Knowledge (XXG)

Microscope

Source 📝

1092:(STM). An atomic force microscope has a fine probe, usually of silicon or silicon nitride, attached to a cantilever; the probe is scanned over the surface of the sample, and the forces that cause an interaction between the probe and the surface of the sample are measured and mapped. A near-field scanning optical microscope is similar to an AFM but its probe consists of a light source in an optical fiber covered with a tip that has usually an aperture for the light to pass through. The microscope can capture either transmitted or reflected light to measure very localized optical properties of the surface, commonly of a biological specimen. Scanning tunneling microscopes have a metal tip with a single apical atom; the tip is attached to a tube through which a current flows. The tip is scanned over the surface of a conductive sample until a tunneling current flows; the current is kept constant by computer movement of the tip and an image is formed by the recorded movements of the tip. 1065:. This requires careful sample preparation, since electrons are scattered strongly by most materials. The samples must also be very thin (below 100 nm) in order for the electrons to pass through it. Cross-sections of cells stained with osmium and heavy metals reveal clear organelle membranes and proteins such as ribosomes. With a 0.1 nm level of resolution, detailed views of viruses (20 – 300 nm) and a strand of DNA (2 nm in width) can be obtained. In contrast, the SEM has raster coils to scan the surface of bulk objects with a fine electron beam. Therefore, the specimen do not necessarily need to be sectioned, but coating with a nanometric metal or carbon layer may be needed for nonconductive samples. SEM allows fast surface imaging of samples, possibly in thin water vapor to prevent drying. 383: 491: 571: 950: 642: 100: 1040: 2826: 771: 2927: 2634: 779: 1027: 2658: 38: 2128: 281: 1096: 2670: 798:(electron microscopes) or a probe (scanning probe microscopes). Alternatively, microscopes can be classified based on whether they analyze the sample via a scanning point (confocal optical microscopes, scanning electron microscopes and scanning probe microscopes) or analyze the sample all at once (wide field optical microscopes and transmission electron microscopes). 2939: 2646: 460:, which is central to achieving the theoretical limits of resolution for the light microscope. This method of sample illumination produces even lighting and overcomes the limited contrast and resolution imposed by early techniques of sample illumination. Further developments in sample illumination came from the discovery of 924:
is a recent optical technique that increases the sensitivity of a standard optical microscope to a point where it is possible to directly visualize nanometric films (down to 0.3 nanometre) and isolated nano-objects (down to 2 nm-diameter). The technique is based on the use of non-reflecting
840:
Scanning optical and electron microscopes, like the confocal microscope and scanning electron microscope, use lenses to focus a spot of light or electrons onto the sample then analyze the signals generated by the beam interacting with the sample. The point is then scanned over the sample to analyze a
555:
One of the latest discoveries made about using an electron microscope is the ability to identify a virus. Since this microscope produces a visible, clear image of small organelles, in an electron microscope there is no need for reagents to see the virus or harmful cells, resulting in a more efficient
451:
lens system to focus light on the specimen and the objective lens to capture the light from the specimen and form an image. Early instruments were limited until this principle was fully appreciated and developed from the late 19th to very early 20th century, and until electric lamps were available as
602:
from quantum tunnelling theory, that read very small forces exchanged between a probe and the surface of a sample. The probe approaches the surface so closely that electrons can flow continuously between probe and sample, making a current from surface to probe. The microscope was not initially well
1079:
The different types of scanning probe microscopes arise from the many different types of interactions that occur when a small probe is scanned over and interacts with a specimen. These interactions or modes can be recorded or mapped as function of location on the surface to form a characterization
844:
Scanning probe microscopes also analyze a single point in the sample and then scan the probe over a rectangular sample region to build up an image. As these microscopes do not use electromagnetic or electron radiation for imaging they are not subject to the same resolution limit as the optical and
742:
are approaching the resolution of electron microscopes. This occurs because the diffraction limit is occurred from light or excitation, which makes the resolution must be doubled to become super saturated. Stefan Hell was awarded the 2014 Nobel Prize in Chemistry for the development of the STED
757:
X-ray microscopes are instruments that use electromagnetic radiation usually in the soft X-ray band to image objects. Technological advances in X-ray lens optics in the early 1970s made the instrument a viable imaging choice. They are often used in tomography (see
346:(also sometimes cited as compound microscope inventor) seems to have found after 1610 that he could close focus his telescope to view small objects and, after seeing a compound microscope built by Drebbel exhibited in Rome in 1624, built his own improved version. 841:
rectangular region. Magnification of the image is achieved by displaying the data from scanning a physically small sample area on a relatively large screen. These microscopes have the same resolution limit as wide field optical, probe, and electron microscopes.
522:(TEM). The transmission electron microscope works on similar principles to an optical microscope but uses electrons in the place of light and electromagnets in the place of glass lenses. Use of electrons, instead of light, allows for much higher resolution. 1115:
in principle, they are used for such jobs as detecting defects in the subsurfaces of materials including those found in integrated circuits. On February 4, 2013, Australian engineers built a "quantum microscope" which provides unparalleled precision.
1869:
Aspden, Reuben S.; Gemmell, Nathan R.; Morris, Peter A.; Tasca, Daniel S.; Mertens, Lena; Tanner, Michael G.; Kirkwood, Robert A.; Ruggeri, Alessandro; Tosi, Alberto; Boyd, Robert W.; Buller, Gerald S.; Hadfield, Robert H.; Padgett, Miles J. (2015).
544:, developed the first commercial transmission electron microscope and, in the 1950s, major scientific conferences on electron microscopy started being held. In 1965, the first commercial scanning electron microscope was developed by Professor Sir 611:
began publishing articles that tied theory to the experimental results obtained by the instrument. This was closely followed in 1985 with functioning commercial instruments, and in 1986 with Gerd Binnig, Quate, and Gerber's invention of the
890:), to focus light on the eye or on to another light detector. Mirror-based optical microscopes operate in the same manner. Typical magnification of a light microscope, assuming visible range light, is up to 1,250× with a theoretical 374:, 1637) describes microscopes wherein a concave mirror, with its concavity towards the object, is used, in conjunction with a lens, for illuminating the object, which is mounted on a point fixing it at the focus of the mirror. 762:) to produce three dimensional images of objects, including biological materials that have not been chemically fixed. Currently research is being done to improve optics for hard X-rays which have greater penetrating power. 1022:
to photon-sparse microscopy, the sample is illuminated with infrared photons, each of which is spatially correlated with an entangled partner in the visible band for efficient imaging by a photon-counting camera.
206:
There are many types of microscopes, and they may be grouped in different ways. One way is to describe the method an instrument uses to interact with a sample and produce images, either by sending a beam of
423:
had a huge impact, largely because of its impressive illustrations. Hooke created tiny lenses of small glass globules made by fusing the ends of threads of spun glass. A significant contribution came from
1061:(SEMs). They both have series of electromagnetic and electrostatic lenses to focus a high energy beam of electrons on a sample. In a TEM the electrons pass through the sample, analogous to 405:
The microscope was still largely a novelty until the 1660s and 1670s when naturalists in Italy, the Netherlands and England began using them to study biology. Italian scientist
2319: 2055: 1740: 319:, appeared in Europe around 1620. The inventor is unknown, even though many claims have been made over the years. Several revolve around the spectacle-making centers in the 299:
accounts of the optical properties of water-filled spheres (5th century BC) followed by many centuries of writings on optics, the earliest known use of simple microscopes (
914:
limited. The use of shorter wavelengths of light, such as ultraviolet, is one way to improve the spatial resolution of the optical microscope, as are devices such as the
2869: 223:
from a sample, or by scanning across and a short distance from the surface of a sample using a probe. The most common microscope (and the first to be invented) is the
432:
between the holes in two metal plates riveted together, and with an adjustable-by-screws needle attached to mount the specimen. Then, Van Leeuwenhoek re-discovered
2977: 2352: 2780: 2110: 1149: 469: 444:, and helped popularise the use of microscopes to view biological ultrastructure. On 9 October 1676, van Leeuwenhoek reported the discovery of micro-organisms. 669:
structures were developed. The main groups of techniques involve targeted chemical staining of particular cell structures, for example, the chemical compound
2708: 2115: 4206: 4185: 2581: 1503: 48: 4295: 739: 2098: 2048: 786:
Microscopes can be separated into several different classes. One grouping is based on what interacts with the sample to generate the image, i.e.,
1547: 382: 3821: 2912: 2907: 2775: 2604: 2392: 2175: 2145: 1085: 915: 490: 1959: 1934: 1811: 1654: 1530: 1472: 1405: 1350: 1306: 1273: 1203: 533:. Although TEMs were being used for research before WWII, and became popular afterwards, the SEM was not commercially available until 1965. 935:
light can be used to visualize circuitry embedded in bonded silicon devices, since silicon is transparent in this region of wavelengths.
