. 2210:. 2195:. 2183:. 2158:. 2146:. 2142:. 2127:. 2115:. 2096:. 2046:. 2034:. 2030:. 1978:. 1943:. 1919:. 1882:. 1874:. 1864:19 1862:. 1823:. 1811:21 1809:. 1805:. 1780:. 1770:34 1768:. 1764:. 1750:^ 1736:. 1728:. 1718:27 1716:. 1702:^ 1688:. 1678:30 1676:. 1644:. 1636:. 1624:. 1601:. 1591:. 1583:. 1573:14 1571:. 1567:. 1544:. 1532:21 1530:. 1526:. 1488:. 1478:40 1476:. 1453:. 1443:16 1441:. 1427:^ 1415:. 1403:, 1179:. 1171:, 1101:kc 489:/Îť 375:ΔV 371:ΔV 360:ΔΩ 355:a 340:. 311:/n 216:. 184:, 2481:. 2461:: 2455:9 2438:. 2424:: 2397:. 2385:: 2379:9 2362:. 2358:: 2334:. 2330:: 2322:: 2299:. 2284:. 2280:: 2257:. 2253:: 2245:: 2230:. 2226:: 2218:: 2203:. 2199:: 2191:: 2168:. 2162:: 2154:: 2135:. 2131:: 2123:: 2098:6 2081:. 2054:. 2042:: 2015:. 1988:. 1953:. 1929:. 1890:. 1878:: 1870:: 1831:. 1817:: 1790:. 1784:: 1776:: 1744:. 1732:: 1724:: 1696:. 1692:: 1684:: 1652:. 1640:: 1632:: 1626:7 1609:. 1587:: 1579:: 1552:. 1538:: 1496:. 1492:: 1484:: 1461:. 1457:: 1449:: 1367:h 1363:r 1357:g 1353:r 1328:h 1324:r 1296:2 1292:R 1265:2 1260:l 1256:R 1250:2 1245:b 1241:R 1235:= 1232:g 1129:2 1116:2 1097:k 1093:c 1079:c 1076:k 1073:+ 1068:2 1055:2 1022:R 1017:c 1008:K 967:0 965:Îť 946:3 942:a 933:3 930:4 925:= 922:V 898:0 887:0 883:n 876:2 870:= 867:k 847:) 820:( 813:2 805:3 800:= 797:) 791:( 788:G 765:) 759:2 745:a 742:k 739:2 735:( 729:2 725:G 716:2 708:4 701:2 696:| 692:1 686:m 682:| 675:2 671:V 665:2 661:k 654:= 651:) 645:( 642:i 629:0 623:. 609:2 605:k 600:/ 596:) 590:( 587:i 584:N 581:= 575:V 567:0 563:I 555:2 551:r 547:) 541:( 538:I 532:= 529:) 523:( 520:R 502:0 500:Îť 495:0 491:0 487:0 475:, 463:) 457:( 454:i 446:2 442:) 438:r 435:k 432:( 427:V 421:N 416:0 412:I 405:= 402:) 396:( 393:I 380:θ 366:0 364:I 349:θ 336:m 313:0 309:1 302:0 300:n 291:1 289:n 124:( 85:( 73:) 67:( 62:) 58:( 44:. 20:)

Index

Multi-angle light scattering
help improve it
make it understandable to non-experts
Learn how and when to remove this message
light
scattered
absolute molar mass
molecules
solution
scatter light
collimated beam
laser
Hg-arc lamps
static light scattering
classical light scattering
quantum efficiency
densitometer
differential cross section
neutrons
dynamic light scattering
Brownian motion
collimated
phytoplankton
spectral density
USFDA
Wyatt Technology
CCD
size exclusion chromatography
reversed phase chromatography
Rayleigh scattering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