Knowledge (XXG)

Magnetic nanoparticles

Source 📝

613:. Despite research efforts, however, the accumulation of nanoparticles inside of cancer tumors of all types is sub-optimal, even with affinity ligands. Willhelm et al. conducted a broad analysis of nanoparticle delivery to tumors and concluded that the median amount of injected dose reaching a solid tumor is only 0.7%. The challenge of accumulating large amounts of nanoparticles inside of tumors is arguably the biggest obstacle facing nanomedicine in general. While direct injection is used in some cases, intravenous injection is most often preferred to obtain a good distribution of particles throughout the tumor. Magnetic nanoparticles have a distinct advantage in that they can accumulate in desired regions via magnetically guided delivery, although this technique still needs further development to achieve optimal delivery to solid tumors. 280: 365: 790:. In chemistry, a catalyst support is the material, usually a solid with a high surface area, to which a catalyst is affixed. The reactivity of heterogeneous catalysts occurs at the surface atoms. Consequently, great effort is made to maximize the surface area of a catalyst by distributing it over the support. The support may be inert or participate in the catalytic reactions. Typical supports include various kinds of carbon, alumina, and silica. Immobilizing the catalytic center on top of nanoparticles with a large 798: 823: 845: 902:
isolation takes place simply by placing a magnet on the side of the tube and pouring out the liquid. Magnetic beads have also been used in plasmid assembly. Rapid genetic circuit construction has been achieved by the sequential addition of genes onto a growing genetic chain, using nanobeads as an anchor. This method has been shown to be much faster than previous methods, taking less than an hour to create functional multi-gene constructs in vitro.
911:
low amplitude or high frequency oscillations of particles, which assumes linear response of the magnetization to an oscillating magnetic field. Non-equilibrium approaches include the Langevin equation formalism and the Fokker-Planck equation formalism, and these have been developed extensively to model applications such as magnetic nanoparticle hyperthermia, magnetic nanoparticle imaging (MPI), magnetic spectroscopy and biosensing etc.
25: 774:
protein molecule via a single specific amino acid (such as N- or C- termini), thus avoiding reduction in activity due to the free access of the substrate to the active site. Moreover, site-directed immobilization also avoids modifying catalytic residues. One such common method involves using Alkyne-Azide Click chemistry as both groups are absent in proteins.
715:, magnetic nanoparticles have a potential for treatment of contaminated water. In this method, attachment of EDTA-like chelators to carbon coated metal nanomagnets results in a magnetic reagent for the rapid removal of heavy metals from solutions or contaminated water by three orders of magnitude to concentrations as low as micrograms per Litre. 873:
kill cancer cells. Another major potential of magnetic nanoparticles is the ability to combine heat (hyperthermia) and drug release for a cancer treatment. Numerous studies have shown particle constructs that can be loaded with a drug cargo and magnetic nanoparticles. The most prevalent construct is the "Magnetoliposome", which is a
459:) from aqueous Fe/Fe salt solutions by the addition of a base under inert atmosphere at room temperature or at elevated temperature. The size, shape, and composition of the magnetic nanoparticles very much depends on the type of salts used (e.g.chlorides, sulfates, nitrates), the Fe/Fe ratio, the reaction 747:
and handled by a magnetic field or by modifying an electrode surface enhancing its conductivity and the affinity with the analyte. Coated-magnetic nanoparticles have a key aspect in electrochemical sensing not only because it facilitates the collecting of analyte but also it allows MNPs to be part of
250:
which prevents self agglomeration since they exhibit their magnetic behavior only when an external magnetic field is applied. The magnetic moment of ferrite nanoparticles can be greatly increased by controlled clustering of a number of individual superparamagnetic nanoparticles into superparamagnetic
472:
continuous and large–scale co–precipitation of magnetic particles by rapid mixing. Recently, the growth rate of the magnetic nanoparticles was measured in real-time during the precipitation of magnetite nanoparticles by an integrated AC magnetic susceptometer within the mixing zone of the reactants.
872:
In magnetic fluid hyperthermia, nanoparticles of different types like Iron oxide, magnetite, maghemite or even gold are injected in tumor and then subjected under a high frequency magnetic field. These nanoparticles produce heat that typically increases tumor temperature to 40-46 °C, which can
376:
The metallic core of magnetic nanoparticles may be passivated by gentle oxidation, surfactants, polymers and precious metals. In an oxygen environment, Co nanoparticles form an anti-ferromagnetic CoO layer on the surface of the Co nanoparticle. Recently, work has explored the synthesis and exchange
910:
There are a variety of mathematical models to describe the dynamics of the rotations of magnetic nanoparticles. Simple models include the Langevin function and the Stoner-Wohlfarth model which describe the magnetization of a nanoparticle at equilibrium. The Debye/Rosenszweig model can be used for
773:
Enzymes immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, result in a heterogeneous protein population with reduced activity due to restriction of substrate access to the active site. Methods based on chemical modifications are now available where MNP can be linked to a
756:
Enzymes, proteins, and other biologically and chemically active substances have been immobilized on magnetic nanoparticles. The immobilization of enzymes on inexpensive, non-toxic and easily synthesized iron magnetic nanoparticles (MNP) has shown great promise due to more stable proteins, better
471:
of the media, and the mixing rate with the base solution used to provoke the precipitation. The co-precipitation approach has been used extensively to produce ferrite nanoparticles of controlled sizes and magnetic properties. A variety of experimental arrangements have been reported to facilitate
681:
Other diagnostic uses can be achieved by conjugation of the nanoparticles with oligonucleotides that can either be complementary to a DNA or RNA sequence of interest to detect them, such as pathogenic DNA or products of DNA amplification reactions in the presence of pathogenic DNA, or an aptamer
3703:
Ernst, Constanze; Bartel, Alexander; Elferink, Johannes Wilhelmus; Huhn, Jennifer; Eschbach, Erik; Schönfeld, Kirsten; Feßler, Andrea T.; Oberheitmann, Boris; Schwarz, Stefan (2019). "Improved DNA extraction and purification with magnetic nanoparticles for the detection of methicillin-resistant
892:
A promising candidate for high-density storage is the face-centered tetragonal phase FePt alloy. Grain sizes can be as small as 3 nanometers. If it's possible to modify the MNPs at this small scale, the information density that can be achieved with this media could easily surpass 1 Terabyte per
901:
Magnetic nanoparticles can be used for a variety of genetics applications. One application is the rapid isolation of DNA and mRNA. In one application, the magnetic bead is attached to a poly T tail. When mixed with mRNA, the poly A tail of the mRNA will attach to the bead's poly T tail and the
877:
with magnetic nanoparticles typically embedded in the lipid bilayer. Under an alternating magnetic field, the magnetic nanoparticles are heated, and this heat permeabilizes the membrane. This causes release of the loaded drug. This treatment option has a lot of potential as the combination of
584:
in which an alternating magnetic field (AMF) is used to heat the nanoparticles. To achieve sufficient magnetic nanoparticle heating, the AMF typically has a frequency between 100–500 kHz, although significant research has been done at lower frequencies as well as frequencies as high as
620:
Magnetic nanoparticles can be used for the detection of cancer. Blood can be inserted onto a microfluidic chip with magnetic nanoparticles in it. These magnetic nanoparticles are trapped inside due to an externally applied magnetic field as the blood is free to flow through. The magnetic
156:
are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into
748:
the sensor transduction mechanism. For the manipulation of MNPs in electrochemical sensing has been used magnetic electrode shafts or disposable screen-printed electrodes integrating permanent bonded magnets, aiming to replace magnetic supports or any external magnetic field.
543: 616:
Another potential treatment of cancer includes attaching magnetic nanoparticles to free-floating cancer cells, allowing them to be captured and carried out of the body. The treatment has been tested in the laboratory on mice and will be looked at in survival studies.
3160:
Siddiqui KS, Shemsi AM, Guerriero G, Najnin T, Taha, Ertan H, 2017. Biotechnological improvements of cold-adapted enzymes: commercialization via an integrated approach. In: Margesin, Rosa (Ed.), Psychrophiles: From Biodiversity to Biotechnology, Springer-Verlag, pp.
702:
is then detected by a magnetic reader (magnetometer) which measures the magnetic field change induced by the beads. The signal measured by the magnetometer is proportional to the analyte (virus, toxin, bacteria, cardiac marker, etc.) quantity in the initial sample.
528: 604:
etc. can be attached to the magnetic nanoparticle surface with the use of various chemistries. This enables targeting of magnetic nanoparticles to specific tissues or cells. This strategy is used in cancer research to target and treat tumors in combination with
290:
The surface of a maghemite or magnetite magnetic nanoparticle is relatively inert and does not usually allow strong covalent bonds with functionalization molecules. However, the reactivity of the magnetic nanoparticles can be improved by coating a layer of
3383:
A. Schätz, Alexander; R. N. Grass; Q. Kainz; W. J. Stark; O. Reiser (2010). "Cu(II)−Azabis(oxazoline) Complexes Immobilized on Magnetic Co/C Nanoparticles: Kinetic Resolution of 1,2-Diphenylethane-1,2-diol under Batch and Continuous-Flow Conditions".