619:
New types of scanning probe microscope have continued to be developed as the ability to machine ultra-fine probes and tips has advanced.
327:(claim made by his son) or Zacharias' father, Hans Martens, or both, claims it was invented by their neighbor and rival spectacle maker, 2874: 2227: 2222: 2207: 2170: 2093: 685:. These techniques use these different fluorophores for analysis of cell structure at a molecular level in both live and fixed samples. 1395: 2970: 2810: 2790: 2345: 2083: 2041: 903: 709: 2674: 3882: 1269: 271: 77: 1751: 59: 3859: 2854: 2850: 2701: 1054: 519: 251: 4329: 4314: 2237: 2202: 782:
Evolution of spatial resolution achieved with optical, transmission (TEM) and aberration-corrected electron microscopes (ACTEM)
1323: 285: 2879: 2650: 2611: 2377: 2217: 2197: 2192: 2155: 2013: 743:
technique, along with Eric Betzig and William Moerner who adapted fluorescence microscopy for single-molecule visualization.
502:
In the early 20th century a significant alternative to the light microscope was developed, an instrument that uses a beam of
1438:
J. William Rosenthal, Spectacles and Other Vision Aids: A History and Guide to Collecting, Norman Publishing, 1996, page 391
1010:
Digital microscopy with very low light levels to avoid damage to vulnerable biological samples is available using sensitive
1420:
William Rosenthal, Spectacles and Other Vision Aids: A History and Guide to Collecting, Norman Publishing, 1996, pp. 391–92
4150: 4039: 3380: 2963: 2638: 2338: 2160: 2105: 1284:
Atti Della Fondazione Giorgio Ronchi E Contributi Dell'Istituto Nazionale Di Ottica, Volume 30, La Fondazione-1975, p. 554
1154: 1089: 2943: 52: 3854: 1108: 1058: 931:
light enables the resolution of microscopic features as well as the imaging of samples that are transparent to the eye.
549: 526: 255: 2931: 2694: 2382: 2257: 2252: 1174: 1169: 1159: 721: 570: 413:
by some historians of biology, began his analysis of biological structures with the lungs. The publication in 1665 of
24: 170: 153: 3930: 3899: 3811: 2897: 2555: 2273: 2187: 2127: 1828: 891: 428:
who achieved up to 300 times magnification using a simple single lens microscope. He sandwiched a very small glass
4054: 3385: 2770: 2458: 2448: 2283: 2247: 2242: 2165: 2150: 2064: 1074: 957: 682: 599: 565: 461: 259: 3456: 1689:
Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James (2000).
730:
Much current research (in the early 21st century) on optical microscope techniques is focused on development of
58:
Help add sources such as review articles, monographs, or textbooks. Please also establish the relevance for any
2529: 2489: 2212: 3059: 1775: 3889: 3806: 3270: 2858: 2840: 2755: 2618: 2499: 2407: 2278: 2078: 1232: 1081: 1062: 939: 650: 628: 613: 608: 425: 243: 949: 525:
Development of the transmission electron microscope was quickly followed in 1935 by the development of the
3492: 3240: 3209: 2760: 2597: 641: 457: 146: 3482: 3360: 3072: 2765: 2397: 2232: 1004: 814: 759: 394:
of organic tissue based on the use of a microscope did not appear until 1644, in Giambattista Odierna's
1721:
Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002).
942:
many wavelengths of light ranging from the ultraviolet to the visible can be used to cause samples to
4319: 3778: 3438: 3280: 2453: 2417: 2369: 2361: 1886: 875: 826: 645:
Fluorescence microscope with the filter cube turret above the objective lenses, coupled with a camera
357: 184: 1366: 837:
of the radiation used to image the sample, where shorter wavelengths allow for a higher resolution.
801:
Wide field optical microscopes and transmission electron microscopes both use the theory of lenses (
4324: 3466: 3275: 3190: 3127: 2845: 2785: 2494: 1048: 1039: 1015: 689: 688:
The rise of fluorescence microscopy drove the development of a major modern microscope design, the
636: 485: 247: 133: 2657: 1429:
Raymond J. Seeger, Men of Physics: Galileo Galilei, His Life and His Works, Elsevier – 2016, p. 24
1131:
when the flashlight is activated. However, mobile app microscopes are harder to use due to visual
953:
Unstained cells viewed by typical brightfield (left) compared to phase-contrast microscopy (right)
99: 3993: 3976: 3915: 3816: 3740: 3676: 3671: 3589: 3410: 2736: 2524: 2519: 2514: 2387: 1975: 1851: 1244: 1236: 1128: 999:
is used to obtain an image, which is then displayed on a computer monitor. These sensors may use
988: 961: 868: 858: 854: 830: 818: 678: 632: 595: 448: 308: 275: 224: 129: 20: 4261: 4251: 4059: 4049: 3826: 3630: 3620: 3615: 3461: 3375: 3370: 3122: 2590: 2565: 2560: 2550: 2463: 2422: 2402: 1955: 1930: 1904: 1807: 1650: 1627: 1609: 1526: 1468: 1401: 1346: 1302: 1265: 1199: 973: 406: 367: 324: 1340: 1264:
by Henry C. King, Harold Spencer Jones Publisher Courier Dover Publications, 2003, pp. 25–27
809:
lenses for electron microscopes) in order to magnify the image generated by the passage of a
447:
The performance of a compound light microscope depends on the quality and correct use of the
3599: 3564: 3554: 3546: 3521: 3505: 3415: 3322: 3225: 3117: 2825: 2815: 2662: 2570: 2288: 1894: 1843: 1617: 1601: 1228: 1164: 1018:
may minimize the risk of damage to the most light-sensitive samples. In this application of
882:
producing an enlarged image of a sample placed in the focal plane. Optical microscopes have
752: 705: 537: 473: 453: 339: 300: 307:
in the 13th century. The earliest known examples of compound microscopes, which combine an
19:
This article is about microscopes, the instruments, in general. For light microscopes, see
4276: 4003: 3869: 3651: 3625: 3400: 3295: 2902: 1493: 1011: 731: 583: 343: 328: 1569:
Knoll, Max (1935). "Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper".
2004: 1890: 4271: 4221: 4111: 4085: 4029: 3986: 3981: 3920: 3579: 3569: 3230: 3112: 3077: 3039: 3024: 2795: 2443: 2304: 1622: 1589: 996: 862: 666: 603:
received due to the complex nature of the underlying theoretical explanations. In 1984
545: 437: 433: 347: 119: 700:
technology limited practical application of the technique. It was not until 1978 when
4308: 4216: 4095: 3925: 3594: 3531: 3195: 3029: 2864: 2509: 1498: 1447: 1132: 1019: 932: 879: 806: 701: 693: 604: 465: 235: 1855: 1248: 778: 4256: 4044: 4008: 3935: 3831: 3801: 3796: 3724: 3559: 3345: 3300: 3217: 3185: 3168: 3147: 3137: 3067: 3049: 2545: 2468: 1371: 1026: 965: 943: 770: 441: 419: 414: 220: 216: 1461: 1459:
Gould, Stephen Jay (2000). "Chapter 2: The Sharp-Eyed Lynx, Outfoxed by Nature".
