Knowledge (XXG)

Magnetic resonance velocimetry

Source đź“ť

28: 160:
of hydrogen protons, the tested applications are limited to water flows. Common fluid mechanical scaling concepts compensate this limitation. To achieve the spatial resolution, single data acquisition steps have to be repeated a great number of times with slight variations. Thus, MRV technology is
156:, no optical access is required. Besides, no particles have to be added to the fluid. Thus, MRV enables to analyze the complete flow field in complex geometries and components. Based on the fact that common MR scanners are designed to detect the 27: 81:
techniques. This means velocities are calculated from phase differences in the image data that has been produced using special gradient techniques. MRV can be applied using common medical MRI scanners. The term
31: 590: 543:
Ku, D.N.; Biancheri, C.L.; Pettigrew, R.I.; Peifer, J.W.; Markou, C.P.; Engels, H. (1990). "Evaluation of magnetic resonance velocimetry for steady flow".
267:
Ku, D.N.; Biancheri, C.L.; Pettigrew, R.I.; Peifer, J.W.; Markou, C.P.; Engels, H. (1990). "Evaluation of magnetic resonance velocimetry for steady flow".
434:
Elkins, C.J.; Markl, M.; Pelc, N.; Eaton, J.K. (2003). "4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows".
304:
Elkins, C.J.; Markl, M.; Pelc, N.; Eaton, J.K. (2003). "4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows".
78: 35: 473:
Elkins, C.; Alley, M.T. (2007). "Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion".
349:
Elkins, C.; Alley, M.T. (2007). "Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion".
545: 269: 625: 514: 396: 54:(lower). Laminar flow is present in the true lumen (closed arrow) and helical flow is present in the false lumen (open arrow). 110: 179: 157: 149: 74: 70: 51: 615: 184: 153: 591:"Velocity and thermometry in technical flows" (Medical Physics Group, Universitätsklinikum Freiburg, Germany) 586:
Group “Magnetic Resonance Imaging for Mechanical Engineering (Technische Universität Darmstadt, Germany)
475: 436: 351: 306: 585: 620: 523: 484: 445: 405: 360: 315: 43: 86:
became current due to the increasing use of MR technology for the measurement of technical flows in
595: 500: 461: 376: 331: 601:"State of the art MRI with accurate diagnosis and the best patient experience at Queen Square" 596:"Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry" 562: 286: 244: 226: 120: 17: 554: 531: 492: 453: 413: 368: 323: 278: 234: 216: 174: 116: 103: 66: 527: 488: 449: 409: 364: 319: 239: 204: 62: 600: 609: 504: 465: 380: 335: 47: 130: 77:
system for the analysis of technical flows. The velocities are usually obtained by
39: 535: 417: 162: 145: 87: 496: 457: 372: 327: 254: 230: 512:
Fukushima, E. (1999). "Nuclear magnetic resonance as a tool to study flow".
394:
Fukushima, E. (1999). "Nuclear magnetic resonance as a tool to study flow".
221: 580: 248: 566: 290: 558: 282: 205:"Magnetic resonance angiography: current status and future directions" 203:
Hartung, Michael P; Grist, Thomas M; François, Christopher J (2011).
26: 126:
Measurement of concentration distributions in mixing processes
98:
In engineering MRV can be applied to the following areas:
32:
Vastly undersampled Isotropic Projection Reconstruction
581:
Professor John Eaton's profile (Stanford University)
102:
Analysis of technical flows in complex geometries (
119:of complex inner flow channels (combined with 8: 209:Journal of Cardiovascular Magnetic Resonance 238: 220: 79:phase contrast magnetic resonance imaging 195: 109:Validation of numerical simulations in 7: 546:Journal of Biomechanical Engineering 270:Journal of Biomechanical Engineering 69:. MRV is based on the phenomenon of 61:is an experimental method to obtain 59:Magnetic resonance velocimetry (MRV) 144:In contrast to other non-invasive 25: 515:Annual Review of Fluid Mechanics 397:Annual Review of Fluid Mechanics 135:Interaction of immiscible fluids 84:magnetic resonance velocimetry 18:Magnetic Resonance Velocimetry 1: 536:10.1146/annurev.fluid.31.1.95 418:10.1146/annurev.fluid.31.1.95 111:computational fluid dynamics 42:of a 56-year-old male with 642: 626:Magnetic resonance imaging 180:Particle image velocimetry 158:nuclear magnetic resonance 140:Advantages and limitations 75:magnetic resonance imaging 71:nuclear magnetic resonance 52:superior mesenteric artery 497:10.1007/s00348-007-0383-2 458:10.1007/s00348-003-0587-z 373:10.1007/s00348-007-0383-2 328:10.1007/s00348-003-0587-z 129:Analysis of flow through 185:Laser Doppler anemometry 113:using 3D velocity fields 222:10.1186/1532-429X-13-19 106:, recirculation zones) 55: 476:Experiments in Fluids 437:Experiments in Fluids 352:Experiments in Fluids 307:Experiments in Fluids 165:or periodical flows. 