310:
Ferrite nanoparticle clusters with narrow size distribution consisting of superparamagnetic oxide nanoparticles (~ 80 maghemite superparamagnetic nanoparticles per bead) coated with a silica shell have several advantages over metallic nanoparticles:
347:) would be beneficial for biomedical applications. This also implies that for the same moment, metallic nanoparticles can be made smaller than their oxide counterparts. On the other hand, metallic nanoparticles have the great disadvantage of being 697:
as labels in lieu of conventional, enzymes, radioisotopes or fluorescent moieties. This assay involves the specific binding of an antibody to its antigen, where a magnetic label is conjugated to one element of the pair. The presence of
3240:
Shemsi, AM, Khanday F, Qureshi AH, Khalil A, Guerriero G, *Siddiqui KS (2019). Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol. Adv.
355:
to various degrees. This makes their handling difficult and enables unwanted side reactions which makes them less appropriate for biomedical applications. Colloid formation for metallic particles is also much more challenging.
2189:
S. Ayyappan; S. Mahadevan; P. Chandramohan; M. P.Srinivasan; John Philip; Baldev Raj (2010). "Influence of Co2 Ion Concentration on the Size, Magnetic Properties, and Purity of CoFe2O4 Spinel Ferrite Nanoparticles".
2222: 967:
Tadic, Marin; Kralj, Slavko; Jagodic, Marko; Hanzel, Darko; Makovec, Darko (December 2014). "Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment".
3622:
Heydari, Morteza; Javidi, Mehrdad; Attar, Mohammad Mahdi; Karimi, Alireza; Navidbakhsh, Mahdi; Haghpanahi, Mohammad; Amanpour, Saeid (2015). "Magnetic Fluid Hyperthermia in a Cylindrical Gel Contains Water Flow".
621:
nanoparticles are coated with antibodies targeting cancer cells or proteins. The magnetic nanoparticles can be recovered and the attached cancer-associated molecules can be assayed to test for their existence.
764:
This technology is potentially relevant to cellular labelling/cell separation, detoxification of biological fluids, tissue repair, drug delivery, magnetic resonance imaging, hyperthermia and magnetofection.
209:
The physical and chemical properties of magnetic nanoparticles largely depend on the synthesis method and chemical structure. In most cases, the particles range from 1 to 100 nm in size and may display
568:
usually applied in chemistry. Furthermore, the magnetic nanoparticles can be guided via a magnetic field to the desired location which could, for example, enable pinpoint precision in fighting cancer.
3446:
Xiaoting Meng, Xiaoting; Hugh C. Seton; Le T. Lu; Ian A. Prior; Nguyen T. K. Thanh; Bing Song (2011). "Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection".
3126:
Huang-Hao Yang, Huang-Hao; Shu-Qiong Zhang; Xiao-Lan Chen; Zhi-Xia Zhuang; Jin-Gou Xu; Xiao-Ru Wang (2004). "Magnetite-Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseparations".
2397:
S S.Rana; J. Philip; B.Raj (2010). "Micelle based synthesis of Cobalt Ferrite nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry".
2313:
Sharifi, Ibrahim; Zamanian, Ali; Behnamghader, Aliasghar (2016-08-15). "Synthesis and characterization of Fe0.6Zn0.4Fe2O4 ferrite magnetic nanoclusters using simple thermal decomposition method".
743:
Magneto-electrochemical assays are based on the use of magnetic nanoparticles in electrochemical sensing either by being distributed through a sample where they can collect and preconcentrate the
1903:
Kralj, Slavko; Rojnik, Matija; Romih, Rok; Jagodič, Marko; Kos, Janko; Makovec, Darko (7 September 2012). "Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles".
1053:
A.-H. Lu; W. Schmidt; N. Matoussevitch; H. Bönnemann; B. Spliethoff; B. Tesche; E. Bill; W. Kiefer; F. Schüth (August 2004). "Nanoengineering of a Magnetically Separable Hydrogenation Catalyst".
561:
A wide variety of potential applications have been envisaged. Since magnetic nanoparticles are expensive to produce, there is interest in their recycling or for highly specialized applications.
2286:
Ström, Valter; Olsson, Richard T.; Rao, K. V. (2010). "Real-time monitoring of the evolution of magnetism during precipitation of superparamagnetic nanoparticles for bioscience applications".
2084:
G.Gnanaprakash; S.Ayyappan; T.Jayakumar; John Philip; Baldev Raj (2006). "A simple method to produce magnetic nanoparticles with enhanced alpha to gamma-Fe2O3 phase transition temperature".
794:
addresses this problem. In the case of magnetic nanoparticles it adds the property of facile a separation. An early example involved a rhodium catalysis attached to magnetic nanoparticles .
1860:
Kralj, Slavko; Drofenik, Miha; Makovec, Darko (16 December 2010). "Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups".
1246:
Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. (July 2006). "Magnetic nanoparticle design for medical applications".
1211:
Kavre, Ivna; Kostevc, Gregor; Kralj, Slavko; Vilfan, Andrej; Babič, Dušan (13 August 2014). "Fabrication of magneto-responsive microgears based on magnetic nanoparticle embedded PDMS".
1825:
Kralj, Slavko; Makovec, Darko; Čampelj, Stanislav; Drofenik, Miha (July 2010). "Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity".
624:
Magnetic nanoparticles can be conjugated with carbohydrates and used for detection of bacteria. Iron oxide particles have been used for the detection of Gram negative bacteria like
3751:
A Elaissari; J Chatterjee; M Hamoudeh; H Fessi (2010). "Chapter 14. Advances in the Preparation and Biomedical Applications of Magnetic Colloids". In Roque Hidalgo-Ålvarez (ed.).
2424:
E. K. Athanassiou, Evagelos K.; R. N. Grass; W. J. Stark (2010). "Chemical Aerosol Engineering as a Novel Tool for Material Science: From Oxides to Salt and Metal Nanoparticles".
2565:
Kralj, Slavko; Rojnik, Matija; Kos, Janko; Makovec, Darko (26 April 2013). "Targeting EGFR-overexpressed A431 cells with EGF-labeled silica-coated magnetic nanoparticles".
2608:
Wilhelm, Stefan; Tavares, Anthony J.; Dai, Qin; Ohta, Seiichi; Audet, Julie; Dvorak, Harold F.; Chan, Warren C. W. (2016). "Analysis of nanoparticle delivery to tumours".
1680:
Philip, V. Mahendran; Felicia, Leona J. (2013). "A Simple, In-Expensive and Ultrasensitive Magnetic Nanofluid Based Sensor for Detection of Cations, Ethanol and Ammonia".
837:
with no remains of the catalyst in the end product. Graphene coated cobalt nanoparticles have been used for that experiment since they exhibit a higher magnetization than
2127:
G. Gnanaprakash; John Philip; T. Jayakumar; Baldev Raj (2007). "Effect of Digestion Time and Alkali Addition Rate on the Physical Properties of Magnetite Nanoparticles".
1949:
R.N. Grass, Robert N.; E.K. Athanassiou; W.J. Stark (2007). "Covalently Functionalized Cobalt Nanoparticles as a Platform for Magnetic Separations in Organic Synthesis".
2643:
Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ (2008). "Magnetic Nanoparticle-Peptide Conjugates for in Vitro and in Vivo Targeting and Extraction of Cancer Cells".
682:
recognizing a molecule of interest. This can lead to detection of pathogens such as virus or bacteria in humans or dangerous chemicals or other substances in the body.
3286:
F. Panahi; F. Bahrami; A. Khalafi-nezhad (2017). "Magnetic nanoparticles grafted l-carnosine dipeptide: remarkable catalytic activity in water at room temperature".
3348:
A. Schätz, Alexander; R. N. Grass; W. J. Stark; O. Reiser (2008). "TEMPO Supported on Magnetic C/Co-Nanoparticles: A Highly Active and Recyclable Organocatalyst".
1369: 2049:
Fang, Mei; Ström, Valter; Olsson, Richard T.; Belova, Lyubov; Rao, K. V. (2011). "Rapid mixing: A route to synthesize magnetite nanoparticles with high moment".
2738: 3625: 1635:
Chaudhary, V.; Chen, X.; Ramanujan, R.V. (February 2019). "Iron and manganese based magnetocaloric materials for near room temperature thermal management".
1018:
Kralj, Slavko; Makovec, Darko (27 October 2015). "Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles".