1014:
digital cameras. It has been demonstrated that a light source providing pairs of
4170: 3998: 3958: 3894: 3877: 3750: 3719: 3704: 3699: 3661: 3536: 3500: 3350: 3152: 3107: 2438: 1136: 928: 911: 907: 902:. This limits practical magnification to ~1,500×. Specialized techniques (e.g., 579: 511: 495: 320: 242:
sample to produce an observable image. Other major types of microscopes are the
200: 1871: 1722: 1690: 813:
transmitted through the sample, or reflected by the sample. The waves used are
649:
The most recent developments in light microscope largely centre on the rise of
4175: 4165: 4116: 4034: 3846: 3691: 3666: 3526: 3405: 3335: 3290: 3285: 3265: 3235: 3132: 3034: 2986: 2800: 2717: 2504: 2314: 1124: 981: 895: 883: 834: 735: 725: 336: 316: 304: 280: 192: 1908: 1872:"Photon-sparse microscopy: visible light imaging using infrared illumination" 1613: 4266: 4064: 3714: 3327: 3142: 3102: 3044: 2473: 2180: 2033: 1899: 1095: 969: 899: 530: 515: 429: 410: 391: 332: 239: 188: 1631: 980:
to view the slide. This microscope technique made it possible to study the
591: 1827:
Pennycook, S.J.; Varela, M.; Hetherington, C.J.D.; Kirkland, A.I. (2011).
1043:
Transmission electron micrograph of a dividing cell undergoing cytokinesis
62:
cited. Unsourced or poorly sourced material may be challenged and removed.
4211: 4090: 4080: 3836: 3745: 3709: 3390: 3340: 2024: 1605: 1463:
The Lying Stones of Marrakech: Penultimate Reflections in Natural History
992: 991:. In addition to, or instead of, directly viewing the object through the 977: 822: 795: 662: 503: 312: 212: 1507:. Vol. 18 (11th ed.). Cambridge University Press. p. 392. 1111:
use sound waves to measure variations in acoustic impedance. Similar to
657:. During the last decades of the 20th century, particularly in the post- 476:
in 1955; both of which allow imaging of unstained, transparent samples.
4231: 4226: 4024: 3681: 3656: 3646: 3574: 3395: 3355: 2955: 2330: 1448:
uoregon.edu, Galileo Galilei (Excerpt from the Encyclopedia Britannica)
1240: 968:
in the light passing through a transparent specimen are converted into
791: 738:
can improve resolution by around two to four times and techniques like
654: 541: 295:
Although objects resembling lenses date back 4,000 years and there are
232: 196: 1847: 987:
The traditional optical microscope has more recently evolved into the
774:
Types of microscopes illustrated by the principles of their beam paths
3584: 2805: 2686: 2088: 1829:"Materials Advances through Aberration-Corrected Electron Microscopy" 946:, which allows viewing by eye or with specifically sensitive cameras. 921: 887: 872: 802: 658: 296: 176: 159: 1929:(3rd rev. & extended ed.). Berlin: Springer. p. 620. 1080:
map. The three most common types of scanning probe microscopes are
867:
The most common type of microscope (and the first invented) is the
4201: 4180: 1112: 1094: 1038: 1025: 948: 787: 769: 697: 640: 569: 507: 489: 381: 289: 279: 208: 199:
of investigating small objects and structures using a microscope.
1492: 976:
changes in the image. The use of phase contrast does not require
616:, then Binnig's and Rohrer's Nobel Prize in Physics for the SPM. 3755: 3054: 1000: 810: 670: 228: 4137: 3956: 3776: 3436: 2997: 2959: 2690: 2334: 2037: 712:
and the technique rapidly gained popularity through the 1980s.
548:
and his postgraduate student Gary Stewart, and marketed by the
536:
Transmission electron microscopes became popular following the
518:, developed the first prototype electron microscope in 1931, a 203:
means being invisible to the eye unless aided by a microscope.
1548:"Early Microscopes Revealed a New World of Tiny Living Things" 1219:
Bardell, David (May 2004). "The Invention of the Microscope".
674: 587: 31: 2019: 1590:"Modern Uses of Electron Microscopy for Detection of Viruses" 1397:
Reading the Book of Nature in the Dutch Golden Age, 1575-1715
1135:, are often limited to 40x, and the resolution limits of the 677:, use of antibodies conjugated to fluorescent reporters, see 187:
used to examine objects that are too small to be seen by the
2126: 1088:(NSOM or SNOM, scanning near-field optical microscopy), and 1741:"The Nobel Prize in Chemistry 2014 – Scientific Background" 925:
substrates for cross-polarized reflected light microscopy.
607:
and D.R. Hamann, while at AT&T's Bell Laboratories in
1649:. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. 2870:
Total internal reflection fluorescence microscopy (TIRF)
1299:
Fundamentals of light microscopy and electronic imaging
1233:
10.1893/0005-3155(2004)75<78:tiotm>2.0.co;2
910:) may exceed this magnification but the resolution is 1723:"Looking at the Structure of Cells in the Microscope" 1588:
Goldsmith, Cynthia S.; Miller, Sara E. (2009-10-01).
1099:
Leaf surface viewed by a scanning electron microscope
354:
for the compound microscope Galileo submitted to the
342:, who was noted to have a version in London in 1619. 2908:
Photo-activated localization microscopy (PALM/STORM)
1339:
Albert Van Helden; Sven Dupré; Rob van Gent (2010).
4244: 4194: 4148: 4104: 4073: 4017: 3969: 3908: 3868: 3845: 3789: 3733: 3690: 3639: 3608: 3545: 3514: 3491: 3475: 3449: 3315: 3249: 3161: 3086: 3008: 2888: 2833: 2746: 2579: 2538: 2482: 2431: 2368: 2297: 2266: 2138: 2071: 598:phenomenon. They created a practical instrument, a 125: 114: 106: 1523:Bad medicine: doctors doing harm since Hippocrates 1460: 1345:. Amsterdam University Press. pp. 32–36, 43. 456:developed a key principle of sample illumination, 1525:. Oxford : Oxford University Press. p. 110. 1297:Murphy, Douglas B.; Davidson, Michael W. (2011). 1053:The two major types of electron microscopes are 1007:(CCD) technology, depending on the application. 303:) dates back to the widespread use of lenses in 1804:Modern developments in X-ray and neutron optics 740:stimulated emission depletion (STED) microscopy 335:patent in 1608), and claims it was invented by 995:, a type of sensor similar to those used in a 386:Carl Zeiss binocular compound microscope, 1914 323:, including claims it was invented in 1590 by 2971: 2811:Interference reflection microscopy (IRM/RICM) 2702: 2346: 2049: 1150:Fluorescence interference contrast microscopy 355: 183: 'to look (at); examine, inspect') is a 8: 2027:Exploring the World of Optics and Microscopy 734:analysis of fluorescently labelled samples. 