Knowledge (XXG)

Murai reaction

Source šŸ“

276: 131: 213: 60: 755:
Matsubara, Toshiaki; Koga, Nobuaki; Musaev, Djamaladdin G.; Morokuma, Keiji (1998-12-01). "Density Functional Study on Activation of ortho-CH Bond in Aromatic Ketone by Ru Complex. Role of Unusual Five-Coordinated d6 Metallacycle Intermediate with Agostic Interaction".
890:
Kakiuchi, Fumitoshi; Kochi, Takuya; Mizushima, Eiichiro; Murai, Shinji (2010-12-22). "Room-Temperature Regioselective Cāˆ’H/Olefin Coupling of Aromatic Ketones Using an Activated Ruthenium Catalyst with a Carbonyl Ligand and Structural Elucidation of Key Intermediates".
275: 130: 791:
Matsubara, Toshiaki; Koga, Nobuaki; Musaev, Djamaladdin G.; Morokuma, Keiji (2000-06-01). "Density Functional Study on Highly Ortho-Selective Addition of an Aromatic CH Bond to Olefins Catalyzed by a Ru(H)2(CO)(PR3)3 Complex".
51:
catalyst. The reaction, named after Shinji Murai, was first reported in 1993. While not the first example of C-H activation, the Murai reaction is notable for its high efficiency and scope. Previous examples of such
862:
Buskens, Pascal; Giunta, Daniela; Leitner, Walter (2004-04-20). "Activation and deactivation of a carbene containing non-classical ruthenium hydride complex in catalytic processes involving Cā€“H bond cleavage".
388:
Murai, Shinji; Kakiuchi, Fumitoshi; Sekine, Shinya; Tanaka, Yasuo; Kamatani, Asayuki; Sonoda, Motohiro; Chatani, Naoto (1993-12-09). "Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins".
201:
A detailed mechanism for the Murai reaction has not been elucidated. Experimental and computational studies give evidence for at least two different mechanisms, depending on the
709:
Helmstedt, Ulrike; Clot, Eric (2012-09-03). "Hydride ligands make the difference: density functional study of the mechanism of the Murai reaction catalyzed by (R=cyclohexyl)".
212: 330:), the complex reductively eliminates the product to give the product agostically bound to the complex. Coordination of another acetophenone molecule regenerates complex 827:
Guari, Yannick; Sabo-Etienne, Sylviane; Chaudret, Bruno (1998-05-01). "Exchange Couplings between a Hydride and a Stretched Dihydrogen Ligand in Ruthenium Complexes".
168: 470:
Murai, Shinji; Chatani, Naoto; Kakiuchi, Fumitoshi (1997-03-01). "Catalytic addition of C-H bonds to multiple bonds with the aid of ruthenium complexes".
625: 626:"Ruthenium-Catalyzed Addition of Carbon-Hydrogen Bonds in Aromatic Ketones to Olefins. The Effect of Various Substituents at the Aromatic Ring" 548:
Kakiuchi, Fumitoshi; Yamamoto, Yoshimi; Chatani, Naoto; Murai, Shinji (1995-08-01). "Catalytic Addition of Aromatic Cā€“H Bonds to Acetylenes".
353:
Kakiuchi, Fumitoshi; Kochi, Takuya (2008-10-01). "Transition-Metal-Catalyzed Carbon-Carbon Bond Formation via Carbon-Hydrogen Bond Cleavage".
115:
methyl blocking group. Unfortunately, with ortho methyl groups both the rate and generality of the reaction are reduced. Substituents at the
127:
group capable of coordinating with the Ru catalyst. Methoxyacetophenones show preferential reaction at the more hindered position.
585:"Ruthenium-catalyzed ortho-Cā€“H bond alkylation of aromatic amides with Ī±,Ī²-unsaturated ketones via bidentate-chelation assistance" 134:
