Knowledge (XXG)

MEMS for in situ mechanical characterization

Source đź“ť

167:
an electrostatically actuated device, similar to Espinosa’s original design, was developed in Silicon-On-Insulator technology by the Michler’s group. These devices have the advantage of a higher aspect ratio and therefore a higher sensitivity in the sensing structures. Some other researchers have developed other devices following the models outlines by Espinosa, Saif and Haque; for example Victor Bright at University of Colorado – Boulder. The technology has reached a level of maturity such that standard devices are now offered by the Center for Integrated Nanotechnologies (CINT) at Sandia National Labs to researchers interested in mechanical testing of nanoscale samples.
151:
University. They designed and developed a true MEM system that incorporated capacitive sensing for electronic measurement of load and thermal actuation for specimen straining in one single chip. The system could be operated inside a transmission electron microscope. The MEMS based platform was applied to the study of poly-Silicon samples, multi-walled CNTs and more recently metallic and semiconducting nanowires. In particular, the theoretical strength of carbon nanotubes was experimentally measured for the first time using this device.
114:(AFM) to perform a three-point bending test, SEM and TEM to perform bending resonance tests and nanoindenters to perform compression tests. In recent years, it has been found that results are not completely unambiguous. This was exemplified by the fact that different researchers obtained different values of the same property for the same material. This spurred the development of MEMS with the capability of carrying out tensile tests on individual nanoscale elements. 188:
biological systems finds application in disease diagnosis and treatment, and in the engineering of new materials. The size scales in biological testing are in the micron range, with structures that are typically very compliant. This requires the development of devices with high displacement capabilities and very high force resolution. Recent examples are the tensile characterization of collagen fibrils and DNA bundles.
155: 175:
Several nanomechanical characterization methods have yielded many results for properties of matter at the nanoscale. What has been found consistently is that mechanical properties of materials change as a function of size. In metals, elastic modulus, yield strength and fracture strength all increase,
166:
Following these pioneering works, other research groups have followed on developing their own MEMS for mechanical testing. Important examples include the deBoer group at Sandia National Labs who specializes in the testing of polysilicon samples. At the Ecole Polythecnique Federale de Lausanne (EPFL),
105:
Typical macroscale mechanical characterization is mostly performed under uniaxial tensile conditions. Despite the existence of other methods of mechanical characterization such as three-point bending, hardness testing, etc., uniaxial tensile testing allows for the measurement of the most fundamental
150:
SEM and TEM were demonstrated for thin films by his group including a stage for simultaneous electrical and mechanical testing, although this set-up used external actuation and sensing. A major breakthrough in MEMS-electronic integration was made by Horacio D. Espinosa and his group at Northwestern
187:
On the other hand, given that MEMS has demonstrated to be a feasible technology for characterizing mechanical properties at the nanoscale, application of the technology to other types of problems has been sought. In particular, biological systems spur an interest because understanding mechanics in
179:
The discovery that mechanical properties are intrinsically size-dependent has spurred theoretical and experimental interest in the size-dependence of other material properties, such as thermal and electrical; and also coupled effects like electromechanical or thermomechanical behavior. Particular
109:
At the nanoscale, owing to the reduced size of the specimen and the forces and displacements to be measured, uniaxial testing or any mechanical testing for that matter, are challenging. As a result, most tests are carried in configurations other than uniaxial-tensile, using available nanoscale
106:
mechanical measurement of the specimen, namely its stress-strain curve. From this curve, important properties like the Young’s modulus, Yield strength, Fracture Strength can be computed. Other properties such as toughness and ductility can be computed as well.
766:
Bernal, R.A., R. Agrawal, B. Peng, K.A. Bertness, N.A. Sanford, A.V. Davydov, and H.D. Espinosa (2010). "Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined in Situ TEM and Atomistic Modeling Investigation".
134:, which were fabricated by standard machining techniques. However, important contributions and insights were provided into specimen gripping mechanisms and the mechanics of materials at the micron scale. Likewise, Horacio D. Espinosa at 659:
Peng, B., M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, and H.D. Espinosa (2008). "Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements".
96:
mechanical testing coupled with other type of measurements, such as electrical or thermal, and to extend the range of samples tested to the biological domain, testing specimens such as cells and collagen fibrils.
138:
developed a membrane deflection experiment, which was employed at the MEMS level as well as in thin film specimens. The latest revealed the first experimental evidence of size scale plasticity in thin metallic
863:
Zhang, Dongfeng; Breguet, Jean-Marc; Clavel, Reymond; Philippe, Laetitia; Utke, Ivo; Michler, Johann (2009). "In situ tensile testing of individual Co nanowires inside a scanning electron microscope".