73:and adapts a medical 30: 528:1999AnRFM..31...95F 489:2007ExFl...43..823E 450:2003ExFl...34..494E 410:1999AnRFM..31...95F 365:2007ExFl...43..823E 320:2003ExFl...34..494E 56: 559:10.1115/1.2891212 283:10.1115/1.2891212 121:rapid prototyping 16:(Redirected from 633: 570: 539: 508: 469: 422: 421: 391: 385: 384: 346: 340: 339: 301: 295: 294: 264: 258: 252: 242: 224: 200: 175:Flow measurement 148:methods such as 117:Iterative design 50:(upper) and the 21: 641: 640: 636: 635: 634: 632: 631: 630: 616:Fluid mechanics 606: 605: 577: 542: 511: 472: 433: 430: 428:Further reading 425: 393: 392: 388: 348: 347: 343: 303: 302: 298: 266: 265: 261: 202: 201: 197: 193: 171: 142: 96: 67:fluid mechanics 63:velocity fields 23: 22: 15: 12: 11: 5: 639: 637: 629: 628: 623: 618: 608: 607: 604: 603: 598: 593: 588: 583: 576: 575:External links 573: 572: 571: 553:(4): 464–472. 540: 509: 483:(6): 823–858. 470: 444:(4): 494–503. 429: 426: 424: 423: 386: 359:(6): 823–858. 341: 314:(4): 494–503. 296: 277:(4): 464–472. 259: 194: 192: 189: 188: 187: 182: 177: 170: 167: 141: 138: 137: 136: 133: 127: 124: 114: 107: 95: 92: 36:Phase Contrast 24: 14: 13: 10: 9: 6: 4: 3: 2: 638: 627: 624: 622: 619: 617: 614: 613: 611: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 578: 574: 568: 564: 560: 556: 552: 548: 547: 541: 537: 533: 529: 525: 521: 517: 516: 510: 506: 502: 498: 494: 490: 486: 482: 478: 477: 471: 467: 463: 459: 455: 451: 447: 443: 439: 438: 432: 431: 427: 419: 415: 411: 407: 403: 399: 398: 390: 387: 382: 378: 374: 370: 366: 362: 358: 354: 353: 345: 342: 337: 333: 329: 325: 321: 317: 313: 309: 308: 300: 297: 292: 288: 284: 280: 276: 272: 271: 263: 260: 256: 250: 246: 241: 236: 232: 228: 223: 218: 214: 210: 206: 199: 196: 190: 186: 183: 181: 178: 176: 173: 172: 168: 166: 164: 159: 155: 151: 147: 139: 134: 132: 128: 125: 122: 118: 115: 112: 108: 105: 101: 100: 99: 93: 91: 89: 85: 80: 76: 72: 68: 64: 60: 53: 49: 48:celiac artery 45: 41: 37: 33: 29: 19: 550: 544: 519: 513: 480: 474: 441: 435: 401: 395: 389: 356: 350: 344: 311: 305: 299: 274: 268: 262: 212: 208: 198: 143: 131:porous media 97: 94:Applications 83: 58: 57: 40:MRI sequence 34:(VIPR) of a 621:Measurement 161:limited to 146:velocimetry 88:engineering 44:dissections 610:Categories 522:: 95–123. 404:: 95–123. 191:References 104:separation 505:121958168 466:119935724 381:121958168 336:119935724 255:CC-BY-2.0 231:1532-429X 215:(1): 19. 249:21388544 169:See also 567:2273875 524:Bibcode 485:Bibcode 446:Bibcode 406:Bibcode 361:Bibcode 316:Bibcode 291:2273875 240:3060856 46:of the 565:  503:  464:  379:  334:  289:  247:  237:  229:  163:steady 501:S2CID 462:S2CID 377:S2CID 332:S2CID 38:(PC) 563:PMID 287:PMID 245:PMID 227:ISSN 555:doi 551:112 532:doi 493:doi 454:doi 414:doi 369:doi 324:doi 279:doi 275:112 235:PMC 217:doi 154:LDA 152:or 150:PIV 65:in 612:: 561:. 549:. 530:. 520:31 518:. 499:. 491:. 481:43 479:. 460:. 452:. 442:34 440:. 412:. 402:31 400:. 375:. 367:. 357:43 355:. 330:. 322:. 312:34 310:. 285:. 273:. 243:. 233:. 225:. 213:13 211:. 207:. 90:. 569:. 557:: 538:. 534:: 526:: 507:. 495:: 487:: 468:. 456:: 448:: 420:. 416:: 408:: 383:. 371:: 363:: 338:. 326:: 318:: 293:. 281:: 257:) 253:( 251:. 219:: 123:) 20:)

Index

Magnetic Resonance Velocimetry

Vastly undersampled Isotropic Projection Reconstruction
Phase Contrast
MRI sequence
dissections
celiac artery
superior mesenteric artery
velocity fields
fluid mechanics
nuclear magnetic resonance
magnetic resonance imaging
phase contrast magnetic resonance imaging
engineering
separation
computational fluid dynamics
Iterative design
rapid prototyping
porous media
velocimetry
PIV
LDA
nuclear magnetic resonance
steady
Flow measurement
Particle image velocimetry
Laser Doppler anemometry
"Magnetic resonance angiography: current status and future directions"
doi
10.1186/1532-429X-13-19

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