726:Microscopy § Sub-diffraction techniques 510:to generate an image. The German physicist, 92: 3931:Nuclear magnetic resonance (NMR) instrument 4158: 4145: 4134: 3966: 3953: 3786: 3773: 3446: 3433: 3005: 2994: 2978: 2964: 2956: 2709: 2695: 2687: 2353: 2339: 2331: 2056: 2042: 2034: 1920: 1918: 1727:Molecular Biology of the Cell. 4th Edition 1516: 1514: 98: 1898: 1621: 1486: 1484: 1301:(2nd ed.). Oxford: Wiley-Blackwell. 1198:. Hoboken, NJ: Wiley-Interscience. 2008. 1196:Characterization and Analysis of Polymers 78:Learn how and when to remove this message 4296:Instruments used in medical laboratories 2781:Differential interference contrast (DIC) 1950:Sakurai, T.; Watanabe, Y., eds. (2000). 1292: 1290: 777: 692:. The principle was patented in 1957 by 3812:Inductively coupled plasma (ICP) device 2020:Nikon MicroscopyU, tutorials from Nikon 1976:"Quantum Microscope for Living Biology" 1797: 1795: 1187: 1086:near-field scanning optical microscopes 1030:Modern transmission electron microscope 833:in these microscopes is limited by the 3860:Transmission electron microscope (TEM) 2776:Quantitative phase-contrast microscopy 2605:Analytical and Bioanalytical Chemistry 2131:Typical atomic force microscopy set-up 1127:microscopes can optionally be used as 964:illumination technique in which small 916:near-field scanning optical microscope 845:electron microscopes described above. 91: 2393:High-performance liquid chromatograph 1952:Advances in scanning probe microscopy 1716: 1714: 1712: 1710: 1708: 1706: 1704: 1684: 1682: 1680: 1678: 1676: 1674: 1672: 1670: 1668: 1666: 661:era, many techniques for fluorescent 7: 2938: 2903:Stimulated emission depletion (STED) 2645: 1647:Roadmap of Scanning Probe Microscopy 681:, and fluorescent proteins, such as 2669: 1927:Springer handbook of nanotechnology 1776:"The Nobel Prize in Chemistry 2014" 1695:Molecular Cell Biology. 4th Edition 514:, working with electrical engineer 494:Electron microscope constructed by 362:in 1625 (Galileo had called it the 3855:Scanning electron microscope (SEM) 1691:"Microscopy and Cell Architecture" 710:confocal laser scanning microscope 470:differential interference contrast 390:The first detailed account of the 284:18th-century microscopes from the 14: 2875:Lightsheet microscopy (LSFM/SPIM) 1571:Zeitschrift für Technische Physik 1055:transmission electron microscopes 276:Optical microscope § History 272:Timeline of microscope technology 3900:Thermogravimetric analyzer (TGA) 3710:Nuclear magnetic resonance (NMR) 2937: 2926: 2925: 2824: 2668: 2656: 2644: 2633: 2632: 520:transmission electron microscope 378:Rise of modern light microscopes 252:transmission electron microscope 36: 2238:Scanning quantum dot microscopy 886:glass (occasionally plastic or 2880:Lattice light-sheet microscopy 2791:Second harmonic imaging (SHIM) 2378:Atomic absorption spectrometer 2193:Photothermal microspectroscopy 2005:Milestones in Light Microscopy 1367:"Who Invented the Microscope?" 1090:scanning tunneling microscopes 708:developed the first practical 1: 2025:Molecular Expressions : 1925:Bhushan, Bharat, ed. (2010). 1594:Clinical Microbiology Reviews 1155:Laser capture microdissection 1109:Scanning acoustic microscopes 1059:scanning electron microscopes 574:First atomic force microscope 53:secondary or tertiary sources 1342:The Origins of the Telescope 1262:The history of the telescope 904:scanning confocal microscopy 716:Super resolution microscopes 550:Cambridge Instrument Company 527:scanning electron microscope 256:scanning electron microscope 2383:Flame emission spectrometer 2176:Near-field scanning optical 2146:Ballistic electron emission 2029:, Florida State University. 1546:Liz Logan (27 April 2016). 1322:Sir Norman Lockyer (1876). 1175:Royal Microscopical Society 1170:Multifocal plane microscopy 1160:Microscope image processing 722:Super-resolution microscopy 594:, Switzerland to study the 331:(who applied for the first 25:Microscope (disambiguation) 4346: 2274:Scanning probe lithography 2014:FAQ on Optical Microscopes 1394:Eric Jorink (2010-10-25). 1072: 1046: 852: 805:for light microscopes and 750: 719: 626: 563: 560:Scanning probe microscopes 540:. Ernst Ruska, working at 483: 311:near the specimen with an 269: 260:scanning probe microscopes 169: 166: 'small' and 152: 18: 4293: 4161: 4144: 4133: 4055:Time-domain reflectometer 3965: 3952: 3822:Liquid chromatograph (LC) 3785: 3772: 3445: 3432: 3004: 2993: 2921: 2822: 2724: 2628: 2459:Ion mobility spectrometry 2449:Electroanalytical methods 2284:Feature-oriented scanning 2248:Scanning SQUID microscopy 2243:Scanning SQUID microscope 2124: 2065:Scanning probe microscopy 1075:Scanning probe microscopy 958:Phase-contrast microscopy 760:micro-computed tomography 683:green fluorescent protein 600:scanning probe microscope 566:scanning probe microscope 556:way to detect pathogens. 356: 286:Musée des Arts et Métiers 97: 60:primary research articles 2228:Scanning joule expansion 2223:Scanning ion-conductance 2208:Scanning electrochemical 2171:Magnetic resonance force 1082:atomic force microscopes 1063:basic optical microscopy 623:Fluorescence microscopes 215:through a sample in its 110:Small sample observation 45:This scientific article 3890:Melting-point apparatus 3271:Cryogenic storage dewar 2841:Fluorescence microscopy 2801:Structured illumination 2756:Bright-field microscopy 2619:Analytical Biochemistry 2408:Melting point apparatus 2279:Dip-pen nanolithography 2016:(archived 4 April 2009) 1900:10.1364/OPTICA.2.001049 1521:Wootton, David (2006). 1504:Encyclopædia Britannica 940:fluorescence microscopy 878:containing one or more 794:(optical microscopes), 736:Structured illumination 651:fluorescence microscopy 629:fluorescence microscope 614:atomic force microscope 609:Murray Hill, New Jersey 452:light sources. In 1893 426:Antonie van Leeuwenhoek 409:, called the father of 258:) and various types of 244:fluorescence microscope 4330:Scientific instruments 4315:Microbiology equipment 3827:Mass spectrometer (MS) 3817:Gas chromatograph (GC) 2913:Near-field (NSOM/SNOM) 2851:Multiphoton microscopy 2598:Analytica Chimica Acta 2132: 1645:Morita, Seizo (2007). 1100: 1044: 1031: 954: 783: 775: 646: 575: 499: 387: 292: 238:that passed through a 23:. For other uses, see 4202:Acid-resistant gloves 3883:differential scanning 2766:Dark-field microscopy 2490:Coning and quartering 2398:Infrared spectrometer 2233:Scanning Kelvin probe 2130: 1491:Henker, Otto (1911). 