1150:
Yamahata, C., D. Collard, B. Legrand, T. Takekawa, M. Kumemura, G. Hashiguchi, and H. Fujita (2008). "Silicon Nanotweezers With Subnanometer Resolution for the Micromanipulation of Biomolecules".
85:
can be used to further characterize the sample, providing a complete picture of the evolution of the specimen as it is loaded and fails. Owing to the development of mature MEMS
180:
interest has been focused on characterizing electromechanical properties such as piezoresistivity and piezoelectricity. Most of the current focus in the developing of MEMS for
914:
Brown, J.J., A.I. Baca, K.A. Bertness, D.A. Dikin, R.S. Ruoff, and V.M. Bright (2011). "Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages".
130:
conducted pioneering work in the testing of microscale specimen of polycrystalline silicon. Some of the initial developments consisted mostly of miniaturized versions of
1185: 1136: 1065: 1002: 941: 810: 752: 695: 642: 423: 374: 318: 54:. They distinguish themselves from other methods of nanomechanical testing because the sensing and actuation mechanisms are embedded and/or co-fabricated in the 709:
Agrawal, R., B. Peng, E.E. Gdoutos, and H.D. Espinosa (2008). "Elasticity size effects in ZnO nanowires – A combined Experimental-Computational approach".
388:
Espinosa, H.D., B.C. Prorok, and B. Peng (2004). "Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension".
143:
films. Later, size effect studies were performed on single crystal pillars using nanoindentation of microfabricated samples by means of focused ion beam.
283:
Espinosa, H.D., B.C. Prorok, and M. Fischer (2003). "A methodology for determining mechanical properties of freestanding thin films and MEMS materials".
605:
Peng, B., Y.G. Sun, Y. Zhu, H.-H. Wang, and H.D. Espinosa (2008). "Nanoscale testing of One-dimensional nanostructures". In F. Yang; C.J.M. Li (eds.).
122:
The interest in nanomechanical testing was initially spurred by a need to characterize the materials that were used in the fabrication of MEMS.
505:
Han, J.H. & M.T.A. Saif (2006). "In situ microtensile stage for electromechanical characterization of nanoscale freestanding films".
146:
Later on, Taher Saif at University of Illinois- Urbana Champaign can be credited on developing microfabricated stages. Several results
967:
Haque, M.A., H.D. Espinosa, and H.J. Lee (2010). "MEMS for In Situ Testing – Handling, Actuation, Loading, Displacement Measurement".
626: 74: 27: 70: 176:
while in semiconducting brittle materials, either increments or reductions are observed depending on the material.
333: 131: 334:"An Experimental/Computational approach to identify Moduli and Residual Stress in MEMS Radio-Frequency Switches" 127: 221:
Agrawal, R. & Espinosa, H.D. (2009). "Multiscale Experiments: State of the Art and Remaining Challenges".
65:, i.e., testing while observing the evolution of the sample in high magnification instruments such as optical 1204: 135: 111: 1179: 1130: 1059: 996: 935: 804: 746: 689: 470:
Haque, M.A. & M.T.A. Saif (2002). "In-situ tensile testing of nano-scale specimens in SEM and TEM".
417: 368: 312: 89:
technologies, the use of these microsystems for research purposes has been increasing in recent years.
1092: 872: 776: 718: 556: 514: 397: 292: 31: 61:
This level of integration and miniaturization allows carrying out the mechanical characterization
1167: 984: 896: 845: 636: 487: 356: 238: 545:"An electromechanical material testing system for in situ electron microscopy and applications" 1118: 1047: 888: 792: 734: 677: 622: 584: 123: 35: 1159: 1108: 1100: 1037: 1029: 976: 923: 880: 837: 784: 726: 669: 614: 606: 574: 564: 522: 479: 450: 405: 348: 300: 265: 230: 86: 39: 77:(TEM) and X-ray setups. Furthermore, analytical capabilities of these instruments such as 1018:"Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils" 884: 1096: 876: 841: 780: 722: 560: 518: 401: 296: 154: 1113: 1080: 1042: 1017: 579: 544: 304: 1198: 849: 607: 491: 455: 438: 197: 1171: 988: 900: 360: 242: 1079:
Shen, Z.L., Kahn, H., Ballarini, R., Eppell, S.J.; Kahn; Ballarini; Eppell (2011).
78: 618: 954: 82: 55: 549:
Proceedings of the National Academy of Sciences of the United States of America
409: 1163: 1104: 927: 269: 66: 569: 51: 43: 1122: 1051: 1033: 892: 796: 738: 681: 673: 588: 47: 980: 256:
Sharpe, W.N. (2008). "A review of tension test methods for thin films".