4192: 757:
product yield, ease of protein purification and multiple usage as a result of their magnetic susceptibility. They are of interest as possible supports for
655: 564:
The potential and versatility of magnetic chemistry arises from the fast and easy separation of the magnetic nanoparticles, eliminating tedious and costly
504:
Using the microemulsion technique, metallic cobalt, cobalt/platinum alloys, and gold-coated cobalt/platinum nanoparticles have been synthesized in reverse
299:
shell can be easily modified with various surface functional groups via covalent bonds between organo-silane molecules and silica shell. In addition, some
2807:
Göransson, Jenny; Zardán Gómez De La Torre, Teresa; Strömberg, Mattias; Russell, Camilla; Svedlindh, Peter; Strømme, Maria; Nilsson, Mats (2010-11-15).
161:. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in 3886:"Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization" 3321:
Tae-Jong Yoon, Tae-Jong; Woo Lee; Yoon-Seuk Oh; Jin-Kyu Lee (2003). "Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling".
377:
bias effect in these Co core CoO shell nanoparticles with a gold outer shell. Nanoparticles with a magnetic core consisting either of elementary
4076:
Zhang, Xiaojuan; Reeves, Daniel B.; Perreard, Irina M.; Kett, Warren C.; Griswold, Karl E.; Gimi, Barjor; Weaver, John B. (15 December 2013).
3801: 3768: 3532:
Javidi, Mehrdad; Heydari, Morteza; Attar, Mohammad Mahdi; Haghpanahi, Mohammad; Karimi, Alireza; Navidbakhsh, Mahdi; Amanpour, Saeid (2014).
2264: 1751:
An-Hui Lu, An-Hui; E. L. Salabas; Ferdi Schüth (2007). "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application".
3952:
Weizenecker, J.; Gleich, B.; Rahmer, J.; Dahnke, H.; Borgert, J. (2009). "Three-dimensional real-time in vivo magnetic particle imaging".
2938:"Magnetic EDTA: Coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water" 2469:"Rapid magnetic heating treatment by highly charged maghemite nanoparticles on Wistar rats exocranial glioma tumors at microliter volume" 152:
component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter (typically 1–100 nanometers), the larger
2358:"A rapid and efficient thermal decomposition approach for the synthesis of manganese-zinc/oleylamine core/shell ferrite nanoparticles" 1984:
Johnson, Stephanie H.; C.L. Johnson; S.J. May; S. Hirsch; M.W. Cole; J.E. Spanier (2010). "Co@CoO@Au core-multi-shell nanocrystals".
1381:
Elliott, Daniel W.; Zhang, Wei-xian (December 2001). "Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment".
89: 1786:
Kim, DK, G.; Mikhaylova, M; et al. (2003). "Anchoring of Phosphonate and Phosphinate Coupling Molecules on Titania Particles".
108: 3206:
Gupta AK, Ajay Kumar; Gupta M (2005). "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications".
2914: 61: 46: 39: 3489:
Sharifi, Ibrahim; Shokrollahi, H.; Amiri, S. (2012-03-01). "Ferrite-based magnetic nanofluids used in hyperthermia applications".
3042:"Magnetic entrapment for fast and sensitive determination of metronidazole with a novel magnet-controlled glassy carbon electrode" 246:) are the most explored magnetic nanoparticles up to date. Once the ferrite particles become smaller than 128 nm they become 283: 3081:"All-screen-printed graphite sensors integrating permanent bonded magnets. Fabrication, characterization and analytical utility" 1716:
A.-H. Lu; E. L. Salabas; F. Schüth (2007). "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application".
1088:
A. K. Gupta; M. Gupta (June 2005). "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications".
3885: 68: 339:
Metallic nanoparticles may be beneficial for some technical applications due to their higher magnetic moment whereas oxides (
2162:
S.Ayyappan, John Philip & Baldev Raj (2009). "Solvent polarity effect on physical properties of CoFe2O3 nanoparticles".
878:
hyperthermia and drug release is likely to treat tumors better than either option alone, but it is still under development.
3583:"Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy" 2936:
F.M. Koehler, Fabian M.; M. Rossier; M. Waelle; E.K. Athanassiou; L.K. Limbach; R.N. Grass; D. Günther; W.J. Stark (2009).
577: 520:
and varying the reaction conditions, oxides, metal or carbon coated nanoparticles are produced at a rate of > 30 g/h .
255:
falls back to zero. Just like non-magnetic oxide nanoparticles, the surface of ferrite nanoparticles is often modified by
3171:
K.Norén, Katarina; M. Kempe (2009). "Multilayered Magnetic Nanoparticles as a Support in Solid-Phase Peptide Synthesis".
1543:
Mahendran, V. (2012). "Nanofluid based opticalsensor for rapid visual inspection of defects in ferromagnetic materials".
75: 166: 2760:
Ramanavičius, Simonas; Žalnėravičius, Rokas; Niaura, Gediminas; Drabavičius, Audrius; Jagminas, Arūnas (2018-07-01).
2746: 1123:
Ramaswamy, B; Kulkarni, SD; Villar, PS; Smith, RS; Eberly, C; Araneda, RC; Depireux, DA; Shapiro, B (24 June 2015).
4155:
Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles
857: 819:
reaction. The resulting catalyst was then used for the chemoselective oxidation of primary and secondary alcohols.
182: 57: 35: 194: 186: 920: 231: 3251:
A. Schätz, Alexander; O. Reiser; W.J. Stark (2010). "Nanoparticles as Semi-Heterogeneous Catalyst Supports".
2937: 2691: 2223:"Size Selective Synthesis of Superparamagnetic Nanoparticles in Thin Fluids under Continuous Flow Conditions" 1273:
B. Gleich; J. Weizenecker (2005). "Tomographic imaging using the nonlinear response of magnetic particles".
830: 791: 712: 589: 4078:"Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion" 490:
of alkaline organometallic compounds in high-boiling organic solvents containing stabilizing surfactants.
279: 4166:
Catinon, M., Ayrault, S., Boudouma, O., Bordier, L., Agnello, G., Reynaud, S., & Tissut, M. (2014).
4148: 936: 758: 732: 716: 699: 694: 606: 581: 487: 481: 678:
performs a critical role, as the smaller the particles, the more significant the antimicrobial effect.
4171: 4154: 2761: 4024: 3961: 3910: 3534:"Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia" 3498: 3455: 3080: 3041: 2996: 2617: 2574: 2433: 2322: 2093: 2058: 1912: 1869: 1834: 1591: 1552: 1509: 1472: 1433: 1390: 1282: 1220: 977: 690: 663: 565: 508:
of cetyltrimethlyammonium bromide, using 1-butanol as the cosurfactant and octane as the oil phase.,
251:
nanoparticle clusters, namely magnetic nanobeads. With the external magnetic field switched off, the
82: 1002:
Magnetic Nanomaterials, Editors: S H Bossmann, H Wang, Royal Society of Chemistry, Cambridge 2017,
805: 389:
have been synthesized recently. The advantages compared to ferrite or elemental nanoparticles are:
190: 158: 4187: 3993: 3934: 3900: 3830: 3733: 3563: 3303: 3188: 3108: 2965: 2789: 2719: 2590: 2449: 2245: 2109: 2031: 1928: 1885: 1662: 1525: 1345: 1306: 941: 629: 211: 2014:
R. N. Grass, Robert N.; W. J. Stark (2006). "Gas phase synthesis of fcc-cobalt nanoparticles".
841:
nanoparticles, which is essential for a fast and clean separation via external magnetic field.
364: 4107: 4058: 4040: 3985: 3977: 3926: 3866: 3848: 3797: 3764: 3725: 3685: 3604: 3555: 3514: 3471: 3428: 3365: 3268: 3223: 3143: 3100: 3061: 3022: 3014: 2957: 2895: 2877: 2838: 2830: 2781: 2711: 2660: 2547: 2498: 2379: 2338: 2144: 1966: 1768: 1733: 1617: 1406: 1337: 1298: 1193: 1154: 1105: 1070: 1035: 931: 926: 719:
or nanoparticle clusters composed of FDA-approved oxide superparamagnetic nanoparticles (e.g.
247: 174: 2983:
Gloag, Lucy; Mehdipour, Milad; Chen, Dongfei; Tilley, Richard D.; Gooding, J. Justin (2019).
4097: 4089: 4048: 4032: 3969: 3918: 3856: 3840: 3789: 3784:
Reeves, Daniel B. (2017). "Nonlinear Nonequilibrium Simulations of Magnetic Nanoparticles".
3756: 3717: 3675: 3665: 3654:"Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery" 3634: 3594: 3545: 3506: 3463: 3420: 3393: 3357: 3330: 3295: 3260: 3215: 3180: 3135: 3092: 3079:
Papavasileiou, Anastasios V.; Panagiotopoulos, Ioannis; Prodromidis, Mamas I. (2020-11-10).