Effect of m-substituents on regioselectivity. Percentages are isolated yields of substitution at the indicated position.
183: 59: 939: 206: 100:
alkylation of aromatic rings with Ī±,Ī²-unsaturated ketones, which typically are unreactive in Murai reactions.
429:
Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, Asayuki; Sonoda, M.; Chatani, Naoto (1994-01-01).
505:
Yang, Jiong (2015-02-04). "Transition metal catalyzed meta-Cā€“H functionalization of aromatic compounds".
119:
position influence regioselectivity. The reaction preferentially adds at the least sterically hindered
398: 302:). As in the Ru proposed mechanism, this agostic interaction leads to the oxidative addition of the 280: 279:
Mechanism proposed for the reaction acetophenone and ethylene as catalyzed by . Spectator ligands (
261: 253: 916: 908: 844: 809: 773: 734: 726: 691: 683: 645: 606: 565: 530: 522: 487: 452: 370: 44: 20: 272:
The complex catalyzes the Murai reaction at room temperature. For , the active complex is .
88:, imines, nitriles, and imidates. Murai reactions have also been reported with disubstituted 900: 872: 836: 801: 765: 718: 675: 637: 596: 557: 514: 479: 442: 406: 362: 221: 28: 294:, acetophenone coordinates to the complex via its carbonyl oxygen and agostically via its 81: 64: 402: 53: 32: 933: 209:
studies and experimental evidence has resulted in the following proposed mechanism:
624:
Sonoda, Motohiro; Kakiuchi, Fumitoshi; Chatani, Naoto; Murai, Shinji (1997-12-01).
257: 666:
Kakiuchi, Fumitoshi; Murai, Shinji (2002-10-01). "Catalytic C-h/olefin coupling".
205:. For catalysts such as which are active as Ru, a combination of computational 314:. Coordination of ethylene and decoordination of the ketone results in complex 876: 483: 318:
which then undergoes migratory insertion of ethylene into the hydride to give
104: 912: 848: 813: 777: 730: 687: 649: 610: 569: 526: 491: 456: 374: 447: 430: 248:
species. The catalytic cycle is proposed to begins with coordination of the
93: 48: 920: 738: 722: 695: 534: 366: 290:
After the active form of the ruthenium catalyst complex is generated from
641: 202: 36: 561: 601: 584: 518: 89: 904: 840: 805: 769: 679: 216:
Proposed mechanism for the reaction of ethene and acetophenone (L = PR
410: 249: 77: 40: 143:
A variety of Ru catalysts catalyze the Murai reaction, including RuH
274: 211: 129: 85: 58: 103:
Early examples of the reaction suffered from side products of
84:, but other functional groups have been reported, including 111:
positions. This problem can be partially solved using an
264:. The C-C bond formation is the rate limiting step. 56:required more forcing conditions and narrow scope. 76:The reaction was initially demonstrated using a 256:of a C-H bond. The resulting five-coordinated 8: 867:. Protagonists in Chemistry: Helmut Werner. 310:, which remains coordinated, giving complex 228:It is proposed that at high temperatures RuH 583:Rouquet, Guy; Chatani, Naoto (2013-04-02). 