1467:. New York: Harmony. 1098: 1042: 1029: 1005:charge-coupled device 952: 894:of around 0.250  781: 773: 644: 573: 552:as the "Stereoscan". 493: 385: 283: 270:Further information: 185:laboratory instrument 16:Scientific instrument 3779:Analytical chemistry 3281:Laminar flow cabinet 2987:Laboratory equipment 2834:Fluorescence methods 2612:Analytical Chemistry 2454:Gravimetric analysis 2418:Optical spectrometer 2362:Analytical chemistry 2320:Vibrational analysis 2203:Scanning capacitance 1954:. Berlin: Springer. 1806:. Berlin: Springer. 1606:10.1128/cmr.00027-09 827:electron microscopes 480:Electron microscopes 396:L'occhio della mosca 358:Accademia dei Lincei 4151:Personal protective 3060:Meker–Fisher burner 2865:Image deconvolution 2846:Confocal microscopy 2786:Dispersion staining 2761:Köhler illumination 2218:Scanning Hall probe 2198:Piezoresponse force 2156:Electrostatic force 1891:2015Optic...2.1049A 1375:. 14 September 2013 1049:Electron microscope 1035:Electron microscope 962:optical microscopic 819:optical microscopes 690:confocal microscope 637:confocal microscope 486:electron microscope 458:Köhler illumination 392:microscopic anatomy 248:electron microscope 134:electron microscope 115:Notable experiments 94: 3994:Function generator 3977:Bench power supply 3916:Analytical balance 3677:Ostwald viscometer 3672:Graduated cylinder 3411:Inoculation needle 2737:Optical microscopy 2718:Optical microscopy 2525:Separation process 2520:Sample preparation 2161:Kelvin probe force 2133: 2106:Scanning tunneling 1780:www.nobelprize.org 1748:www.nobelprize.org 1494:"Microscope"  1129:optical microscope 1101: 1045: 1032: 989:digital microscope 955: 869:optical microscope 859:Digital microscope 855:Optical microscope 849:Optical microscope 784: 776: 679:immunofluorescence 647: 633:immunofluorescence 596:quantum tunnelling 578:From 1981 to 1983 576: 500: 388: 301:magnifying glasses 293: 225:optical microscope 130:Optical microscope 21:Optical microscope 4302: 4301: 4289: 4288: 4285: 4284: 4262:Fire extinguisher 4252:Biosafety cabinet 4240: 4239: 4129: 4128: 4125: 4124: 4060:Transistor tester 4050:Spectrum analyzer 3948: 3947: 3944: 3943: 3768: 3767: 3764: 3763: 3640:Measuring devices 3462:Soxhlet extractor 3428: 3427: 3424: 3423: 3376:Spectrophotometer 3371:Pipeclay triangle 3123:Mortar and pestle 2953: 2952: 2898:Diffraction limit 2684: 2683: 2566:Standard addition 2561:Internal standard 2551:Calibration curve 2464:Mass spectrometry 2423:Spectrophotometer 2403:Mass spectrometer 2388:Gas chromatograph 2328: 2327: 2009:Nature Publishing 1982:. 4 February 2013 1961:978-3-642-56949-4 1936:978-3-642-02525-9 1848:10.1557/mrs2006.4 1813:978-3-540-74561-7 1802:Erko, A. (2008). 1656:978-3-540-34315-8 1550:. Smithsonian.com 1532:978-0-19-280355-9 1474:978-0-224-05044-9 1407:978-90-04-18671-2 1352:978-90-6984-615-6 1308:978-0-471-69214-0 1274:978-0-486-43265-6 1205:978-0-470-23300-9 1016:entangled photons 747:X-ray microscopes 407:Marcello Malpighi 325:Zacharias Janssen 139: 138: 88: 87: 80: 47:needs additional 4337: 4159: 4146: 4135: 4040:Network analyzer 3967: 3954: 3787: 3774: 3447: 3434: 3416:Inoculation loop 3286:Microtiter plate 3226:Test tube holder 3118:Magnetic stirrer 3006: 2995: 2980: 2973: 2966: 2957: 2941: 2940: 2929: 2928: 2891:limit techniques 2828: 2749:contrast methods 2747:Illumination and 2711: 2704: 2697: 2688: 2672: 2671: 2660: 2648: 2647: 2636: 2635: 2571:Isotope dilution 2355: 2348: 2341: 2332: 2289:Millipede memory 2258:Scanning voltage 2253:Scanning thermal 2058: 2051: 2044: 2035: 1992: 1991: 1989: 1987: 1972: 1966: 1965: 1947: 1941: 1940: 1922: 1913: 1912: 1902: 1876: 1866: 1860: 1859: 1833: 1824: 1818: 1817: 1799: 1790: 1789: 1787: 1786: 1772: 1766: 1765: 1763: 1762: 1756: 1750:. Archived from 1745: 1737: 1731: 1730: 1718: 1699: 1698: 1686: 1661: 1660: 1642: 1636: 1635: 1625: 1585: 1579: 1578: 1566: 1560: 1559: 1557: 1555: 1543: 1537: 1536: 1518: 1509: 1508: 1496: 1488: 1479: 1478: 1466: 1456: 1450: 1445: 1439: 1436: 1430: 1427: 1421: 1418: 1412: 1411: 1391: 1385: 1384: 1382: 1380: 1363: 1357: 1356: 1336: 1330: 1329: 1325:Nature Volume 14 1319: 1313: 1312: 1294: 1285: 1282: 1276: 1259: 1253: 1252: 1216: 1210: 1209: 1192: 1165:Microscope slide 892:resolution limit 753:X-ray microscope 706:Christoph Cremer 538:Second World War 474:Georges Nomarski 472:illumination by 361: 360: 350:coined the name 340:Cornelis Drebbel 240:thinly sectioned 221:photon emissions 180: 173: 163: 156: 102: 95: 83: 76: 72: 69: 63: 40: 39: 32: 4345: 4344: 4340: 4339: 4338: 4336: 4335: 4334: 4305: 4304: 4303: 4298: 4281: 4277:Solvent cabinet 4236: 4207:Eyewash station 4190: 4155: 4153:equipment (PPE) 4152: 4140: 4121: 4100: 4069: 4013: 4004:Pulse generator 3970:Control devices 3961: 3940: 3904: 3870:Thermochemistry 3864: 3841: 3781: 3760: 3729: 3686: 3652:Conical measure 3635: 3604: 3541: 3510: 3487: 3471: 3441: 3420: 3401:Test tube brush 3311: 3296:Picotiter plate 3259: 3245: 3241:Lab drying rack 3200:Extension clamp 3176: 3157: 3096: 3082: 3018: 3000: 2989: 2984: 2954: 2949: 2917: 2890: 2889:Sub-diffraction 2884: 2829: 2820: 2748: 2742: 2720: 2715: 2685: 2680: 2624: 2575: 2534: 2478: 2427: 2370:Instrumentation 2364: 2359: 2329: 2324: 2293: 2262: 2188:Photon scanning 2134: 2122: 2111:Electrochemical 2099:Photoconductive 2067: 2062: 2001: 1996: 1995: 1985: 1983: 1974: 1973: 1969: 1962: 1949: 1948: 1944: 1937: 1924: 1923: 1916: 1874: 1868: 1867: 1863: 1831: 1826: 1825: 1821: 1814: 1801: 1800: 1793: 1784: 1782: 1774: 1773: 1769: 1760: 1758: 1754: 1743: 1739: 1738: 1734: 1720: 1719: 1702: 1688: 1687: 1664: 1657: 1644: 1643: 1639: 1587: 1586: 1582: 1568: 1567: 1563: 1553: 1551: 1545: 1544: 1540: 1533: 1520: 1519: 1512: 1490: 1489: 1482: 1475: 1458: 1457: 1453: 1446: 1442: 1437: 1433: 1428: 1424: 1419: 1415: 1408: 1393: 1392: 1388: 1378: 1376: 1365: 1364: 1360: 1353: 1338: 1337: 1333: 1321: 1320: 1316: 1309: 1296: 1295: 1288: 1283: 1279: 1260: 1256: 1218: 1217: 1213: 1206: 1194: 1193: 1189: 1184: 1179: 1145: 1122: 1106: 1077: 1071: 1051: 1037: 1012:photon-counting 984:in live cells. 865: 853:Main articles: 851: 815:electromagnetic 768: 755: 749: 732:superresolution 728: 720:Main articles: 718: 639: 625: 584:Heinrich Rohrer 568: 562: 488: 482: 434:red blood cells 380: 366:'little eye'). 