184:
testing lies in this area with examples from Haque, Espinosa and Zhang.
58:, providing—in the majority of cases—greater sensitivity and precision. 483: 352: 788: 730: 526: 234: 153: 332:
Espinosa, H.D., Y. Zhu, M. Fischer, and J. Hutchinson (2003).
30:(MEMS) used to measure the mechanical properties (such as the 16:
MEMS that measure mechanical properties of nanoscale objects
1016:
Eppell, S.J., Smith, B.N., Kahn, H., Ballarini, R. (2006).
609:
Micro and Nano Mechanical Testing of Materials and Devices
1081:"Viscoelastic Properties of Isolated Collagen Fibrils" 92:Most of the current developments aim to implement 223:Journal of Engineering Materials and Technology 830:Journal of Micromechanics and Microengineering 390:Journal of the Mechanics and Physics of Solids 285:Journal of the Mechanics and Physics of Solids 824:Siddharth, S.H. (2009). "Demonstration of an 8: 1184:: CS1 maint: multiple names: authors list ( 1135:: CS1 maint: multiple names: authors list ( 1064:: CS1 maint: multiple names: authors list ( 1001:: CS1 maint: multiple names: authors list ( 940:: CS1 maint: multiple names: authors list ( 809:: CS1 maint: multiple names: authors list ( 751:: CS1 maint: multiple names: authors list ( 694:: CS1 maint: multiple names: authors list ( 641:: CS1 maint: multiple names: authors list ( 422:: CS1 maint: multiple names: authors list ( 373:: CS1 maint: multiple names: authors list ( 317:: CS1 maint: multiple names: authors list ( 101:Mechanical characterization at the nanoscale 437:Saif, M.T.A. & MacDonald, N.C. (1996). 1152:Journal of Microelectromechanical Systems 1112: 1041: 578: 568: 454: 208: 118:Historical context and state of the art 1177: 1128: 1057: 1022:Journal of the Royal Society Interface 994: 933: 802: 744: 687: 634: 415: 366: 310: 654: 652: 600: 598: 543:Zhu, Y. & Espinosa, H.D. (2005). 7: 538: 536: 216: 214: 212: 439:"A millinewton microloading device" 14: 162:tensile testing of nanostructures 75:transmission electron microscopes 507:Review of Scientific Instruments 885:10.1088/0957-4484/20/36/365706 613:. Springer. pp. 280–304. 28:microelectromechanical systems 1: 842:10.1088/0960-1317/19/8/082001 305:10.1016/S0022-5096(02)00062-5 71:scanning electron microscopes 619:10.1007/978-0-387-78701-5_11 456:10.1016/0924-4247(96)80127-0 24:mechanical characterization 1221: 410:10.1016/j.jmps.2003.07.001 158:Schematic of the MEMS for 132:universal testing machines 50:, whiskers, nanotubes and 1164:10.1109/JMEMS.2008.922080 1105:10.1016/j.bpj.2011.04.052 928:10.1016/j.sna.2010.04.002 828:on-chip tensile tester". 270:10.1557/PROC-1052-DD01-01 128:Johns Hopkins University 916:Sensors and Actuators A 570:10.1073/pnas.0506544102 443:Sensors and Actuators A 229:(4): 0412081–04120815. 136:Northwestern University 112:atomic force microscope 110:science tools like the 1034:10.1098/rsif.2005.0100 957:. cint.lanl.gov (2009) 674:10.1038/nnano.2008.211 472:Experimental Mechanics 341:Experimental Mechanics 163: 662:Nature Nanotechnology 157: 1097:2011BpJ...100.3008S 1085:Biophysical Journal 981:10.1557/mrs2010.570 955:Discovery Platforms 877:2009Nanot..20J5706Z 781:2011NanoL..11..548B 723:2008NanoL...8.3668A 561:2005PNAS..10214503Z 555:(41): 14503–14508. 519:2006RScI...77d5102H 402:2004JMPSo..52..667E 297:2003JMPSo..51...47E 484:10.1007/BF02411059 353:10.1007/BF02410529 164: 42:specimens such as 1091:(12): 3008–3015. 