Knowledge (XXG)

Myocardial contractility

Source đź“ť

189:. Inhibition of the Na/K causes extra sodium to accumulate inside the cell. The buildup the Na concentration inside the cell will cause the gradient from inside the cell to the outside of the cell to decrease slightly. This action will make it more difficult for calcium to leave the cell via the Na/Ca antiporter. 310:
By this model, if myocardial performance changes while preload, afterload, heart rate, and conduction velocity are all held constant, then the change in performance must be due to a change in contractility. However, changes in contractility alone generally do not occur. Other examples:
130:. When it's phosphorylated by PKA, levels of calcium stored in the sarcoplasmic reticulum are increased, allowing a higher rate of calcium being released at the next contraction. However, the increased rate of calcium sequestration also leads to an increase in 200:
Decreasing contractility is done primarily by decreasing the influx of calcium or maintaining lower calcium levels in the cytosol of cardiac myocytes during an action potential. This is done by a number of mechanisms:
31:
of contraction of a given heart. The ability to produce changes in force during contraction result from incremental degrees of binding between different types of tissue, that is, between filaments of
223:, the heart cells will enter a state of dysfunction and not work properly. Correct sarcomere crossbridges will not form the heart becomes less efficient (leading to myocardial failure). 429: 67:
Increasing contractility is done primarily through increasing the influx of calcium or maintaining higher calcium levels in the cytosol of cardiac myocytes during an
185:
can act as a positive inotropic agent by inhibiting the Na/K pump. High Na concentration gradient is necessary to pump out sarcoplasmic calcium via the Na/Ca
59:
of cardiac muscle cells. The factors causing an increase in contractility work by causing an increase in intracellular calcium ions (Ca) during contraction.
652: 422: 1021: 415: 366: 247:
A measurable relative increase in contractility is a property of the myocardium similar to the term "inotropy". Contractility may be
205: 322: 565: 149: 942: 697: 675: 937: 682: 763: 84: 48: 967: 924: 914: 790: 770: 734: 657: 617: 438: 291: 785: 775: 665: 68: 972: 904: 849: 750: 670: 554: 532: 145: 512: 909: 899: 813: 559: 517: 127: 104: 266:
that enhance contractility are considered to have a positive inotropic effect. The ancient herbal remedy
758: 227: 178:
to keep up with the sodium influx at the higher frequency of action potentials at elevated heart rates
318:
An increase in contractility tends to increase stroke volume and thus a secondary increase in preload.
507: 490: 296: 274:
properties that have been recorded encyclopedically for centuries and it remains advantageous today.
854: 692: 687: 522: 495: 76: 962: 827: 580: 24: 598: 570: 550: 362: 231: 947: 542: 112: 100: 386: 315:
An increase in sympathetic stimulation to the heart increases contractility and heart rate.
282:
Under one existing model , the five factors of myocardial performance are considered to be
797: 527: 407: 336: 171: 108: 75:
Sympathetic activation. Increased circulating levels of catecholamines (which can bind to
957: 882: 874: 468: 455: 259: 248: 174:; treppe; frequency-dependent inotropy). This is probably due to the inability of Na/K- 80: 20: 1015: 575: 485: 478: 463: 234:
wall dies off, that portion cannot contract and there is less force developed during
119: 52: 989: 979: 952: 841: 832: 629: 603: 329: 271: 164: 152:
to calcium, allowing more calcium into the myocyte cells, increasing contractility.
123: 994: 984: 712: 707: 702: 613: 263: 212: 932: 717: 607: 590: 473: 286: 186: 138: 92: 55:, which is a process that determines the concentration of calcium ions in the 192:
Increase the amount of calcium in the sarcoplasm. More calcium available for
864: 635: 502: 301: 267: 253: 182: 156: 131: 79:
activation) as well as stimulation by sympathetic nerves (which can release
892: 623: 220: 193: 160: 887: 321:
An increase in preload results in an increased force of contraction by