344:Galileo Galilei 329:Hans Lippershey 278: 268: 219:, by detecting 84: 73: 67: 64: 57: 41: 37: 28: 17: 12: 11: 5: 4343: 4341: 4333: 4332: 4327: 4322: 4317: 4307: 4306: 4300: 4299: 4294: 4291: 4290: 4287: 4286: 4283: 4282: 4280: 4279: 4274: 4272:Safety cabinet 4269: 4264: 4259: 4254: 4248: 4246: 4242: 4241: 4238: 4237: 4235: 4234: 4232:Safety goggles 4229: 4227:Safety glasses 4224: 4222:Nitrile gloves 4219: 4217:Medical gloves 4214: 4209: 4204: 4198: 4196: 4192: 4191: 4189: 4188: 4183: 4178: 4173: 4168: 4162: 4156: 4149: 4142: 4141: 4138: 4131: 4130: 4127: 4126: 4123: 4122: 4120: 4119: 4114: 4112:Alligator clip 4108: 4106: 4102: 4101: 4099: 4098: 4093: 4088: 4086:Soldering iron 4083: 4077: 4075: 4071: 4070: 4068: 4067: 4062: 4057: 4052: 4047: 4042: 4037: 4032: 4030:Logic analyzer 4027: 4021: 4019: 4015: 4014: 4012: 4011: 4006: 4001: 3996: 3991: 3990: 3989: 3987:Voltage source 3984: 3982:Current source 3973: 3971: 3963: 3962: 3957: 3950: 3949: 3946: 3945: 3942: 3941: 3939: 3938: 3933: 3928: 3923: 3921:Colony counter 3918: 3912: 3910: 3906: 3905: 3903: 3902: 3897: 3892: 3887: 3886: 3885: 3874: 3872: 3866: 3865: 3863: 3862: 3857: 3851: 3849: 3843: 3842: 3840: 3839: 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3793: 3791: 3783: 3782: 3777: 3770: 3769: 3766: 3765: 3762: 3761: 3759: 3758: 3753: 3748: 3743: 3737: 3735: 3731: 3730: 3728: 3727: 3722: 3717: 3712: 3707: 3702: 3696: 3694: 3688: 3687: 3685: 3684: 3679: 3674: 3669: 3664: 3659: 3654: 3649: 3643: 3641: 3637: 3636: 3634: 3633: 3628: 3623: 3618: 3612: 3610: 3606: 3605: 3603: 3602: 3597: 3592: 3587: 3582: 3577: 3572: 3567: 3562: 3560:Vacuum (Dewar) 3557: 3551: 3549: 3543: 3542: 3540: 3539: 3534: 3529: 3524: 3518: 3516: 3512: 3511: 3509: 3508: 3503: 3497: 3495: 3489: 3488: 3486: 3485: 3479: 3477: 3473: 3472: 3470: 3469: 3464: 3459: 3453: 3451: 3443: 3442: 3437: 3430: 3429: 3426: 3425: 3422: 3421: 3419: 3418: 3413: 3408: 3403: 3398: 3393: 3388: 3383: 3378: 3373: 3368: 3363: 3358: 3353: 3348: 3343: 3338: 3333: 3330: 3325: 3319: 3317: 3313: 3312: 3310: 3309: 3306: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3268: 3262: 3260: 3258: 3257: 3254: 3250: 3247: 3246: 3244: 3243: 3238: 3233: 3231:Test tube rack 3228: 3223: 3220: 3215: 3212: 3207: 3206:Funnel support 3204: 3201: 3198: 3193: 3188: 3183: 3179: 3177: 3175: 3174: 3171: 3166: 3162: 3159: 3158: 3156: 3155: 3150: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3113:Liquid whistle 3110: 3105: 3099: 3097: 3095: 3094: 3091: 3087: 3084: 3083: 3081: 3080: 3078:Vacuum dry box 3075: 3070: 3065: 3062: 3057: 3052: 3047: 3042: 3040:Heating mantle 3037: 3032: 3027: 3025:Alcohol burner 3021: 3019: 3017: 3016: 3013: 3009: 3002: 3001: 2998: 2991: 2990: 2985: 2983: 2982: 2975: 2968: 2960: 2951: 2950: 2948: 2947: 2935: 2922: 2919: 2918: 2916: 2915: 2910: 2905: 2900: 2894: 2892: 2886: 2885: 2883: 2882: 2877: 2872: 2867: 2862: 2848: 2843: 2837: 2835: 2831: 2830: 2823: 2821: 2819: 2818: 2813: 2808: 2803: 2798: 2796:4Pi microscope 2793: 2788: 2783: 2778: 2773: 2771:Phase contrast 2768: 2763: 2758: 2752: 2750: 2744: 2743: 2741: 2740: 2733: 2725: 2722: 2721: 2716: 2714: 2713: 2706: 2699: 2691: 2682: 2681: 2679: 2678: 2666: 2654: 2642: 2629: 2626: 2625: 2623: 2622: 2615: 2608: 2601: 2594: 2586: 2584: 2577: 2576: 2574: 2573: 2568: 2563: 2558: 2553: 2548: 2542: 2540: 2536: 2535: 2533: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2486: 2484: 2480: 2479: 2477: 2476: 2471: 2466: 2461: 2456: 2451: 2446: 2444:Chromatography 2441: 2435: 2433: 2429: 2428: 2426: 2425: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2374: 2372: 2366: 2365: 2360: 2358: 2357: 2350: 2343: 2335: 2326: 2325: 2323: 2322: 2317: 2312: 2307: 2305:Nanotechnology 2301: 2299: 2295: 2294: 2292: 2291: 2286: 2281: 2276: 2270: 2268: 2264: 2263: 2261: 2260: 2255: 2250: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2210: 2205: 2200: 2195: 2190: 2185: 2184: 2183: 2173: 2168: 2166:Magnetic force 2163: 2158: 2153: 2151:Chemical force 2148: 2142: 2140: 2136: 2135: 2125: 2123: 2121: 2120: 2119: 2118: 2116:Spin polarized 2113: 2103: 2102: 2101: 2096: 2091: 2086: 2075: 2073: 2069: 2068: 2063: 2061: 2060: 2053: 2046: 2038: 2032: 2031: 2022: 2017: 2011: 2000: 1999:External links 1997: 1994: 1993: 1967: 1960: 1942: 1935: 1914: 1861: 1819: 1812: 1791: 1767: 1732: 1700: 1662: 1655: 1637: 1600:(4): 552–563. 1580: 1561: 1538: 1531: 1510: 1499:Chisholm, Hugh 1480: 1473: 1451: 1440: 1431: 1422: 1413: 1406: 1386: 1358: 1351: 1331: 1314: 1307: 1286: 1277: 1254: 1211: 1204: 1186: 1185: 1183: 1180: 1178: 1177: 1172: 1167: 1162: 1157: 1152: 1146: 1144: 1141: 1121: 1118: 1105: 1102: 1073:Main article: 1070: 1069:Scanning probe 1067: 1047:Main article: 1036: 1033: 997:digital camera 863:USB microscope 850: 847: 767: 764: 751:Main article: 748: 745: 717: 714: 624: 621: 561: 558: 546:Charles Oatley 481: 478: 462:phase contrast 438:Jan Swammerdam 379: 376: 368:René Descartes 348:Giovanni Faber 309:objective lens 267: 264: 137: 136: 127: 123: 122: 116: 112: 111: 108: 104: 103: 86: 85: 44: 42: 35: 15: 13: 10: 9: 6: 4: 3: 2: 4342: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4312: 4310: 4297: 4292: 4278: 4275: 4273: 4270: 4268: 4265: 4263: 4260: 4258: 4255: 4253: 4250: 4249: 4247: 4243: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4199: 4197: 4193: 4187: 4186:Safety shower 4184: 4182: 4179: 4177: 4174: 4172: 4169: 4167: 4164: 4163: 4160: 4157: 4154: 4147: 4143: 4136: 4132: 4118: 4115: 4113: 4110: 4109: 4107: 4103: 4097: 4096:Wire stripper 4094: 4092: 4089: 4087: 4084: 4082: 4079: 4078: 4076: 4072: 4066: 4063: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4022: 4020: 4016: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3988: 3985: 3983: 3980: 3979: 3978: 3975: 3974: 3972: 3968: 3964: 3960: 3955: 3951: 3937: 3934: 3932: 3929: 3927: 3926:Spiral plater 3924: 3922: 3919: 3917: 3914: 3913: 3911: 3907: 3901: 3898: 3896: 3893: 3891: 3888: 3884: 3881: 3880: 3879: 3876: 3875: 3873: 3871: 3867: 3861: 3858: 3856: 3853: 3852: 3850: 3848: 3844: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3794: 3792: 3790:Compositional 3788: 3784: 3780: 3775: 3771: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3738: 3736: 3732: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3697: 3695: 3693: 3689: 3683: 3680: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3648: 3645: 3644: 3642: 3638: 3632: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3613: 3611: 