789:10.1021/nl103450e 731:10.1021/nl801724b 717:(11): 3668–3674. 527:10.1063/1.2188368 235:10.1115/1.3183782 171:Future directions 124:William N. Sharpe 36:fracture strength 1212: 1190: 1189: 1183: 1175: 1147: 1141: 1140: 1134: 1126: 1116: 1076: 1070: 1069: 1063: 1055: 1045: 1013: 1007: 1006: 1000: 992: 964: 958: 952: 946: 945: 939: 931: 911: 905: 904: 860: 854: 853: 821: 815: 814: 808: 800: 763: 757: 756: 750: 742: 706: 700: 699: 693: 685: 656: 647: 646: 640: 632: 612: 602: 593: 592: 582: 572: 540: 531: 530: 502: 496: 495: 467: 461: 460: 458: 434: 428: 427: 421: 413: 385: 379: 378: 372: 364: 338: 329: 323: 322: 316: 308: 280: 274: 273: 253: 247: 246: 218: 87:microfabrication 1220: 1219: 1215: 1214: 1213: 1211: 1210: 1209: 1195: 1194: 1193: 1176: 1149: 1148: 1144: 1127: 1078: 1077: 1073: 1056: 1015: 1014: 1010: 993: 966: 965: 961: 953: 949: 932: 913: 912: 908: 862: 861: 857: 823: 822: 818: 801: 765: 764: 760: 743: 708: 707: 703: 686: 668:(10): 626–631. 658: 657: 650: 633: 629: 604: 603: 596: 542: 541: 534: 513:(4): 045102–8. 504: 503: 499: 469: 468: 464: 436: 435: 431: 414: 387: 386: 382: 365: 336: 331: 330: 326: 309: 282: 281: 277: 258:MRS Proceedings 255: 254: 250: 220: 219: 210: 206: 194: 173: 120: 103: 32:Young’s modulus 17: 12: 11: 5: 1218: 1216: 1208: 1207: 1205:Nanotechnology 1197: 1196: 1192: 1191: 1158:(3): 623–631. 1142: 1071: 1028:(6): 117–121. 1008: 959: 947: 922:(2): 177–186. 906: 871:(36): 365706. 865:Nanotechnology 855: 816: 758: 701: 648: 628:978-0387787008 627: 594: 532: 497: 478:(1): 123–128. 462: 449:(1–3): 65–75. 429: 396:(3): 667–689. 380: 347:(3): 309–316. 324: 275: 248: 207: 205: 202: 201: 200: 193: 190: 172: 169: 119: 116: 102: 99: 15: 13: 10: 9: 6: 4: 3: 2: 1217: 1206: 1203: 1202: 1200: 1187: 1181: 1173: 1169: 1165: 1161: 1157: 1153: 1146: 1143: 1138: 1132: 1124: 1120: 1115: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1075: 1072: 1067: 1061: 1053: 1049: 1044: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1009: 1004: 998: 990: 986: 982: 978: 974: 970: 963: 960: 956: 951: 948: 943: 937: 929: 925: 921: 917: 910: 907: 902: 898: 894: 890: 886: 882: 878: 874: 870: 866: 859: 856: 851: 847: 843: 839: 836:(8): 082001. 835: 831: 827: 820: 817: 812: 806: 798: 794: 790: 786: 782: 778: 775:(2): 548–55. 774: 770: 762: 759: 754: 748: 740: 736: 732: 728: 724: 720: 716: 712: 705: 702: 697: 691: 683: 679: 675: 671: 667: 663: 655: 653: 649: 644: 638: 630: 624: 620: 616: 611: 610: 601: 599: 595: 590: 586: 581: 576: 571: 566: 562: 558: 554: 550: 546: 539: 537: 533: 528: 524: 520: 516: 512: 508: 501: 498: 493: 489: 485: 481: 477: 473: 466: 463: 457: 452: 448: 444: 440: 433: 430: 425: 419: 411: 407: 403: 399: 395: 391: 384: 381: 376: 370: 362: 358: 354: 350: 346: 342: 335: 328: 325: 320: 314: 306: 302: 298: 294: 290: 286: 279: 276: 271: 267: 263: 259: 252: 249: 244: 240: 236: 232: 228: 224: 217: 215: 213: 209: 203: 199: 198:Lab-on-a-chip 196: 195: 191: 189: 185: 183: 177: 170: 168: 161: 156: 152: 149: 144: 142: 137: 133: 129: 125: 117: 115: 113: 107: 100: 98: 95: 90: 88: 84: 80: 76: 72: 68: 64: 59: 57: 53: 49: 45: 41: 37: 33: 29: 25: 23: 1180:cite journal 1155: 1151: 1145: 1131:cite journal 1088: 1084: 1074: 1060:cite journal 1025: 1021: 1011: 997:cite journal 972: 969:MRS Bulletin 968: 962: 950: 936:cite journal 919: 915: 909: 868: 864: 858: 833: 829: 825: 819: 805:cite journal 772: 769:Nano Letters 768: 761: 747:cite journal 714: 711:Nano Letters 710: 704: 690:cite journal 665: 661: 608: 552: 548: 510: 506: 500: 475: 471: 465: 446: 442: 432: 418:cite journal 393: 389: 383: 369:cite journal 344: 340: 327: 313:cite journal 291:(1): 47–67. 