235: 56: 44: 40: 39:(thin) tissue. The degree of binding depends upon the concentration of 727: 722: 258:. Drugs that positively render the effects of catecholamines such as 175: 32: 335:
An increase in heart rate will increase contractility (through the
859: 446: 328:
An increase in afterload will increase contractility (through the
36: 28: 411: 122:. When phospholamban is not phosphorylated, it inhibits the 170:
An increase in heart rate also stimulates inotropy (
923: 873: 840: 826: 806: 743: 645: 589: 541: 454: 445: 19:
represents the innate ability of the heart muscle (
325:; this does not require a change in contractility. 380: 378: 167:) by a mechanism that is not fully understood. 423: 27:. It is the maximum attainable value for the 8: 51:is driven by precisely timed releases of a 837: 451: 430: 416: 408: 107:- which has a number of effects including 71:. This is done by a number of mechanisms: 196:to use will increase the force developed. 47:intact heart, the action/response of the 439:Physiology of the cardiovascular system 349: 361:. Lippincott Williams & Wilkins. 211:If the heart is experiencing anoxia, 63:Mechanisms for altering contractility 7: 357:Richard Klabunde (3 November 2011). 103:activated, resulting in increase of 270:appears to have both inotropic and 391:Cardiovascular Physiology Concepts 387:"Cardiac Inotropy (Contractility)" 359:Cardiovascular Physiology Concepts 14: 251:altered by the administration of 226:Loss of parts of the myocardium. 126:that pump calcium back into the 278:Model as a contributing factor 159:can cause a small increase in 1: 566:Aortic valve area calculation 683:Effective refractory period 562:) / End-diastolic dimension 323:Starling's law of the heart 230:can cause a section of the 148:. This will increase their 1038: 141:to the effects of calcium. 99:of the receptor to render 49:sympathetic nervous system 1022:Cardiovascular physiology 968:Tubuloglomerular feedback 915:Critical closing pressure 735:Hexaxial reference system 658:Cardiac electrophysiology 943:Renin–angiotensin system 91:on myocytes) causes the 17:Myocardial contractility 973:Cerebral autoregulation 938:Kinin–kallikrein system 905:Jugular venous pressure 555:End-diastolic dimension 533:Pressure volume diagram 146:L-type calcium channels 43:in the cell. Within an 910:Portal venous pressure 900:Mean arterial pressure 814:Ventricular remodeling 560:End-systolic dimension 518:Cardiac function curve 155:An abrupt increase in 128:sarcoplasmic reticulum 551:Fractional shortening 491:End-diastolic volume 855:Vascular resistance 693:Electrocardiography 688:Pacemaker potential 618:Conduction velocity 523:Venous return curve 496:End-systolic volume 385:Klabunde, Richard. 292:Conduction velocity 111:phospholamban (via 963:Myogenic mechanism 581:Left atrial volume 513:Frank–Starling law 181:Drugs. Drugs like 23:or myocardium) to 1009: 1008: 1005: 1004: 822: 821: 662:Action potential 653:Conduction system 599:Cardiac pacemaker 571:Ejection fraction 101:adenylate cyclase 1029: 948:Vasoconstrictors 925:Regulation of BP 838: 771:pulmonary artery 744:Chamber pressure 452: 432: 425: 418: 409: 402: 401: 399: 397: 382: 373: 372: 354: 144:Phosphorylating 118:Phosphorylating 113:Protein kinase A 69:action potential 1037: 1036: 1032: 1031: 1030: 1028: 1027: 1026: 1012: 1011: 1010: 1001: 919: 869: 831: 828:Vascular system 818: 802: 739: 641: 626:(Contractility) 585: 537: 528:Wiggers diagram 441: 436: 406: 405: 395: 393: 384: 383: 376: 369: 356: 355: 351: 346: 337:Bowditch effect 280: 245: 218: 206:Parasympathetic 172:Bowditch effect 109:phosphorylating 96: 88: 81:norepinepherine 65: 12: 11: 5: 1035: 1033: 1025: 1024: 1014: 1013: 1007: 1006: 1003: 1002: 1000: 999: 998: 997: 992: 987: 977: 976: 975: 970: 965: 958:Autoregulation 955: 950: 945: 940: 935: 929: 927: 921: 920: 918: 917: 912: 907: 902: 897: 896: 895: 890: 883:Pulse pressure 879: 877: 875:Blood pressure 871: 870: 868: 867: 862: 857: 852: 846: 844: 835: 824: 823: 820: 819: 817: 816: 810: 808: 804: 803: 801: 800: 795: 794: 793: 788: 780: 779: 778: 768: 767: 766: 761: 753: 751:Central venous 747: 745: 741: 740: 738: 737: 732: 731: 730: 725: 720: 715: 710: 705: 700: 690: 685: 680: 679: 678: 673: 668: 660: 655: 649: 647: 643: 642: 640: 639: 633: 632:(Excitability) 627: 621: 611: 601: 