630:Bulletin of the Chemical Society of Japan 600: 446: 893:Journal of the American Chemical Society 829:Journal of the American Chemical Society 758:Journal of the American Chemical Society 39:between a terminal or strained internal 342: 750: 748: 306:C-H. Reductive elimination releases H 240:converts to an unsaturated Ru(CO)(PPh 7: 661: 659: 424: 422: 420: 348: 346: 322:. Following oxidative addition of H 14: 123:position, except when there is a 431:"Catalytic C-H/olefin coupling" 1: 711:Chemistry: A European Journal 668:Accounts of Chemical Research 16:Reaction in organic chemistry 472:Catalysis Surveys from Asia 956: 435:Pure and Applied Chemistry 877:10.1016/j.ica.2004.01.018 72:Scope and regiochemistry 865:Inorganica Chimica Acta 484:10.1023/A:1019064627386 448:10.1351/pac199466071527 96:directing groups allow 723:10.1002/chem.201200757 367:10.1055/s-2008-1067256 287: 286:) omitted for clarity. 225: 135: 68: 278: 215: 133: 62: 642:10.1246/bcsj.70.3117 260:is stabilized by an 63:Murai reaction; X = 899:(50): 17741ā€“17750. 764:(48): 12692ā€“12693. 717:(36): 11449ā€“11458. 562:10.1246/cl.1995.681 403:1993Natur.366..529M 262:agostic interaction 602:10.1039/c3sc50310k 519:10.1039/c4ob02171a 288: 254:oxidative addition 226: 224:on Ru are omitted. 207:density functional 136: 69: 940:Organic reactions 905:10.1021/ja104918f 841:10.1021/ja971603m 835:(17): 4228ā€“4229. 806:10.1021/om0001220 800:(12): 2318ā€“2329. 770:10.1021/ja9816943 680:10.1021/ar960318p 636:(12): 3117ā€“3128. 550:Chemistry Letters 507:Org. Biomol. Chem 397:(6455): 529ā€“531. 361:(19): 3013ā€“3039. 222:spectator ligands 45:aromatic compound 21:organic chemistry 947: 925: 924: 887: 881: 880: 871:(6): 1969ā€“1974. 859: 853: 852: 824: 818: 817: 788: 782: 781: 752: 743: 742: 706: 700: 699: 663: 654: 653: 621: 615: 614: 604: 589:Chemical Science 580: 574: 573: 545: 539: 538: 513:(7): 1930ā€“1941. 502: 496: 495: 467: 461: 460: 450: 441:(7): 1527ā€“1534. 426: 415: 414: 411:10.1038/366529a0 385: 379: 378: 350: 268:Ru(II) catalysts 35:to create a new 29:organic reaction 955: 954: 950: 949: 948: 946: 945: 944: 930: 929: 928: 889: 888: 884: 861: 860: 856: 826: 825: 821: 794:Organometallics 790: 789: 785: 754: 753: 746: 708: 707: 703: 674:(10): 826ā€“834. 665: 664: 657: 623: 622: 618: 582: 581: 577: 547: 546: 542: 504: 503: 499: 469: 468: 464: 428: 427: 418: 387: 386: 382: 352: 351: 344: 340: 325: 309: 284: 270: 247: 243: 239: 235: 231: 219: 199: 197:Ru(0) catalysts 191: 187: 180: 176: 172: 166: 162: 158: 154: 150: 146: 141: 82:directing group 74: 65:directing group 54:hydroarylations 17: 12: 11: 5: 953: 951: 943: 942: 932: 931: 927: 926: 882: 854: 819: 783: 744: 701: 655: 616: 575: 556:(8): 681ā€“682. 540: 497: 462: 416: 380: 341: 339: 336: 323: 307: 282: 269: 266: 245: 241: 237: 233: 229: 217: 198: 195: 189: 185: 178: 174: 170: 164: 160: 156: 152: 148: 144: 140: 137: 73: 70: 33:C-H activation 25:Murai reaction 15: 13: 10: 9: 6: 4: 3: 2: 952: 941: 938: 937: 935: 922: 918: 914: 910: 906: 902: 898: 894: 886: 883: 878: 874: 870: 866: 858: 855: 850: 846: 842: 838: 834: 830: 823: 820: 815: 811: 807: 803: 799: 795: 787: 784: 779: 775: 771: 767: 763: 759: 751: 749: 745: 740: 736: 732: 728: 724: 720: 716: 712: 705: 702: 697: 693: 689: 685: 681: 677: 673: 669: 662: 660: 656: 651: 647: 643: 639: 635: 631: 627: 620: 617: 612: 608: 603: 598: 594: 