3053: 3004: 2949: 2885: 2869: 2820: 2773: 2703: 2652: 2625: 2582: 2537: 2529: 2488: 2480: 2441: 2406: 2369: 2330: 2295: 2237: 2199: 2171: 2136: 2101: 2066: 2023: 1993: 1958: 1920: 1877: 1842: 1795: 1760: 1725: 1689: 1652: 1644: 1607: 1599: 1560: 1517: 1480: 1441: 1398: 1329: 1290: 1255: 1228: 1185: 1144: 1136: 1097: 1062: 1027: 985: 861: 838: 787: 728: 667: 651: 625: 438: 414: 408: 404: 352: 227: 16:
Synthesized magnetic particles of diameter under 100 nanometers with biomedical applications
1259: 1003: 300: 268: 4028: 3965: 3914: 3844: 3502: 3459: 3000: 2922: 2621: 2578: 2437: 2326: 2097: 2062: 1916: 1873: 1838: 1595: 1556: 1513: 1476: 1437: 1394: 1286: 1224: 981: 542: 4102: 4077: 4053: 4012: 3861: 3818: 3680: 3653: 3599: 3582: 3219: 2890: 2857: 2542: 2517: 2493: 2468: 1612: 1579: 1149: 1124: 1101: 860:. Magnetic CoPt nanoparticles are being used as an MRI contrast agent for transplanted 639: 549:
Operational layout differences between conventional and reducing flame spray synthesis
468: 133: 4137: 2410: 2356:
Monfared, A. H.; Zamanian, A.; Beygzadeh, M.; Sharifi, I.; Mozafari, M. (2017-02-05).
2105: 527: 4181: 3973: 3938: 3411:
Colombo, M; et al. (2012). "Biological Applications of Magnetic Nanoparticles".
3307: 3112: 2793: 2594: 2249: 1666: 1529: 1521: 834: 671: 643: 535: 499: 394: 178: 3737: 3581:
Javidi, M; Heydari, M; Karimi, A; Haghpanahi, M; Navidbakhsh, M; Razmkon, A (2014).
3192: 3096: 3057: 2969: 2723: 2518:"Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery" 2453: 2113: 2035: 1932: 1889: 1349: 844: 822: 797: 443:
Co-precipitation is a facile and convenient way to synthesize iron oxides (either Fe
327:
Retained superparamagnetic properties (independent of the nanoparticle cluster size)
3997: 2692:"Detection of pathogenic Streptococcus suis bacteria using magnetic glycoparticles" 2218: 1366: 1310: 675: 635: 486:
Magnetic nanocrystals with smaller size can essentially be synthesized through the
426: 129: 3567: 2374: 2357: 1648: 1424:
J. Philip; Shima.P.D. B. Raj (2006). "Nanofluid with tunable thermal properties".
3721: 3550: 3533: 2777: 989: 3793: 1500:
J.Philip; T.J.Kumar; P.Kalyanasundaram; B.Raj (2003). "Tunable Optical Filter".
1324:
Hyeon, Taeghwan (3 April 2003). "Chemical synthesis of magnetic nanoparticles".
610: 517: 460: 235: 170: 136:. Such particles commonly consist of two components, a magnetic material, often 24: 4093: 3510: 2677: 2629: 2533: 2334: 1846: 1485: 1460: 1140: 856:
There are many applications for iron-oxide based nanoparticles in concert with
3760: 3638: 3299: 3184: 2586: 2445: 1924: 1881: 711:
Thanks to the easy separation by applying a magnetic field and the very large
647: 593: 348: 256: 198: 153: 4044: 3981: 3930: 3852: 3518: 3104: 3065: 3018: 2881: 2858:"Aptamer–nanoparticle complexes as powerful diagnostic and therapeutic tools" 2834: 2785: 2383: 2342: 727:) hold much potential for waste water treatment since they express excellent 4143:
Magnetic Nanoparticles Remove Ovarian Cancer Cells from the Abdominal Cavity
4142: 1173: 1031: 816: 724: 720: 659: 344: 340: 264: 252: 243: 239: 162: 4111: 4062: 3989: 3870: 3729: 3689: 3608: 3559: 3475: 3432: 3369: 3361: 3272: 3264: 3227: 3147: 3026: 3009: 2984: 2961: 2899: 2842: 2715: 2664: 2551: 2502: 2241: 2148: 1970: 1962: 1772: 1764: 1737: 1729: 1621: 1410: 1341: 1302: 1197: 1158: 1125:"Movement of magnetic nanoparticles in brain tissue: mechanisms and safety" 1109: 1074: 1066: 1039: 2762:"Shell-dependent antimicrobial efficiency of cobalt ferrite nanoparticles" 1693: 4151:, Thematic Series in the Open Access Beilstein Journal of Nanotechnology. 4133:
Properties and use of magnetic nanoparticle clusters (magnetic nanobeads)
3670: 1815:
Properties and use of magnetic nanoparticle clusters (magnetic nanobeads)
1174:"Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures" 874: 812: 783: 505: 386: 369: 149: 2873: 1657: 1580:"Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling" 1459:
Chaudhary, V.; Wang, Z.; Ray, A.; Sridhar, I.; Ramanujan, R. V. (2017).
1294: 1172:
He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong (18 September 2012).
201:, optical filters, defect sensor, magnetic cooling and cation sensors. 4132: 3467: 3424: 2299: 1812: 1232: 744: 597: 4036: 3922: 3397: 3139: 2825: 2808: 2656: 2484: 2203: 2175: 2140: 2070: 1799: 1603: 1564: 1445: 1402: 1189: 843: 821: 796: 585:
10 MHz, with the amplitude of the field usually between 8-16kAm.
541: 526: 3334: 2953: 2707: 2027: 1997: 1333: 601: 400: 382: 321:
Higher colloidal stability since they do not magnetically agglomerate
304: 296: 292: 286:
image of a maghemite magnetic nanoparticle cluster with silica shell.
260: 145: 141: 2265:"Synthesis of Magnetic Nanoparticles Using Spinning Disc Processing" 735:
of the material is an advantage compared to metallic nanoparticles.
3835: 2985:"Advances in the Application of Magnetic Nanoparticles for Sensing" 3905: 808: 363: 278: 2913:
Luc Lenglet; Petr Nikitin; Clayton Péquignot (July–August 2008).
534:
Various flame spray conditions and their impact on the resulting
413:
Chemistry on the graphene surface via methods already known for
330:
Silica surface enables straightforward covalent functionalization
2809:"Sensitive Detection of Bacterial DNA by Magnetic Nanoparticles" 887: 378: 137: 324:
Magnetic moment can be tuned with the nanoparticle cluster size
315:
Higher chemical stability (crucial for biomedical applications)
368:
Cobalt nanoparticle with graphene shell (note: The individual
318:
Narrow size distribution (crucial for biomedical applications)
173:
and tissue specific targeting, magnetically tunable colloidal
18: 2263:
Raston, CL; Saunders, M; Smith, N; Woodward, R (7 May 2006).
3040:
Yang, Guangming; Zhao, Faqiong; Zeng, Baizhao (2014-07-20).
464: 3173:
International Journal of Peptide Research and Therapeutics
1944: 1942: 1370:
Magnetic Nanoparticle for Information Storage Applications
693:(MIA) is a novel type of diagnostic immunoassay utilizing 4127: 2690:
Parera Pera N; Kouki A.; Finne J.; Pieters R. J. (2010).
303:
molecules can be covalently bonded to the functionalized
3819:"Approaches for Modeling Magnetic Nanoparticle Dynamics" 3753:
Structure and Functional Properties of Colloidal Systems
576:
Magnetic nanoparticles have been examined for use in an
4128:
FML – Functional Materials Laboratory of the ETH Zürich
4011:
Reeves, Daniel B.; Weaver, John B. (15 December 2012).
3884:
Carrey, J.; Mehdaoui, B.; Respaud, M. (15 April 2011).
1361: 1359: 1004:
https://pubs.rsc.org/en/content/ebook/978-1-78801-037-5
4013:"Simulations of magnetic nanoparticle Brownian motion" 3786:
Magnetic Characterization Techniques for Nanomaterials
4149:
Properties and applications of magnetic nanoparticles
271:
derivatives to increase their stability in solution.
