Knowledge

MARTINI

Source đź“ť

54:(O-IX). The beads can be used at normal size (4:1 mapping), S-size (small, 3:1 mapping) or T-size (tiny, 2:1 mapping). The S-particles are mainly used in ring structures whereas the T-particles are currently used in nucleic acids only. Bonded interactions (bonds, angles, dihedrals, and impropers) are derived from atomistic simulations of crystal structures. 155:(β-sheets), are constrained. Martini proteins are often simulated in combination with an elastic network, such as Elnedyn, to maintain the overall structure. However, the use of the elastic network restricts the use of the Martini force field for the study of large conformational changes (e.g. folding). The GōMartini approach introduced by Poma 53:
For the Martini force field 4 bead categories have been defined: Q (charged), P (polar), N (nonpolar), and C (apolar). These bead types are in turn split in 4 or 5 different levels, giving a total of 20 beadtypes. For the interactions between the beads, 10 different interaction levels are defined
386:
van den Bogaart, Geert; Meyenberg, Karsten; Risselada, H. Jelger; Amin, Hayder; Willig, Katrin I.; Hubrich, Barbara E.; Dier, Markus; Hell, Stefan W.; GrubmĂĽller, Helmut; Diederichsen, Ulf; Jahn, Reinhard (24 November 2011).
666:
Periole, Xavier; Cavalli, Marco; Marrink, Siewert-Jan; Ceruso, Marco A. (8 September 2009). "Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition".
41:
of lipids, later (2007) extended to various other molecules. The force field applies a mapping of four heavy atoms to one CG interaction site and is parametrized with the aim of reproducing thermodynamic properties.
66:. The original 2004 and 2007 papers have been cited 1850 and 3400 times, respectively. The force field has been implemented in three major simulation codes: GROningen MAchine for Chemical Simulations ( 753:
LĂłpez, Cesar A.; Rzepiela, Andrzej J.; de Vries, Alex H.; Dijkhuizen, Lubbert; HĂĽnenberger, Philippe H.; Marrink, Siewert J. (2009). "Martini Coarse-Grained Force Field: Extension to Carbohydrates".
621:
Monticelli, Luca; Kandasamy, Senthil K.; Periole, Xavier; Larson, Ronald G.; Tieleman, D. Peter; Marrink, Siewert-Jan (1 May 2008). "The MARTINI Coarse-Grained Force Field: Extension to Proteins".
1003:
Rossi, Giulia; Monticelli, Luca; Puisto, Sakari R.; Vattulainen, Ilpo; Ala-Nissila, Tapio (2011). "Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case".
231: 202: 956:"Coarse-Grained Molecular Dynamics Studies of the Concentration and Size Dependence of Fifth- and Seventh-Generation PAMAM Dendrimers on Pore Formation in DMPC Bilayer" 183:
Parameters for different other molecules, including carbon nanoparticles, ionic liquids, and a number of polymers, are available from the Martini website.
279: 207: 714:"Combining the MARTINI and structure-based coarse-grained approaches for the molecular dynamics studies of conformational transitions in proteins" 503:
Schäfer, Lars V.; De Jong, D. H.; Holt, A.; Rzepiela, A. J.; De Vries, A. H.; Poolman, B.; Killian, J. A.; Marrink, S. J. (25 January 2011).
62:
The Martini force field has become one of the most used coarse grained force fields in the field of molecular dynamics simulations for
1120: 923:"Martini coarse-grained models of imidazolium-based ionic liquids: from nanostructural organization to liquid–liquid extraction" 128: 1038:
Alessandri, Riccardo; Uusitalo, Jaakko J.; de Vries, Alex H.; Havenith, Remco W. A.; Marrink, Siewert J. (2017).
83: 505:"Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes" 327:
Souza, Paulo C. T.; Alessandri, Riccardo; Barnoud, Jonathan; Thallmair, Sebastian; et al. (29 March 2021).
278:
Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge; Tieleman, D. Peter; de Vries, Alex H. (1 July 2007).
921:
Vazquez-Salazar, Luis Itza; Selle, Michele; de Vries, Alex H.; Marrink, Siewert J.; T. Souza, Paulo C. (2020).
17: 1040:"Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations" 31: 27: 788:
Uusitalo, Jaakko J.; IngĂłlfsson, Helgi I.; Akhshi, Parisa; Tieleman, D. Peter; Marrink, Siewert J. (2015).
676: 630: 304: 256: 1012: 842: 575: 516: 457: 400: 681: 635: 374: 356: 35: 1069: 985: 903: 868: 811: 770: 735: 694: 648: 603: 544: 485: 444:
louhivuori, Martti; Risselada, H. J.; Van Der Giessen, E.; Marrink, S. J. (16 November 2010).