3607: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3583: 3581: 3578: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3552: 3550: 3548: 3544: 3538: 3535: 3533: 3530: 3528: 3525: 3523: 3520: 3519: 3517: 3513: 3507: 3504: 3502: 3499: 3498: 3496: 3494: 3490: 3484: 3481: 3480: 3478: 3474: 3468: 3465: 3463: 3460: 3458: 3455: 3454: 3452: 3448: 3444: 3440: 3435: 3431: 3417: 3414: 3412: 3409: 3407: 3404: 3402: 3399: 3397: 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3347: 3344: 3342: 3339: 3337: 3334: 3332:Balance brush 3331: 3329: 3326: 3324: 3321: 3320: 3318: 3314: 3308:Weighing dish 3307: 3305:Weighing boat 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3263: 3261: 3255: 3252: 3251: 3248: 3242: 3239: 3237: 3234: 3232: 3229: 3227: 3224: 3221: 3219: 3216: 3213: 3211: 3208: 3205: 3202: 3199: 3197: 3196:Burette clamp 3194: 3192: 3189: 3187: 3184: 3181: 3180: 3178: 3172: 3170: 3167: 3164: 3163: 3160: 3154: 3151: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3100: 3098: 3092: 3089: 3088: 3085: 3079: 3076: 3074: 3071: 3069: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3030:Bunsen burner 3028: 3026: 3023: 3022: 3020: 3014: 3011: 3010: 3007: 3003: 2996: 2992: 2988: 2981: 2976: 2974: 2969: 2967: 2962: 2961: 2958: 2946: 2945: 2936: 2934: 2933: 2924: 2923: 2920: 2914: 2911: 2909: 2906: 2904: 2901: 2899: 2896: 2895: 2893: 2887: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2860: 2856: 2852: 2849: 2847: 2844: 2842: 2839: 2838: 2836: 2832: 2827: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2753: 2751: 2745: 2739: 2738: 2734: 2732: 2731: 2727: 2726: 2723: 2719: 2712: 2707: 2705: 2700: 2698: 2693: 2692: 2689: 2677: 2676: 2667: 2665: 2664: 2659: 2655: 2653: 2652: 2643: 2641: 2640: 2631: 2630: 2627: 2621: 2620: 2616: 2614: 2613: 2609: 2607: 2606: 2602: 2600: 2599: 2595: 2593: 2592: 2588: 2587: 2585: 2583: 2578: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2556:Matrix effect 2554: 2552: 2549: 2547: 2544: 2543: 2541: 2537: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2515:Pulverization 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2487: 2485: 2481: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2436: 2434: 2430: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2375: 2373: 2371: 2367: 2363: 2356: 2351: 2349: 2344: 2342: 2337: 2336: 2333: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2302: 2300: 2296: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2271: 2269: 2265: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2213:Scanning gate 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2182: 2179: 2178: 2177: 2174: 2172: 2169: 2167: 2164: 2162: 2159: 2157: 2154: 2152: 2149: 2147: 2144: 2143: 2141: 2137: 2129: 2117: 2114: 2112: 2109: 2108: 2107: 2104: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2082: 2081: 2080: 2077: 2076: 2074: 2070: 2066: 2059: 2054: 2052: 2047: 2045: 2040: 2039: 2036: 2030: 2028: 2023: 2021: 2018: 2015: 2012: 2010: 2006: 2003: 2002: 1998: 1981: 1980:Science Daily 1977: 1971: 1968: 1963: 1957: 1953: 1946: 1943: 1938: 1932: 1928: 1921: 1919: 1915: 1910: 1906: 1901: 1896: 1892: 1888: 1884: 1880: 1873: 1865: 1862: 1857: 1853: 1849: 1845: 1841: 1837: 1830: 1823: 1820: 1815: 1809: 1805: 1798: 1796: 1792: 1781: 1777: 1771: 1768: 1757:on 2018-03-20 1753: 1749: 1742: 1736: 1733: 1728: 1724: 1717: 1715: 1713: 1711: 1709: 1707: 1705: 1701: 1696: 1692: 1685: 1683: 1681: 1679: 1677: 1675: 1673: 1671: 1669: 1667: 1663: 1658: 1652: 1648: 1641: 1638: 1633: 1629: 1624: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1584: 1581: 1576: 1572: 1565: 1562: 1549: 1542: 1539: 1534: 1528: 1524: 1517: 1515: 1511: 1506: 1505: 1500: 1495: 1487: 1485: 1481: 1476: 1470: 1465: 1464: 1455: 1452: 1449: 1444: 1441: 1435: 1432: 1426: 1423: 1417: 1414: 1409: 1403: 1399: 1398: 1390: 1387: 1374: 1373: 1368: 1362: 1359: 1354: 1348: 1344: 1343: 1335: 1332: 1327: 1326: 1318: 1315: 1310: 1304: 1300: 1293: 1291: 1287: 1281: 1278: 1275: 1271: 1270:0-486-43265-3 1267: 1263: 1258: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1212: 1207: 1201: 1197: 1191: 1188: 1181: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1147: 1142: 1140: 1138: 1134: 1130: 1126: 1119: 1117: 1114: 1110: 1103: 1097: 1093: 1091: 1087: 1083: 1076: 1068: 1066: 1064: 1060: 1056: 1050: 1041: 1034: 1028: 1024: 1021: 1020:ghost imaging 1017: 1013: 1008: 1006: 1002: 998: 994: 990: 985: 983: 979: 975: 971: 967: 963: 959: 951: 947: 945: 941: 936: 934: 933:Near infrared 930: 926: 923: 919: 917: 913: 909: 905: 901: 897: 893: 889: 885: 881: 877: 874: 871:. This is an 870: 864: 860: 856: 848: 846: 842: 838: 836: 832: 828: 824: 820: 816: 812: 808: 807:electromagnet 804: 799: 797: 793: 789: 780: 772: 765: 763: 761: 754: 746: 744: 741: 737: 733: 727: 723: 715: 713: 711: 707: 703: 699: 695: 694:Marvin Minsky 691: 686: 684: 680: 676: 672: 668: 664: 660: 656: 652: 643: 638: 634: 630: 622: 620: 617: 615: 610: 606: 605:Jerry Tersoff 601: 597: 593: 589: 585: 581: 572: 567: 559: 557: 553: 551: 547: 543: 539: 534: 532: 528: 523: 521: 517: 513: 509: 505: 497: 492: 487: 479: 477: 475: 471: 468:in 1953, and 467: 466:Frits Zernike 463: 459: 455: 454:August Köhler 450: 445: 443: 439: 435: 431: 427: 422: 421: 416: 412: 408: 403: 401: 400:The Fly's Eye 397: 393: 384: 377: 375: 373: 369: 365: 359: 353: 349: 345: 341: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 291: 287: 282: 277: 273: 265: 263: 261: 257: 253: 249: 245: 241: 237: 236:visible light 234: 230: 227:, which uses 226: 222: 218: 214: 210: 204: 202: 198: 194: 190: 186: 182: 179: 172: 168: 165: 162: 155: 151: 148: 147:Ancient Greek 144: 135: 131: 128: 126:Related items 124: 121: 118:Discovery of 117: 113: 109: 105: 101: 96: 90: 82: 79: 71: 61: 55: 54: 50: 43: 34: 33: 30: 26: 22: 4257:Fire blanket 4195:Eye and hand 4181:Rubber apron 4045:Oscilloscope 4009:Potentiostat 3936:Plate reader 3832:pH indicator 3802:CHN analyzer 3797:AutoAnalyzer 3590:Round-bottom 3483:Boston round 3365: 3346:Filter paper 3301:Refrigerator 3218:Retort stand 3186:Clamp holder 3182:Beaker clamp 3148:Vortex mixer 3143:Stirring rod 3138:Static mixer 3068:Teclu burner 2942: 2930: 2859:Three-photon 2735: 2729: 2728: 2673: 2661: 2649: 2637: 2617: 2610: 2603: 2596: 2589: 2582:publications 2546:Chemometrics 2530:Sub-sampling 2469:Spectroscopy 2412: 2309: 2267:Applications 2079:Atomic force 2026: 2008: 1984:. Retrieved 1979: 1970: 1951: 1945: 1926: 1885:(12): 1049. 