2009: 2007: 1578:Chaudhary, V.; Ramanujan, R. V. (11 October 2016). 3788:. Springer, Berlin, Heidelberg. pp. 121–156. 1711: 1709: 1707: 1705: 1703: 1129:Nanomedicine: Nanotechnology, Biology and Medicine 962: 960: 958: 956: 588:Affinity ligands such as epidermal growth factor ( 782:Magnetic nanoparticles are of potential use as a 769:Random versus site-directed enzyme immobilization 628:and for detection of Gram positive bacteria like 4170:. Science of the Total Environment, 475, 39-47 ( 4138:Magnetic nanoparticles target human cancer cells 2915:"Magnetic immunoassays: A new paradigm in POCT" 2739:"An attractive method for bacteria detection" 2678:Using Magnetic Nanoparticles to Combat Cancer 829:The catalytic reaction can be conducted in a 425:Several methods exist for preparing magnetic 8: 3626:Journal of Mechanics in Medicine and Biology 1013: 1011: 674:. It is known that the size of the magnetic 4168:Isolation of technogenic magnetic particles 3817:Reeves, Daniel B.; Weaver, John B. (2014). 3491:Journal of Magnetism and Magnetic Materials 2315:Journal of Magnetism and Magnetic Materials 1827:Journal of Magnetism and Magnetic Materials 3823:Critical Reviews in Biomedical Engineering 4101: 4052: 3904: 3860: 3834: 3679: 3669: 3598: 3549: 3008: 2889: 2824: 2541: 2492: 2373: 1656: 1611: 1484: 1148: 109:Learn how and when to remove this message 2645:Journal of the American Chemical Society 540: 525: 1055:Angewandte Chemie International Edition 952: 1383:Environmental Science & Technology 45:Please improve this article by adding 3652:Estelrich, Joan; et al. (2015). 3538:International Journal of Hyperthermia 2862:Experimental & Molecular Medicine 2856:Jo, Hunho; Ban, Changill (May 2016). 2680:Newswise, Retrieved on July 17, 2008. 2217:Fun Chin, Suk; Iyer, K. Swaminathan; 1465:Journal of Physics D: Applied Physics 1260:10.1016/j.progsolidstchem.2005.11.010 7: 4147:Wiedwald, U. and Ziemann, P. (Ed.): 2696:Organic & Biomolecular Chemistry 1813:http://nanos-sci.com/technology.html 3845:10.1615/CritRevBiomedEng.2014010845 3288:Journal of Iranian Chemical Society 815:-coated cobalt nanoparticles via a 4193:Nanoparticles by physical property 3220:10.1016/j.biomaterials.2004.10.012 2766:Nano-Structures & Nano-Objects 1502:Measurement Science and Technology 1102:10.1016/j.biomaterials.2004.10.012 572:Medical diagnostics and treatments 14: 2411:10.1016/j.matchemphys.2010.06.029 1248:Progress in Solid State Chemistry 385:with a nonreactive shell made of 2567:Journal of Nanoparticle Research 2467:Rabias, I.; et al. (2010). 1905:Journal of Nanoparticle Research 1862:Journal of Nanoparticle Research 23: 3954:Physics in Medicine and Biology 3755:. CRC Press. pp. 315–337. 3097:10.1016/j.electacta.2020.136981 3058:10.1016/j.electacta.2014.04.162 2737:Barden, David (30 March 2010). 2516:Kumar, CS; Mohammad, F (2011). 2399:Materials Chemistry and Physics 2362:Journal of Alloys and Compounds 1461:"Self pumping magnetic cooling" 804:In another example, the stable 218:Types of magnetic nanoparticles 2743:Highlights in Chemical Biology 2426:Aerosol Science and Technology 2288:Journal of Materials Chemistry 1986:Journal of Materials Chemistry 752:Supported enzymes and peptides 132:that can be manipulated using 1: 4082:Biosensors and Bioelectronics 3350:Chemistry: A European Journal 2375:10.1016/j.jallcom.2016.09.253 1649:10.1016/j.pmatsci.2018.09.005 1637:Progress in Materials Science 1178:Accounts of Chemical Research 646:properties against hazardous 578:experimental cancer treatment 47:secondary or tertiary sources 3722:10.1016/j.vetmic.2019.01.009 3551:10.3109/02656736.2014.988661 2778:10.1016/j.nanoso.2018.03.007 990:10.1016/j.apsusc.2014.09.181 167:nanomaterial-based catalysts 3794:10.1007/978-3-662-52780-1_4 2221:; Saunders, Martin (2008). 2106:10.1088/0957-4484/17/23/023 4209: 4094:10.1016/j.bios.2013.06.049 4017:Journal of Applied Physics 3974:10.1088/0031-9155/54/5/L01 3893:Journal of Applied Physics 3511:10.1016/j.jmmm.2011.10.017 2630:10.1038/natrevmats.2016.14 2534:10.1016/j.addr.2011.03.008 2335:10.1016/j.jmmm.2016.03.091 1847:10.1016/j.jmmm.2009.12.038 1522:10.1088/0957-0233/14/8/314 1141:10.1016/j.nano.2015.06.003 885: 858:magnetic resonance imaging 609:or nanoparticle-delivered 497: 479: 436: 183:magnetic resonance imaging 3761:10.1201/9781420084474-c14 3639:10.1142/S0219519415500888 3300:10.1007/s13738-017-1157-2 3185:10.1007/s10989-009-9190-3 2587:10.1007/s11051-013-1666-6 2446:10.1080/02786820903449665 1925:10.1007/s11051-012-1151-7 1882:10.1007/s11051-010-0171-4 195:environmental remediation 187:magnetic particle imaging 3323:New Journal of Chemistry 2610:Nature Reviews Materials 1486:10.1088/1361-6463/aa4f92 921:Iron oxide nanoparticles 295:onto their surface. The 238:in crystal structure of 232:iron oxide nanoparticles 58:"Magnetic nanoparticles" 3899:(8): 083921–083921–17. 3710:Veterinary Microbiology 1426:Applied Physics Letters 1326:Chemical Communications 1032:10.1021/acsnano.5b02328 970:Applied Surface Science 831:continuous flow reactor 792:surface to volume ratio 739:Electrochemical sensing 713:surface to volume ratio 3386:Chemistry of Materials 3362:10.1002/chem.200801001 3265:10.1002/chem.200903462 3010:10.1002/adma.201904385 2242:10.1002/adfm.200701101 1963:10.1002/anie.200700613 1788:Chemistry of Materials 1765:10.1002/anie.200602866 1730:10.1002/anie.200602866 1067:10.1002/anie.200454222 848: 826: 801: 557:Potential applications 546: 531: 518:flame spray pyrolysis 373: 287: 122:Magnetic nanoparticles 34:relies excessively on 3706:Staphylococcus aureus 1694:10.1166/jon.2013.1050 1682:Journal of Nanofluids 937:Regenerative medicine 847: 825: 800: 759:solid phase synthesis 733:environmental impacts 731:which concerning the 707:Waste water treatment 656:Staphylococcus aureus 607:magnetic hyperthermia 582:magnetic hyperthermia 545: 530: 512:Flame spray synthesis 488:thermal decomposition 482:Thermal decomposition 476:Thermal decomposition 367: 360:Metallic with a shell 282: 275:Ferrites with a shell 3671:10.3390/ijms16048070 3128:Analytical Chemistry 2813:Analytical Chemistry 2522:Adv. Drug Deliv. Rev 1951:Angew. Chem. Int. Ed 1753:Angew. Chem. Int. Ed 1718:Angew. Chem. Int. Ed 1365:Natalie A. Frey and 811:was attached to the 691:Magnetic immunoassay 686:Magnetic immunoassay 664:Candida parapsilosis 634:Core-shell magnetic 566:separation processes 407:solution as well as 399:Higher stability in 4029:1998JChPh.109.4281T 3966:2009PMB....54L...1W 3915:2011JAP...109h3921C 3503:2012JMMM..324..903S 3460:2011Nanos...3..977M 3085:Electrochimica Acta 3046:Electrochimica Acta 3001:2019AdM....3104385G 2874:10.1038/emm.2016.44 2749:on 21 October 2012. 