288: 284: 278: 261: 257: 251: 226: 222: 186: 181: 178: 174: 165: 159: 147: 145: 141:freestanding 140: 121: 108: 104: 93: 91: 79:spectroscopy 62: 60: 21: 19: 18: 83:diffraction 67:microscopes 56:microsystem 204:References 52:thin films 26:refers to 850:107353691 637:cite book 492:136678366 44:nanowires 40:nanoscale 20:MEMS for 1199:Category 1172:44220818 1123:21689535 1052:16849223 989:12455370 901:12696787 893:19687546 797:21171602 739:18839998 682:18839003 589:16195381 361:15913817 264:: 3–14. 243:16778097 192:See also 48:nanorods 1114:3123930 1093:Bibcode 1043:1618494 975:: 375. 873:Bibcode 826:in situ 777:Bibcode 719:Bibcode 580:1253576 557:Bibcode 515:Bibcode 398:Bibcode 293:Bibcode 182:in situ 160:in situ 148:in situ 94:in situ 73:(SEM), 63:in situ 22:in situ 1170:  1121:  1111:  1050:  1040:  987:  899:  891:  848:  795:  737:  680:  625:  587:  577:  490:  359:  241:  1168:S2CID 985:S2CID 897:S2CID 846:S2CID 488:S2CID 357:S2CID 337:(PDF) 239:S2CID 38:) of 1186:link 1137:link 1119:PMID 1066:link 1048:PMID 1003:link 942:link 889:PMID 811:link 793:PMID 753:link 735:PMID 696:link 678:PMID 643:link 623:ISBN 585:PMID 424:link 375:link 319:link 262:1052 81:and 34:and 1160:doi 1109:PMC 1101:doi 1089:100 1038:PMC 1030:doi 977:doi 924:doi 920:166 881:doi 838:doi 785:doi 727:doi 670:doi 615:doi 575:PMC 565:doi 553:102 523:doi 480:doi 451:doi 406:doi 349:doi 301:doi 266:doi 231:doi 227:131 126:at 1201:: 1182:}} 1178:{{ 1166:. 1156:17 1154:. 1133:}} 1129:{{ 1117:. 1107:. 1099:. 1087:. 1083:. 1062:}} 1058:{{ 1046:. 1036:. 1024:. 1020:. 999:}} 995:{{ 983:. 973:35 971:. 938:}} 934:{{ 918:. 895:. 887:. 879:. 869:20 867:. 844:. 834:19 832:. 807:}} 803:{{ 791:. 783:. 773:11 771:. 749:}} 745:{{ 733:. 725:. 713:. 692:}} 688:{{ 676:. 664:. 651:^ 639:}} 635:{{ 621:. 597:^ 583:. 573:. 563:. 551:. 547:. 535:^ 521:. 511:77 509:. 486:. 476:42 474:. 447:52 445:. 441:. 420:}} 416:{{ 404:. 394:52 392:. 371:}} 367:{{ 355:. 345:43 343:. 339:. 315:}} 311:{{ 299:. 289:51 287:. 260:. 237:. 225:. 211:^ 69:, 46:, 1188:) 1174:. 1162:: 1139:) 1125:. 1103:: 1095:: 1068:) 1054:. 1032:: 1026:3 1005:) 991:. 979:: 944:) 930:. 926:: 903:. 883:: 875:: 852:. 840:: 813:) 799:. 787:: 779:: 755:) 741:. 729:: 721:: 715:8 698:) 684:. 672:: 666:3 645:) 631:. 617:: 591:. 567:: 559:: 529:. 525:: 517:: 494:. 482:: 459:. 453:: 426:) 412:. 408:: 400:: 377:) 363:. 351:: 321:) 307:. 303:: 295:: 272:. 268:: 245:. 233::

Index

microelectromechanical systems
Young’s modulus
fracture strength
nanoscale
nanowires
nanorods
thin films
microsystem
microscopes
scanning electron microscopes
transmission electron microscopes
spectroscopy
diffraction
microfabrication
atomic force microscope
William N. Sharpe
Johns Hopkins University
universal testing machines
Northwestern University

Lab-on-a-chip



doi
10.1115/1.3183782
S2CID
16778097
doi
10.1557/PROC-1052-DD01-01

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