590: 586: 579: 576: 571: 567: 563: 559: 555: 551: 544: 541: 536: 532: 528: 524: 520: 516: 512: 508: 501: 498: 493: 489: 485: 481: 477: 473: 466: 463: 458: 454: 449: 444: 440: 436: 432: 425: 423: 421: 417: 412: 408: 404: 400: 396: 392: 384: 381: 376: 372: 368: 364: 360: 356: 349: 347: 343: 337: 335: 333: 329: 321: 317: 313: 305: 301: 297: 293: 285: 277: 273: 267: 265: 263: 259: 255: 251: 223: 214: 210: 208: 204: 196: 194: 192: 181: 138: 132: 128: 126: 122: 118: 114: 110: 106: 101: 99: 95: 91: 87: 83: 79: 71: 66: 61: 57: 55: 50: 46: 42: 38: 34: 30: 26: 22: 896: 892: 885: 868: 864: 857: 832: 828: 822: 797: 793: 786: 761: 757: 714: 710: 704: 671: 667: 633: 629: 619: 592: 588: 578: 553: 549: 543: 510: 506: 500: 478:(1): 35ā€“51. 475: 471: 465: 438: 434: 394: 390: 383: 358: 354: 331: 327: 319: 315: 311: 303: 299: 295: 291: 289: 271: 258:metallocycle 252:followed by 227: 200: 142: 124: 120: 116: 112: 108: 102: 97: 75: 24: 18: 595:(5): 2201. 338:References 298:C-H bond ( 105:alkylation 31:that uses 913:0002-7863 849:0002-7863 814:0276-7333 778:0002-7863 731:1521-3765 688:0001-4842 650:0009-2673 611:2041-6539 570:0366-7022 527:1477-0539 492:1384-6574 457:1365-3075 375:0039-7881 355:Synthesis 139:Mechanism 94:Bidentate 49:ruthenium 934:Category 921:21114294 739:22847874 696:12379135 535:25522930 232:(CO)(PPh 220:). Some 203:catalyst 147:(CO)(PPh 107:at both 47:using a 37:C-C bond 399:Bibcode 90:alkynes 80:as the 43:and an 919:  911:  847:  812:  776:  737:  729:  694:  686:  648:  609:  568:  533:  525:  490:  455:  391:Nature 373:  250:ketone 182:, and 169:Ru(CO) 86:esters 78:ketone 41:alkene 27:is an 23:, the 304:ortho 296:ortho 155:, RuH 121:ortho 113:ortho 109:ortho 98:ortho 917:PMID 909:ISSN 845:ISSN 810:ISSN 774:ISSN 735:PMID 727:ISSN 692:PMID 684:ISSN 646:ISSN 607:ISSN 566:ISSN 531:PMID 523:ISSN 488:ISSN 453:ISSN 371:ISSN 359:2008 188:(CO) 173:(PPh 159:(PPh 125:meta 117:meta 901:doi 897:132 873:doi 869:357 837:doi 833:120 802:doi 766:doi 762:120 719:doi 676:doi 638:doi 597:doi 558:doi 515:doi 480:doi 443:doi 407:doi 395:366 363:doi 281:PMe 19:In 936:: 915:. 907:. 895:. 843:. 831:. 808:. 798:19 796:. 772:. 760:. 747:^ 733:. 725:. 715:18 713:. 690:. 682:. 672:35 670:. 658:^ 644:. 634:70 632:. 628:. 605:. 591:. 587:. 564:. 554:24 552:. 529:. 521:. 511:13 509:. 486:. 474:. 451:. 439:66 437:. 433:. 419:^ 405:. 393:. 369:. 357:. 345:^ 334:. 193:. 190:12 184:Ru 167:, 92:. 923:. 903:: 879:. 875:: 851:. 839:: 816:. 804:: 780:. 768:: 741:. 721:: 698:. 678:: 652:. 640:: 613:. 599:: 593:4 572:. 560:: 537:. 517:: 494:. 482:: 476:1 459:. 445:: 413:. 409:: 401:: 377:. 365:: 332:2 328:6 326:( 324:2 320:5 316:4 312:3 308:2 300:2 292:1 283:3 246:n 244:) 242:3 238:3 236:) 234:3 230:2 218:3 186:3 179:3 177:) 175:3 171:2 165:4 163:) 161:3 157:2 153:3 151:) 149:3 145:2 67:.

Index

organic chemistry
organic reaction
C-H activation
C-C bond
alkene
aromatic compound
ruthenium
hydroarylations

directing group
ketone
directing group
esters
alkynes
Bidentate
alkylation

Ru(CO)2(PPh3)3
Ru3(CO)12
catalyst
density functional

spectator ligands
ketone
oxidative addition
metallocycle
agostic interaction

PMe3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