2622:2016NatRM...116014W 2579:2013JNR....15.1666K 2438:2010AerST..44..161A 2327:2016JMMM..412..107S 2098:2006Nanot..17.5851G 2063:2011ApPhL..99v2501F 1917:2012JNR....14.1151K 1874:2011JNR....13.2829K 1839:2010JMMM..322.1847K 1596:2016NatSR...635156C 1557:2012ApPhL.100g3104M 1514:2003MeScT..14.1289P 1477:2017JPhD...50cLT03C 1438:2008ApPhL..92d3108P 1395:2001EnST...35.4922E 1295:10.1038/nature03808 1287:2005Natur.435.1214G 1281:(7046): 1214–1217. 1225:2014RSCAd...438316K 1219:(72): 38316–38322. 982:2014ApSS..322..255T 897:Genetic engineering 882:Information storage 372:layers are visible) 159:magnetic nanochains 3468:10.1039/C0NR00846J 3425:10.1039/c2cs15337h 2989:Advanced Materials 2300:10.1039/c0jm00043d 2269:TechConnect Briefs 1584:Scientific Reports 1233:10.1039/C4RA05602G 942:Ultrafine particle 852:Biomedical imaging 849: 827: 802: 717:Magnetic nanobeads 700:magnetic nanobeads 695:magnetic nanobeads 630:Streptococcus suis 547: 532: 374: 288: 212:superparamagnetism 4037:10.1063/1.4770322 3923:10.1063/1.3551582 3803:978-3-662-52779-5 3770:978-1-4200-8447-4 3664:(12): 8070–8101. 3587:J Biomed Phys Eng 3398:10.1021/cm9019099 3356:(27): 8262–8266. 3214:(18): 3995–4021. 3140:10.1021/ac034920m 2826:10.1021/ac102133e 2819:(22): 9138–9140. 2702:(10): 2425–2429. 2657:10.1021/ja801969b 2485:10.1063/1.3449089 2230:Adv. Funct. Mater 2204:10.1021/jp911966p 2198:(14): 6334–6341. 2176:10.1021/jp8083875 2141:10.1021/jp071299b 2135:(28): 7978–7986. 2092:(23): 5851–5857. 2071:10.1063/1.3662965 1833:(13): 1847–1853. 1800:10.1021/cm001253u 1604:10.1038/srep35156 1565:10.1063/1.3684969 1446:10.1063/1.2838304 1403:10.1021/es0108584 1389:(24): 4922–4926. 1190:10.1021/ar200276t 1096:(18): 3995–4021. 1061:(33): 4303–4306. 1026:(10): 9700–9707. 932:Magnetic nanoring 927:Neuroregeneration 906:Physical modeling 788:catalyst supports 554: 553: 248:superparamagnetic 230:nanoparticles or 175:photonic crystals 128:) are a class of 119: 118: 111: 93: 4200: 4116: 4115: 4105: 4073: 4067: 4066: 4056: 4008: 4002: 4001: 3949: 3943: 3942: 3908: 3890: 3881: 3875: 3874: 3864: 3838: 3814: 3808: 3807: 3781: 3775: 3774: 3748: 3742: 3741: 3700: 3694: 3693: 3683: 3673: 3658:Int. J. Mol. Sci 3649: 3643: 3642: 3619: 3613: 3612: 3602: 3578: 3572: 3571: 3553: 3529: 3523: 3522: 3486: 3480: 3479: 3443: 3437: 3436: 3408: 3402: 3401: 3380: 3374: 3373: 3345: 3339: 3338: 3335:10.1039/B209391J 3318: 3312: 3311: 3283: 3277: 3276: 3248: 3242: 3238: 3232: 3231: 3203: 3197: 3196: 3168: 3162: 3158: 3152: 3151: 3134:(5): 1316–1321. 3123: 3117: 3116: 3076: 3070: 3069: 3037: 3031: 3030: 3012: 2980: 2974: 2973: 2954:10.1039/B909447D 2933: 2927: 2926: 2921:. Archived from 2910: 2904: 2903: 2893: 2853: 2847: 2846: 2828: 2804: 2798: 2797: 2757: 2751: 2750: 2745:. Archived from 2734: 2728: 2727: 2708:10.1039/C000819B 2687: 2681: 2675: 2669: 2668: 2651:(31): 10258–62. 2640: 2634: 2633: 2605: 2599: 2598: 2562: 2556: 2555: 2545: 2513: 2507: 2506: 2496: 2473:Biomicrofluidics 2464: 2458: 2457: 2421: 2415: 2414: 2394: 2388: 2387: 2377: 2353: 2347: 2346: 2310: 2304: 2303: 2283: 2277: 2276: 2275:(2006): 343–346. 2260: 2254: 2253: 2227: 2219:Raston, Colin L. 2214: 2208: 2207: 2192:J. Phys. Chem. C 2186: 2180: 2179: 2164:J. Phys. Chem. C 2159: 2153: 2152: 2129:J. Phys. Chem. B 2124: 2118: 2117: 2081: 2075: 2074: 2051:Appl. Phys. Lett 2046: 2040: 2039: 2028:10.1039/B601013J 2011: 2002: 2001: 1998:10.1039/b919610b 1981: 1975: 1974: 1946: 1937: 1936: 1900: 1894: 1893: 1868:(7): 2829–2841. 1857: 1851: 1850: 1822: 1816: 1810: 1804: 1803: 1794:(8): 1617–1627. 1783: 1777: 1776: 1759:(8): 1222–1244. 1748: 1742: 1741: 1724:(8): 1222–1244. 1713: 1698: 1697: 1677: 1671: 1670: 1660: 1632: 1626: 1625: 1615: 1575: 1569: 1568: 1545:Appl. Phys. Lett 1540: 1534: 1533: 1508:(8): 1289–1294. 1497: 1491: 1490: 1488: 1456: 1450: 1449: 1421: 1415: 1414: 1378: 1372: 1363: 1354: 1353: 1334:10.1039/B207789B 1321: 1315: 1314: 1270: 1264: 1263: 1254:(2–4): 237–247. 1243: 1237: 1236: 1208: 1202: 1201: 1184:(9): 1431–1440. 1169: 1163: 1162: 1152: 1120: 1114: 1113: 1085: 1079: 1078: 1050: 1044: 1043: 1015: 1006: 1000: 994: 993: 964: 862:neural stem cell 778:Catalyst support 729:biocompatibility 668:Candida albicans 626:Escherichia coli 523: 522: 439:Co-precipitation 433:Co-precipitation 415:carbon nanotubes 409:organic solvents 353:oxidizing agents 351:and reactive to 223:Oxides: ferrites 114: 107: 103: 100: 94: 92: 51: 27: 19: 4208: 4207: 4203: 4202: 4201: 4199: 4198: 4197: 4178: 4177: 4163: 4124: 4119: 4075: 4074: 4070: 4010: 4009: 4005: 3951: 3950: 3946: 3888: 3883: 3882: 3878: 3816: 3815: 3811: 3804: 3783: 3782: 3778: 3771: 3750: 3749: 3745: 3702: 3701: 3697: 3651: 3650: 3646: 3621: 3620: 3616: 3580: 3579: 3575: 3531: 3530: 3526: 3488: 3487: 3483: 3445: 3444: 3440: 3419:(11): 4306–34. 3410: 3409: 3405: 3382: 3381: 3377: 3347: 3346: 3342: 3320: 3319: 3315: 3294:(10): 2211–20. 3285: 3284: 3280: 3259:(30): 8950–67. 3250: 3249: 3245: 3239: 3235: 3205: 3204: 3200: 3170: 3169: 3165: 3159: 3155: 3125: 3124: 3120: 3078: 3077: 3073: 3039: 3038: 3034: 2995:(48): 1904385. 2982: 2981: 2977: 2935: 2934: 2930: 2912: 2911: 2907: 2855: 2854: 2850: 2806: 2805: 2801: 2759: 2758: 2754: 2736: 2735: 2731: 2689: 2688: 2684: 2676: 2672: 2642: 2641: 2637: 2607: 2606: 2602: 2564: 2563: 2559: 2515: 2514: 2510: 2466: 2465: 2461: 2423: 2422: 2418: 2396: 2395: 2391: 2355: 2354: 2350: 2312: 2311: 2307: 2285: 2284: 2280: 2262: 2261: 2257: 2225: 2216: 2215: 2211: 2188: 2187: 2183: 2161: 2160: 2156: 2126: 2125: 2121: 2083: 2082: 2078: 2048: 2047: 2043: 2013: 2012: 2005: 1983: 1982: 1978: 1957:(26): 4909–12. 1948: 1947: 1940: 1902: 1901: 1897: 1859: 1858: 1854: 1824: 1823: 1819: 1811: 1807: 1785: 1784: 1780: 1750: 1749: 1745: 1715: 1714: 1701: 1679: 1678: 1674: 1634: 1633: 1629: 1577: 1576: 1572: 1542: 1541: 1537: 1499: 1498: 1494: 1458: 1457: 1453: 1423: 1422: 1418: 1380: 1379: 1375: 1364: 1357: 1323: 1322: 1318: 1272: 1271: 1267: 1245: 1244: 1240: 1210: 1209: 1205: 1171: 1170: 1166: 1122: 1121: 1117: 1087: 1086: 1082: 1052: 1051: 1047: 1017: 1016: 1009: 1001: 997: 966: 965: 954: 950: 917: 908: 899: 890: 884: 870: 854: 780: 754: 741: 709: 688: 638:, particularly 574: 559: 514: 502: 496: 484: 478: 458: 454: 450: 446: 441: 435: 423: 362: 337: 301:fluorescent dye 277: 269:phosphoric acid 225: 220: 207: 134:magnetic fields 115: 104: 98: 95: 52: 50: 44: 40:primary sources 28: 17: 12: 11: 5: 4206: 4204: 4196: 4195: 4190: 4180: 4179: 4176: 4175: 4162: 4159: 4158: 4157: 4152: 4145: 4140: 4135: 4130: 4123: 4122:External links 4120: 4118: 4117: 4068: 4023:(12): 124311. 