595: 593: 587: 586: 584: 583: 578: 573: 568: 563: 557: 547: 545: 539: 538: 536: 535: 530: 525: 520: 515: 510: 505: 500: 499: 498: 493: 483: 482: 481: 476: 469:Cardiac output 466: 460: 458: 456:Cardiac output 449: 443: 442: 437: 435: 434: 427: 420: 412: 404: 403: 374: 368:978-1451113846 367: 348: 347: 345: 342: 341: 340: 333: 326: 319: 316: 308: 307: 304: 299: 294: 289: 279: 276: 260:norepinephrine 249:iatrogenically 244: 241: 240: 239: 224: 216: 209: 198: 197: 190: 179: 168: 153: 142: 135: 116: 94: 89:-adrenoceptors 86: 83:that binds to 64: 61: 21:cardiac muscle 13: 10: 9: 6: 4: 3: 2: 1034: 1023: 1020: 1019: 1017: 996: 993: 991: 988: 986: 983: 982: 981: 978: 974: 971: 969: 966: 964: 961: 960: 959: 956: 954: 951: 949: 946: 944: 941: 939: 936: 934: 931: 930: 928: 926: 922: 916: 913: 911: 908: 906: 903: 901: 898: 894: 891: 889: 886: 885: 884: 881: 880: 878: 876: 872: 866: 863: 861: 858: 856: 853: 851: 848: 847: 845: 843: 839: 836: 834: 829: 825: 815: 812: 811: 809: 805: 799: 796: 792: 789: 787: 784: 783: 781: 777: 774: 773: 772: 769: 765: 762: 760: 757: 756: 754: 752: 749: 748: 746: 742: 736: 733: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 695: 694: 691: 689: 686: 684: 681: 677: 674: 672: 669: 667: 664: 663: 661: 659: 656: 654: 651: 650: 648: 644: 637: 634: 631: 628: 625: 622: 619: 615: 612: 609: 605: 602: 600: 597: 596: 594: 592: 588: 582: 579: 577: 576:Cardiac index 574: 572: 569: 567: 564: 561: 558: 556: 552: 549: 548: 546: 544: 540: 534: 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 497: 494: 492: 489: 488: 487: 486:Stroke volume 484: 480: 479:Stroke volume 477: 475: 472: 471: 470: 467: 465: 464:Cardiac cycle 462: 461: 459: 457: 453: 450: 448: 444: 440: 433: 428: 426: 421: 419: 414: 413: 410: 392: 388: 381: 379: 375: 370: 364: 360: 353: 350: 343: 338: 334: 331: 327: 324: 320: 317: 314: 313: 312: 306:Contractility 305: 303: 300: 298: 295: 293: 290: 288: 285: 284: 283: 277: 275: 273: 269: 265: 261: 257: 255: 250: 242: 237: 233: 229: 225: 222: 215:(increased CO 214: 210: 207: 204: 203: 202: 195: 191: 188: 184: 180: 177: 173: 169: 166: 162: 158: 154: 151: 147: 143: 140: 136: 133: 129: 125: 124:calcium pumps 121: 120:phospholamban 117: 114: 110: 106: 102: 98: 90: 82: 78: 74: 73: 72: 70: 62: 60: 58: 54: 53:catecholamine 50: 46: 42: 38: 34: 30: 26: 22: 18: 990:Carotid body 953:Vasodilators 833:hemodynamics 638:(Relaxation) 630:Bathmotropic 604:Chronotropic 394:. Retrieved 390: 358: 352: 330:Anrep effect 309: 281: 272:chronotropic 252: 246: 228:Heart attack 199: 165:Anrep effect 150:permeability 137:Sensitizing 77:β-Adrenergic 66: 41:calcium ions 35:(thick) and 16: 15: 995:Glomus cell 985:Aortic body 980:Paraganglia 791:ventricular 764:ventricular 713:QT interval 708:QRS complex 703:PR interval 676:ventricular 614:Dromotropic 264:epinephrine 232:ventricular 213:hypercapnia 208:activation. 933:Baroreflex 850:Compliance 842:Blood flow 718:ST segment 646:Conduction 636:Lusitropic 608:Heart rate 591:Heart rate 543:Ultrasound 474:Heart rate 396:27 January 344:References 287:Heart rate 187:antiporter 139:troponin-C 893:Diastolic 865:Perfusion 624:Inotropic 503:Afterload 302:Afterload 268:digitalis 254:inotropic 183:digitalis 157:afterload 132:lusitropy 1016:Category 888:Systolic 666:cardiac 243:Inotropy 221:acidosis 194:Troponin 161:inotropy 25:contract 508:Preload 297:Preload 236:systole 97:subunit 57:cytosol 45:in vivo 798:Aortic 786:atrial 759:atrial 755:Right 728:U wave 723:T wave 698:P wave 671:atrial 365:  256:agents 176:ATPase 33:myosin 860:Pulse 807:Other 782:Left 776:wedge 447:Heart 219:) or 37:actin 29:force 398:2011 363:ISBN 262:and 105:cAMP 553:= ( 1018:: 389:. 377:^ 339:). 332:). 115:). 830:/ 620:) 616:( 610:) 606:( 431:e 424:t 417:v 400:. 371:. 238:. 217:2 163:( 134:. 95:s 93:G 87:1 85:β

Index

cardiac muscle
contract
force
myosin
actin
calcium ions
in vivo
sympathetic nervous system
catecholamine
cytosol
action potential
β-Adrenergic
norepinepherine
β1-adrenoceptors
Gs subunit
adenylate cyclase
cAMP
phosphorylating
Protein kinase A
phospholamban
calcium pumps
sarcoplasmic reticulum
lusitropy
troponin-C
L-type calcium channels
permeability
afterload
inotropy
Anrep effect
Bowditch effect

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