426: 348: 309: 1059: 1051: 1020: 975: 967: 934: 895: 858: 850: 801: 762: 725: 686: 640: 593: 583: 534: 524: 475: 465: 416: 408: 340: 299: 291: 251: 243: 829:
Uusitalo, Jaakko J.; IngĂłlfsson, Helgi I.; Marrink, Siewert J.; Faustino, Ignacio (2017).
112: 1016: 846: 579: 520: 461: 404: 1064: 1039: 980: 955: 863: 830: 598: 563: 539: 504: 480: 445: 421: 388: 1114: 886:
Monticelli, Luca (2012). "On atomistic and coarse-grained models for C60 fullerene".
360: 329:"Martini 3: a general purpose force field for coarse-grained molecular dynamics" 148: 124: 63: 45:
In 2021, a new version of the force field has been published, dubbed Martini 3.
344: 854: 152: 116: 38: 806: 789: 730: 713: 446:"Release of content through mechano-sensitive gates in pressurized liposomes" 328: 588: 529: 470: 280:"The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations" 1073: 989: 907: 872: 815: 774: 739: 698: 652: 607: 548: 489: 430: 352: 313: 1055: 412: 230:
Marrink, Siewert J.; de Vries, Alex H.; Mark, Alan E. (1 January 2004).
1024: 939: 922: 192: 140: 87: 67: 971: 899: 766: 690: 644: 295: 247: 175:
Compatible parameters were released for DNA in 2015 and RNA in 2017.
108: 71: 389:"Membrane protein sequestering by ionic protein–lipid interactions" 78:). Notable successes are simulations of the clustering behavior of 197: 131:
with other bilayer properties, and more complex bilayer behavior.
120: 104: 79: 86:(MscL) and the simulation of the domain partitioning of membrane 375:
https://scholar.google.com/citations?hl=nl&user=UalQWxIAAAAJ
75: 712:
Poma, Adolfo; Cieplak, M.; Theodorakis, P. E. (24 Feb 2017).
232:"Coarse Grained Model for Semiquantitative Lipid Simulations" 1086: 1103: 203:
Comparison of software for molecular mechanics modeling
831:"Martini Coarse-Grained Force Field: Extension to RNA" 790:"Martini Coarse-Grained Force Field: Extension to DNA" 564:"The molecular face of lipid rafts in model membranes" 562:
Risselada, H. J.; Marrink, S. J. (11 November 2008).
568:Proceedings of the National Academy of Sciences 933:(21). Royal Society of Chemistry: 7376–7386. 167:Compatible parameters were released in 2009. 8: 103:The initial papers contained parameters for 718:Journal of Chemical Theory and Computation 669:Journal of Chemical Theory and Computation 623:Journal of Chemical Theory and Computation 305:11370/5bdbbb23-2e1a-48a4-8c27-e1b8c28d74d6 257:11370/6f357aca-0e36-4e9f-880c-62a50aff9ccd 30:developed by Marrink and coworkers at the 1063: 979: 938: 862: 805: 729: 680: 634: 597: 587: 538: 528: 479: 469: 420: 303: 255: 208:Comparison of force field implementations 273: 271: 269: 267: 127:. They semiquantitatively reproduce the 225: 223: 219: 147:. Secondary structure elements, like 74:), and Nanoscale Molecular Dynamics ( 7: 82:, the simulations of the opening of 960:The Journal of Physical Chemistry B 284:The Journal of Physical Chemistry B 236:The Journal of Physical Chemistry B 70:), GROningen MOlecular Simulation ( 34:, initially developed in 2004 for 14: 373:Google Scholar, 14 October 2019, 954:Lee, H.; Larson, R. G. (2008). 28:coarse-grained (CG) force field 143:were introduced by Monticelli 1: 1137: 345:10.1038/s41592-021-01098-3 139:Compatible parameters for 129:phase behavior of bilayers 15: 855:10.1016/j.bpj.2017.05.043 159:removes this limitation. 