4003: 3944: 3876: 3809: 3802: 3776: 3769: 3743: 3695: 3644: 3633:(5): 1550088. 3614: 3573: 3524: 3497:(6): 903–915. 3481: 3454:(3): 977–984. 3438: 3403: 3392:(2): 305–310. 3375: 3340: 3329:(2): 227.229. 3313: 3278: 3243: 3233: 3198: 3179:(4): 287–292. 3163: 3153: 3118: 3071: 3032: 2975: 2948:(32): 4862–4. 2928: 2925:on 2008-08-30. 2919:IVD Technology 2905: 2848: 2799: 2752: 2729: 2682: 2670: 2635: 2600: 2557: 2528:(9): 789–808. 2508: 2459: 2416: 2389: 2348: 2305: 2278: 2255: 2236:(6): 922–927. 2209: 2181: 2170:(2): 590–596. 2154: 2119: 2086:Nanotechnology 2076: 2057:(22): 222501. 2041: 2016:J. Mater. Chem 2003: 1992:(3): 439–443. 1976: 1938: 1895: 1852: 1817: 1805: 1778: 1743: 1699: 1688:(2): 112–119. 1672: 1627: 1570: 1535: 1492: 1451: 1416: 1373: 1355: 1328:(8): 927–934. 1316: 1265: 1238: 1203: 1164: 1115: 1080: 1045: 1007: 995: 951: 949: 946: 945: 944: 939: 934: 929: 924: 916: 913: 907: 904: 898: 895: 883: 880: 869: 868:Cancer therapy 866: 853: 850: 779: 776: 753: 750: 740: 737: 708: 705: 687: 684: 672:microorganisms 640:cobalt ferrite 573: 570: 558: 555: 552: 551: 539: 513: 510: 498:Main article: 495: 492: 480:Main article: 477: 474: 469:ionic strength 456: 452: 448: 444: 437:Main article: 434: 431: 422: 419: 418: 417: 411: 397: 361: 358: 336: 333: 332: 331: 328: 325: 322: 319: 316: 276: 273: 224: 221: 219: 216: 206: 203: 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 4205: 4194: 4191: 4189: 4186: 4185: 4183: 4173: 4169: 4165: 4164: 4160: 4156: 4153: 4150: 4146: 4144: 4141: 4139: 4136: 4134: 4131: 4129: 4126: 4125: 4121: 4113: 4109: 4104: 4099: 4095: 4091: 4087: 4083: 4079: 4072: 4069: 4064: 4060: 4055: 4050: 4046: 4042: 4038: 4034: 4030: 4026: 4022: 4018: 4014: 4007: 4004: 3999: 3995: 3991: 3987: 3983: 3979: 3975: 3971: 3967: 3963: 3960:(5): L1–L10. 3959: 3955: 3948: 3945: 3940: 3936: 3932: 3928: 3924: 3920: 3916: 3912: 3907: 3902: 3898: 3894: 3887: 3880: 3877: 3872: 3868: 3863: 3858: 3854: 3850: 3846: 3842: 3837: 3832: 3828: 3824: 3820: 3813: 3810: 3805: 3799: 3795: 3791: 3787: 3780: 3777: 3772: 3766: 3762: 3758: 3754: 3747: 3744: 3739: 3735: 3731: 3727: 3723: 3719: 3715: 3711: 3707: 3699: 3696: 3691: 3687: 3682: 3677: 3672: 3667: 3663: 3659: 3655: 3648: 3645: 3640: 3636: 3632: 3628: 3627: 3618: 3615: 3610: 3606: 3601: 3596: 3593:(4): 151–62. 3592: 3588: 3584: 3577: 3574: 3569: 3565: 3561: 3557: 3552: 3547: 3543: 3539: 3535: 3528: 3525: 3520: 3516: 3512: 3508: 3504: 3500: 3496: 3492: 3485: 3482: 3477: 3473: 3469: 3465: 3461: 3457: 3453: 3449: 3442: 3439: 3434: 3430: 3426: 3422: 3418: 3414: 3407: 3404: 3399: 3395: 3391: 3387: 3379: 3376: 3371: 3367: 3363: 3359: 3355: 3351: 3344: 3341: 3336: 3332: 3328: 3324: 3317: 3314: 3309: 3305: 3301: 3297: 3293: 3289: 3282: 3279: 3274: 3270: 3266: 3262: 3258: 3254: 3247: 3244: 3237: 3234: 3229: 3225: 3221: 3217: 3213: 3209: 3202: 3199: 3194: 3190: 3186: 3182: 3178: 3174: 3167: 3164: 3157: 3154: 3149: 3145: 3141: 3137: 3133: 3129: 3122: 3119: 3114: 3110: 3106: 3102: 3098: 3094: 3090: 3086: 3082: 3075: 3072: 3067: 3063: 3059: 3055: 3051: 3047: 3043: 3036: 3033: 3028: 3024: 3020: 3016: 3011: 3006: 3002: 2998: 2994: 2990: 2986: 2979: 2976: 2971: 2967: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2932: 2929: 2924: 2920: 2916: 2909: 2906: 2901: 2897: 2892: 2887: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2852: 2849: 2844: 2840: 2836: 2832: 2827: 2822: 2818: 2814: 2810: 2803: 2800: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2756: 2753: 2748: 2744: 2740: 2733: 2730: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2686: 2683: 2679: 2674: 2671: 2666: 2662: 2658: 2654: 2650: 2646: 2639: 2636: 2631: 2627: 2623: 2619: 2615: 2611: 2604: 2601: 2596: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2561: 2558: 2553: 2549: 2544: 2539: 2535: 2531: 2527: 2523: 2519: 2512: 2509: 2504: 2500: 2495: 2490: 2486: 2482: 2479:(2): 024111. 2478: 2474: 2470: 2463: 2460: 2455: 2451: 2447: 2443: 2439: 2435: 2432:(2): 161–72. 2431: 2427: 2420: 2417: 2412: 2408: 2404: 2400: 2393: 2390: 2385: 2381: 2376: 2371: 2368:: 1090–1095. 2367: 2363: 2359: 2352: 2349: 2344: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2309: 2306: 2301: 2297: 2293: 2289: 2282: 2279: 2274: 2270: 2266: 2259: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2224: 2220: 2213: 2210: 2205: 2201: 2197: 2193: 2185: 2182: 2177: 2173: 2169: 2165: 2158: 2155: 2150: 2146: 2142: 2138: 2134: 2130: 2123: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2080: 2077: 2072: 2068: 2064: 2060: 2056: 2052: 2045: 2042: 2037: 2033: 2029: 2025: 2021: 2017: 2010: 2008: 2004: 1999: 1995: 1991: 1987: 1980: 1977: 1972: 1968: 1964: 1960: 1956: 1952: 1945: 1943: 1939: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1899: 1896: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1856: 1853: 1848: 1844: 1840: 1836: 1832: 1828: 1821: 1818: 1814: 1809: 1806: 1801: 1797: 1793: 1789: 1782: 1779: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1744: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1710: 1708: 1706: 1704: 1700: 1695: 1691: 1687: 1683: 1676: 1673: 1668: 1664: 1659: 1654: 1650: 1646: 1642: 1638: 1631: 1628: 1623: 1619: 1614: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1574: 1571: 1566: 1562: 1558: 1554: 1551:(7): 073104. 1550: 1546: 1539: 1536: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1496: 1493: 1487: 1482: 1478: 1474: 1471:(3): 03LT03. 1470: 1466: 1462: 1455: 1452: 1447: 1443: 1439: 1435: 1432:(4): 043108. 1431: 1427: 1420: 1417: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1377: 1374: 1371: 1368: 1362: 1360: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1320: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1269: 1266: 1261: 1257: 1253: 1249: 1242: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1207: 1204: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1168: 1165: 1160: 1156: 1151: 1146: 1142: 1138: 1135:(7): 1821–9. 