1882: 1878: 1864: 1839: 1836:MRS Bulletin 1835: 1822: 1803: 1783:. Retrieved 1779: 1770: 1759:. Retrieved 1752:the original 1747: 1735: 1726: 1694: 1646: 1640: 1597: 1593: 1583: 1574: 1570: 1564: 1552:. Retrieved 1541: 1522: 1502: 1462: 1454: 1443: 1434: 1425: 1416: 1396: 1389: 1377:. Retrieved 1372:Live Science 1370: 1361: 1341: 1334: 1324: 1317: 1298: 1280: 1261: 1257: 1227:(2): 78–84. 1224: 1220: 1214: 1195: 1190: 1123: 1107: 1078: 1052: 1009: 986: 966:phase shifts 956: 937: 927: 920: 898:or 250  866: 843: 839: 800: 785: 756: 729: 687: 648: 618: 577: 554: 535: 524: 506:rather than 501: 446: 420:Micrographia 418: 415:Robert Hooke 404: 399: 395: 389: 371: 363: 351: 294: 217:optical path 205: 177: 174: 167: 160: 157: 150: 142: 140: 89: 74: 65: 46: 29: 4320:Microscopes 4245:Other items 4171:Face shield 4018:Measurement 3999:Galvanostat 3959:Electronics 3909:Other items 3895:Thermometer 3878:Calorimeter 3807:Colorimeter 3751:Gas syringe 3734:Other items 3662:Eye dropper 3537:Watch glass 3522:Evaporating 3501:Cold finger 3316:Other items 3222:Screw clamp 3214:Pinch clamp 3203:Flask clamp 3153:Wash bottle 3108:Homogenizer 2675:WikiProject 2539:Calibration 2500:Dissolution 2439:Calorimetry 2094:Non-contact 1137:camera lens 1120:Mobile apps 1104:Other types 1057:(TEMs) and 929:Ultraviolet 912:diffraction 908:Vertico SMI 896:micrometres 696:, although 580:Gerd Binnig 512:Ernst Ruska 496:Ernst Ruska 442:spermatozoa 321:Netherlands 201:Microscopic 4325:Microscopy 4309:Categories 4176:Respirator 4117:Test probe 4035:Multimeter 3847:Microscopy 3667:Eudiometer 3631:Separatory 3600:Volumetric 3565:Erlenmeyer 3493:Condensers 3457:Dean–Stark 3406:Wire brush 3366:Microscope 3361:Centrifuge 3336:Cork borer 3291:Petri dish 3266:Agar plate 3253:Containers 3236:Wire gauze 3073:Water bath 3035:Desiccator 2855:Two-photon 2730:Microscope 2580:Prominent 2505:Filtration 2432:Techniques 2413:Microscope 2315:Microscopy 2310:Microscope 2084:Conductive 1986:5 February 1785:2018-03-20 1761:2018-03-20 1577:: 467–475. 1182:References 1125:Mobile app 982:cell cycle 900:nanometres 884:refractive 876:instrument 835:wavelength 831:Resolution 825:beams (in 627:See also: 586:worked at 564:See also: 484:See also: 372:Dioptrique 364:occhiolino 352:microscope 337:expatriate 317:real image 315:to view a 305:eyeglasses 250:(both the 193:Microscopy 145:(from 143:microscope 93:Microscope 68:April 2017 4267:Fume hood 4212:Glove box 4065:Voltmeter 3450:Apparatus 3439:Glassware 3328:Autoclave 3323:Aspirator 3276:Incubator 3210:Iron ring 3133:Sonicator 3103:Chemostat 3045:Hot plate 2474:Titration 2181:Nano-FTIR 1909:2334-2536 1842:: 36–43. 1614:0893-8512 1400:. BRILL. 993:eyepieces 970:amplitude 944:fluoresce 796:electrons 673:to label 531:Max Knoll 516:Max Knoll 504:electrons 449:condensor 430:ball lens 411:histology 333:telescope 213:electrons 189:naked eye 49:citations 4166:Lab coat 4091:Tweezers 4081:Heat gun 3837:pH meter 3746:Bell jar 3626:Dropping 3580:Florence 3570:Fernbach 3532:Syracuse 3391:Scoopula 3341:Crucible 3050:Lab oven 2932:Category 2639:Category 2495:Dilution 2483:Sampling 2298:See also 2089:Infrared 1856:41889433 1632:19822888 1379:31 March 1249:96668398 1143:See also 1139:itself. 978:staining 974:contrast 823:electron 667:cellular 663:staining 313:eyepiece 254:and the 4105:General 4025:Ammeter 3725:Thistle 3682:Pipette 3657:Cuvette 3647:Burette 3616:Büchner 3609:Funnels 3595:Schlenk 3575:Fleaker 3555:Büchner 3476:Bottles 3396:Spatula 3386:Stopper 3356:Forceps 3256:Storage 3173:Holders 3093:Shakers 3064:Striker 3012:Heaters 2999:General 2944:Commons 2651:Commons 2591:Analyst 2510:Masking 1887:Bibcode 1623:2772359 1501:(ed.). 1241:4608700 1084:(AFM), 873:optical 792:photons 659:genomic 655:biology 542:Siemens 498:in 1933 436:(after 266:History 233:refract 197:science 195:is the 4139:Safety 3741:Beaker 3720:Thiele 3705:Cragie 3700:Drying 3621:Hirsch 3585:Retort 3547:Flasks 3515:Dishes 3506:Liebig 3467:Kipp's 3381:Splint 3191:Tripod 3169:Clamps 3165:Stands 3128:Shaker 3090:Mixers 3015:Dryers 2806:Sarfus 2663:Portal 2072:Common 1958:  1933:  1907:  1879:Optica 1854:  1810:  1653:  1630:  1620:  1612:  1554:3 June 1529:  1471:  1404:  1349:  1305:  1268:  1247:  1239:  1202:  960:is an 922:Sarfus 888:quartz 880:lenses 861:, and 803:optics 702:Thomas 635:, and 592:Zürich 440:) and 229:lenses 178:skopéō 171:σκοπέω 161:mikrós 154:μικρός 4074:Tools 3692:Tubes 3527:Petri 2816:Raman 2139:Other 1875:(PDF) 1852:S2CID 1832:(PDF) 1755:(PDF) 1744:(PDF) 1497:. In 1245:S2CID 1237:JSTOR 1133:noise 1113:Sonar 821:) or 788:light 766:Types 698:laser 508:light 398:, or 297:Greek 290:Paris 209:light 149: 120:cells 3756:Vial 3715:Test 3351:File 3055:Kiln 1988:2013 1956:ISBN 1931:ISBN 1905:ISSN 1808:ISBN 1651:ISBN 1628:PMID 1610:ISSN 1556:2016 1527:ISBN 1469:ISBN 1402:ISBN 1381:2017 1347:ISBN 1303:ISBN 1266:ISBN 1221:BIOS 1200:ISBN 1001:CMOS 817:(in 811:wave 724:and 704:and 671:DAPI 582:and 274:and 107:Uses 1895:doi 1844:doi 1618:PMC 1602:doi 1229:doi 1003:or 972:or 938:In 829:). 790:or 675:DNA 665:of 653:in 590:in 588:IBM 529:by 464:by 417:'s 231:to 211:or 51:to 4311:: 2857:, 2007:, 1978:. 1917:^ 1903:. 1893:. 1881:. 1877:. 1850:. 1840:31 1838:. 1834:. 1794:^ 1778:. 1746:. 1725:. 1703:^ 1693:. 1665:^ 1626:. 1616:. 1608:. 1598:22 1596:. 1592:. 1575:16 1573:. 1513:^ 1483:^ 1369:. 1289:^ 1272:, 1243:. 1235:. 1225:75 1223:. 918:. 906:, 857:, 631:, 402:. 288:, 262:. 246:, 191:. 141:A 132:, 2979:e 2972:t 2965:v 2861:) 2853:( 2710:e 2703:t 2696:v 2354:e 2347:t 2340:v 2057:e 2050:t 2043:v 1990:. 1964:. 1939:. 1911:. 1897:: 1889:: 1883:2 1858:. 1846:: 1816:. 1788:. 1764:. 1729:. 1697:. 1659:. 1634:. 1604:: 1558:. 1535:. 1477:. 1410:. 1383:. 1355:. 1328:. 1311:. 1251:. 1231:: 1208:. 370:( 181:) 175:( 164:) 158:( 81:) 75:( 70:) 66:( 56:. 27:.

Index

Optical microscope
Microscope (disambiguation)
citations
secondary or tertiary sources
primary research articles
Learn how and when to remove this message

cells
Optical microscope
electron microscope
Ancient Greek
μικρός
σκοπέω
laboratory instrument
naked eye
Microscopy
science
Microscopic
light
electrons
optical path
photon emissions
optical microscope
lenses
refract
visible light
thinly sectioned
fluorescence microscope
electron microscope
transmission electron microscope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.