84:mechanosensitive channels 1121:Force fields (chemistry) 807:10.1021/acs.jctc.5b00286 731:10.1021/acs.jctc.6b00986 589:10.1073/pnas.0807527105 530:10.1073/pnas.1009362108 471:10.1073/pnas.1001316107 32:University of Groningen 888:J. Chem. Theory Comput 794:J. Chem. Theory Comput 755:J. Chem. Theory Comput 509:Proc Natl Acad Sci USA 450:Proc Natl Acad Sci USA 1056:10.1021/jacs.6b11717 16:For other uses, see 1017:2011SMat....7..698R 847:2017BpJ...113..246U 580:2008PNAS..10517367R 574:(45): 17367–17372. 521:2011PNAS..108.1343S 462:2010PNAS..10719856L 456:(46): 19856–19860. 413:10.1038/nature10545 405:2011Natur.479..552V 1025:10.1039/C0SM00481B 940:10.1039/D0GC01823F 119:, a wide range of 36:molecular dynamics 1050:(10): 3697–3705. 972:10.1021/jp802606y 966:(26): 7778–7784. 900:10.1021/ct3000102 767:10.1021/ct900313w 761:(12): 3195–3210. 691:10.1021/ct9002114 645:10.1021/ct700324x 399:(7374): 552–555. 296:10.1021/jp071097f 290:(27): 7812–7824. 248:10.1021/jp036508g 1128: 1107: 1106: 1104:Official website 1089: 1084: 1078: 1077: 1067: 1044:J. Am. Chem. Soc 1035: 1029: 1028: 1000: 994: 993: 983: 951: 945: 944: 942: 918: 912: 911: 894:(4): 1370–1378. 883: 877: 876: 866: 826: 820: 819: 809: 800:(8): 3932–3945. 785: 779: 778: 750: 744: 743: 733: 724:(3): 1366–1374. 709: 703: 702: 684: 675:(9): 2531–2543. 663: 657: 656: 638: 618: 612: 611: 601: 591: 559: 553: 552: 542: 532: 515:(4): 1343–1348. 500: 494: 493: 483: 473: 441: 435: 434: 424: 383: 377: 371: 365: 364: 324: 318: 317: 307: 275: 262: 261: 259: 227: 113:organic solvents 1136: 1135: 1131: 1130: 1129: 1127: 1126: 1125: 1111: 1110: 1102: 1101: 1098: 1093: 1092: 1087:Martini website 1085: 1081: 1037: 1036: 1032: 1002: 1001: 997: 953: 952: 948: 927:Green Chemistry 920: 919: 915: 885: 884: 880: 828: 827: 823: 787: 786: 782: 752: 751: 747: 711: 710: 706: 682:10.1.1.537.4531 665: 664: 660: 636:10.1.1.456.7408 620: 619: 615: 561: 560: 556: 502: 501: 497: 443: 442: 438: 385: 384: 380: 372: 368: 326: 325: 321: 277: 276: 265: 229: 228: 221: 216: 189: 181: 173: 165: 137: 101: 96: 60: 51: 21: 12: 11: 5: 1134: 1132: 1124: 1123: 1113: 1112: 1109: 1108: 1097: 1096:External links 1094: 1091: 1090: 1079: 1030: 1011:(2): 698–708. 995: 946: 913: 878: 841:(2): 246–256. 821: 780: 745: 704: 658: 629:(5): 819–834. 613: 554: 495: 436: 378: 366: 339:(4): 382–388. 333:Nature Methods 319: 263: 242:(2): 750–760. 218: 217: 215: 212: 211: 210: 205: 200: 195: 188: 185: 180: 177: 172: 169: 164: 161: 136: 133: 100: 97: 95: 94:Parameter sets 92: 59: 56: 50: 47: 13: 10: 9: 6: 4: 3: 2: 1133: 1122: 1119: 1118: 1116: 1105: 1100: 1099: 1095: 1088: 1083: 1080: 1075: 1071: 1066: 1061: 1057: 1053: 1049: 1045: 1041: 1034: 1031: 1026: 1022: 1018: 1014: 1010: 1006: 999: 996: 991: 987: 982: 977: 973: 969: 965: 961: 957: 950: 947: 941: 936: 932: 928: 924: 917: 914: 909: 905: 901: 897: 893: 889: 882: 879: 874: 870: 865: 860: 856: 852: 848: 844: 840: 836: 832: 825: 822: 817: 813: 808: 803: 799: 795: 791: 784: 781: 776: 772: 768: 764: 760: 756: 749: 746: 741: 737: 732: 727: 723: 719: 715: 708: 705: 700: 696: 692: 688: 683: 678: 674: 670: 662: 659: 654: 650: 646: 642: 637: 632: 628: 624: 617: 614: 609: 605: 600: 595: 590: 585: 581: 577: 573: 569: 565: 558: 555: 550: 546: 541: 536: 531: 526: 522: 518: 514: 510: 506: 499: 496: 491: 487: 482: 477: 472: 467: 463: 459: 455: 451: 447: 440: 437: 432: 428: 423: 418: 414: 410: 406: 402: 398: 394: 390: 382: 379: 376: 370: 367: 362: 358: 354: 350: 346: 342: 338: 334: 330: 323: 320: 315: 311: 306: 301: 297: 293: 289: 285: 281: 274: 272: 270: 268: 264: 258: 253: 249: 245: 241: 237: 233: 226: 224: 220: 213: 209: 206: 204: 201: 199: 196: 194: 191: 190: 186: 184: 178: 176: 171:Nucleic acids 170: 168: 163:Carbohydrates 162: 160: 158: 154: 150: 149:alpha helixes 146: 142: 134: 132: 130: 126: 122: 118: 114: 110: 106: 98: 93: 91: 89: 85: 81: 77: 73: 69: 65: 57: 55: 48: 46: 43: 40: 37: 33: 29: 25: 19: 1082: 1047: 1043: 1033: 1008: 1004: 998: 963: 959: 949: 930: 926: 916: 891: 887: 881: 838: 834: 824: 797: 793: 783: 758: 754: 748: 721: 717: 707: 672: 668: 661: 626: 622: 616: 571: 567: 557: 512: 508: 498: 453: 449: 439: 396: 392: 381: 369: 336: 332: 322: 287: 283: 239: 235: 182: 174: 166: 156: 144: 138: 102: 64:biomolecules 61: 52: 44: 23: 22: 1005:Soft Matter 153:beta sheets 125:cholesterol 117:surfactants 80:syntaxin-1A 835:Biophys. J 214:References 39:simulation 677:CiteSeerX 631:CiteSeerX 361:232421378 107:, simple 1115:Category 1074:28209056 990:18543869 908:26596752 873:28633759 816:26574472 775:26602504 740:28195464 699:26616630 653:26621095 608:18987307 549:21205902 490:21041677 431:22020284 353:33782607 314:17569554 187:See also 141:proteins 135:Proteins 88:peptides 49:Overview 1065:5355903 1013:Bibcode 981:2504730 864:5529176 843:Bibcode 599:2579886 576:Bibcode 540:3029762 517:Bibcode 481:2993341 458:Bibcode 422:3409895 401:Bibcode 193:GROMACS 109:alkanes 68:GROMACS 24:Martini 18:Martini 1072:  1062:  988:  978:  906:  871:  861:  814:  773:  738:  697:  679:  651:  633:  606:  596:  547:  537:  488:  478:  429:  419:  393:Nature 359:  351:  312:  157:et al. 145:et al. 121:lipids 99:Lipids 72:GROMOS 357:S2CID 198:VOTCA 179:Other 105:water 26:is a 1070:PMID 986:PMID 904:PMID 869:PMID 812:PMID 771:PMID 736:PMID 695:PMID 649:PMID 604:PMID 545:PMID 486:PMID 427:PMID 349:PMID 310:PMID 151:and 123:and 76:NAMD 1060:PMC 1052:doi 1048:139 1021:doi 976:PMC 968:doi 964:112 935:doi 896:doi 859:PMC 851:doi 839:113 802:doi 763:doi 726:doi 687:doi 641:doi 594:PMC 584:doi 572:105 535:PMC 525:doi 513:108 476:PMC 466:doi 454:107 417:PMC 409:doi 397:479 341:doi 300:hdl 292:doi 288:111 252:hdl 244:doi 240:108 58:Use 1117:: 1068:. 1058:. 1046:. 1042:. 1019:. 1007:. 984:. 974:. 962:. 958:. 931:22 929:. 925:. 902:. 890:. 867:. 857:. 849:. 837:. 833:. 810:. 798:11 796:. 792:. 769:. 757:. 734:. 722:13 720:. 716:. 693:. 685:. 671:. 647:. 639:. 625:. 602:. 592:. 582:. 570:. 566:. 543:. 533:. 523:. 511:. 507:. 484:. 474:. 464:. 452:. 448:. 425:. 415:. 407:. 395:. 391:. 355:. 347:. 337:18 335:. 331:. 308:. 298:. 286:. 282:. 266:^ 250:. 238:. 234:. 222:^ 115:, 111:, 90:. 1076:. 1054:: 1027:. 1023:: 1015:: 1009:7 992:. 970:: 943:. 937:: 910:. 898:: 892:8 875:. 853:: 845:: 818:. 804:: 777:. 765:: 759:5 742:. 728:: 701:. 689:: 673:5 655:. 643:: 627:4 610:. 586:: 578:: 551:. 527:: 519:: 492:. 468:: 460:: 433:. 411:: 403:: 363:. 343:: 316:. 302:: 294:: 260:. 254:: 246:: 20:.

Index

Martini
coarse-grained (CG) force field
University of Groningen
molecular dynamics
simulation
biomolecules
GROMACS
GROMOS
NAMD
syntaxin-1A
mechanosensitive channels
peptides
water
alkanes
organic solvents
surfactants
lipids
cholesterol
phase behavior of bilayers
proteins
alpha helixes
beta sheets
GROMACS
VOTCA
Comparison of software for molecular mechanics modeling
Comparison of force field implementations


"Coarse Grained Model for Semiquantitative Lipid Simulations"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