1134: 1130: 1126: 1119: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1081: 1076: 1072: 1068: 1064: 1060: 1056: 1049: 1046: 1041: 1037: 1033: 1029: 1025: 1021: 1014: 1012: 1008: 1005: 999: 996: 991: 987: 983: 979: 975: 971: 963: 961: 959: 957: 953: 947: 943: 940: 938: 935: 933: 930: 928: 925: 922: 919: 918: 914: 912: 905: 903: 896: 894: 893:square inch. 889: 881: 879: 876: 867: 865: 863: 859: 851: 846: 842: 840: 836: 835:batch reactor 833:instead of a 832: 824: 820: 818: 814: 810: 807: 799: 795: 793: 789: 785: 777: 775: 771: 770: 766: 762: 760: 751: 749: 746: 738: 736: 734: 730: 726: 722: 718: 714: 706: 704: 701: 696: 692: 685: 683: 679: 677: 676:nanoparticles 673: 669: 665: 661: 657: 653: 649: 645: 644:antimicrobial 641: 637: 636:nanoparticles 632: 631: 627: 622: 618: 614: 612: 608: 603: 599: 595: 591: 586: 583: 579: 571: 569: 567: 562: 556: 550: 544: 538: 537: 536:nanoparticles 529: 524: 521: 519: 511: 509: 507: 501: 500:Microemulsion 494:Microemulsion 493: 491: 489: 483: 475: 473: 470: 466: 462: 440: 432: 430: 428: 420: 416: 412: 410: 406: 402: 398: 396: 395:magnetization 392: 391: 390: 388: 384: 380: 371: 366: 359: 357: 354: 350: 346: 342: 334: 329: 326: 323: 320: 317: 314: 313: 312: 308: 306: 302: 298: 294: 285: 281: 274: 272: 270: 266: 262: 258: 254: 249: 245: 241: 237: 233: 229: 222: 217: 215: 213: 204: 202: 200: 196: 192: 188: 184: 180: 179:microfluidics 176: 172: 168: 164: 160: 155: 151: 147: 143: 139: 135: 131: 127: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 42: 41: 37: 32:This article 30: 26: 21: 20: 4167: 4161:Bibliography 4085: 4081: 4071: 4020: 4016: 4006: 3957: 3953: 3947: 3896: 3892: 3879: 3829:(1): 85–93. 3826: 3822: 3812: 3785: 3779: 3752: 3746: 3713: 3709: 3705: 3698: 3661: 3657: 3647: 3630: 3624: 3617: 3590: 3586: 3576: 3544:(1): 33–39. 3541: 3537: 3527: 3494: 3490: 3484: 3451: 3447: 3441: 3416: 3413:Chem Soc Rev 3412: 3406: 3389: 3385: 3378: 3353: 3349: 3343: 3326: 3322: 3316: 3291: 3287: 3281: 3256: 3253:Chem. Eur. J 3252: 3246: 3236: 3211: 3208:Biomaterials 3207: 3201: 3176: 3172: 3166: 3156: 3131: 3127: 3121: 3088: 3084: 3074: 3049: 3045: 3035: 2992: 2988: 2978: 2945: 2942:Chem. Commun 2941: 2931: 2923:the original 2918: 2908: 2865: 2861: 2851: 2816: 2812: 2802: 2769: 2765: 2755: 2747:the original 2742: 2732: 2699: 2695: 2685: 2673: 2648: 2644: 2638: 2616:(5): 16014. 2613: 2609: 2603: 2570: 2566: 2560: 2525: 2521: 2511: 2476: 2472: 2462: 2429: 2425: 2419: 2402: 2398: 2392: 2365: 2361: 2351: 2318: 2314: 2308: 2294:(20): 4168. 2291: 2287: 2281: 2272: 2268: 2258: 2233: 2229: 2212: 2195: 2191: 2184: 2167: 2163: 2157: 2132: 2128: 2122: 2089: 2085: 2079: 2054: 2050: 2044: 2022:(19): 1825. 2019: 2015: 1989: 1985: 1979: 1954: 1950: 1911:(10): 1151. 1908: 1904: 1898: 1865: 1861: 1855: 1830: 1826: 1820: 1808: 1791: 1787: 1781: 1756: 1752: 1746: 1721: 1717: 1685: 1681: 1675: 1658:10356/142917 1640: 1636: 1630: 1590:(1): 35156. 1587: 1583: 1573: 1548: 1544: 1538: 1505: 1501: 1495: 1468: 1464: 1454: 1429: 1425: 1419: 1386: 1382: 1376: 1367:Shouheng Sun 1325: 1319: 1278: 1274: 1268: 1251: 1247: 1241: 1216: 1213:RSC Advances 1212: 1206: 1181: 1177: 1167: 1132: 1128: 1118: 1093: 1090:Biomaterials 1089: 1083: 1058: 1054: 1048: 1023: 1019: 998: 973: 969: 909: 900: 891: 871: 855: 828: 803: 781: 772: 768: 767: 763: 755: 742: 710: 689: 680: 633: 623: 619: 615: 611:cancer drugs 587: 575: 563: 560: 548: 533: 515: 503: 485: 442: 427:nanoparticle 424: 375: 338: 309: 289: 226: 208: 191:data storage 130:nanoparticle 125: 121: 120: 105: 96: 86: 79: 72: 65: 53: 33: 4088:: 441–446. 3052:: 154–160. 2868:(5): e230. 2573:(5): 1666. 2405:: 264–269. 2321:: 107–113. 976:: 255–264. 864:detection. 648:prokaryotic 461:temperature 257:surfactants 236:iron oxides 171:biomedicine 99:August 2016 4182:Categories 3836:1505.02450 3241:37:357-381 3091:: 136981. 948:References 886:See also: 660:eukaryotic 642:, possess 594:folic acid 467:value and 349:pyrophoric 205:Properties 199:nanofluids 165:including 154:microbeads 69:newspapers 36:references 4188:Magnetism 4045:0021-8979 3982:0031-9155 3939:119228529 3931:0021-8979 3906:1007.2009 3853:0278-940X 3716:: 45–48. 3519:0304-8853 3448:Nanoscale 3308:103858148 3113:225022388 3105:0013-4686 3066:0013-4686 3019:1521-4095 2882:2092-6413 2835:0003-2700 2794:139265717 2786:2352-507X 2772:: 40–47. 2595:135831754 2384:0925-8388 2343:0304-8853 2250:138114978 1667:139870597 1643:: 64–98. 1530:250923543 817:diazonium 725:magnetite 721:maghemite 421:Synthesis 345:magnetite 341:maghemite 265:silicones 253:remanence 244:magnetite 240:maghemite 163:catalysis 4172:abstract 4112:23896525 4063:23319830 3990:19204385 3871:25271360 3738:73465453 3730:30827403 3690:25867479 3609:25599061 3560:25523967 3476:21293831 3433:22481569 3370:18666291 3273:20645330 3228:15626447 3193:40277196 3161:477–512. 3148:14987087 3027:31538371 2970:33582926 2962:19652806 2900:27151454 2843:20977277 2724:44593515 2716:20448902 2665:18611005 2552:21447363 2503:20697578 2454:97163337 2149:17580856 2114:94579266 2036:97850340 1971:17516598 1933:94550418 1890:97708934 1773:17278160 1738:17278160 1622:27725754 1411:11775172 1350:27657072 1342:12744306 1303:15988521 1198:22578015 1159:26115639 1110:15626447 1075:15368378 1040:26394039 1020:ACS Nano 923:(SPIONs) 915:See also 875:liposome 813:graphene 784:catalyst 598:aptamers 506:micelles 387:graphene 370:graphene 335:Metallic 150:chemical 148:, and a 4103:3844855 4054:3537703 4025:Bibcode 3998:2635545 3962:Bibcode 3911:Bibcode 3862:4183932 3681:4425068 3600:4289522 3499:Bibcode 3456:Bibcode 2997:Bibcode 2891:4910152 2618:Bibcode 2575:Bibcode 2543:3138885 2494:2917883 2434:Bibcode 2323:Bibcode 2094:Bibcode 2059:Bibcode 1913:Bibcode 1870:Bibcode 1835:Bibcode 1613:5057077 1592:Bibcode 1553:Bibcode 1510:Bibcode 1473:Bibcode 1434:Bibcode 1391:Bibcode 1311:4393678 1283:Bibcode 1221:Bibcode 1150:4586396 978:Bibcode 839:Ferrite 806:radical 745:analyte 652:E. coli 602:lectins 580:called 451:or γ-Fe 393:Higher 307:shell. 228:Ferrite 83:scholar 4110:  4100:  4061:  4051:  4043:  3996:  3988:  3980:  3937:  3929:  3869:  3859:  3851:  3800:  3767:  3736:  3728:  3688:  3678:  3607:  3597:  3568:881157 3566:  3558:  3517:  3474:  3431:  3368:  3306:  3271:  3226:  3191:  3146:  3111:  3103:  3064:  3025:  3017:  2968:  2960:  2898:  2888:  2880:  2841:  2833:  2792:  2784:  2722:  2714:  2663:  2593:  2550:  2540:  2501:  2491:  2452:  2382:  2341:  2248:  2147:  2112:  2034:  1969:  1931:  1888:  1771:  1736:  1665:  1620:  1610:  1528:  1409:  1348:  1340:  1309:  1301:  1275:Nature 1196:  1157:  1147:  1108:  1073:  1038:  658:) and 516:Using 463:, the 401:acidic 383:Cobalt 305:silica 297:silica 293:silica 261:silica 146:cobalt 142:nickel 85:  78:  71:  64:  56:  3994:S2CID 3935:S2CID 3901:arXiv 3889:(PDF) 3831:arXiv 3734:S2CID 3564:S2CID 3304:S2CID 3189:S2CID 3109:S2CID 2966:S2CID 2790:S2CID 2720:S2CID 2591:S2CID 2450:S2CID 2246:S2CID 2226:(PDF) 2110:S2CID 2032:S2CID 1929:S2CID 1886:S2CID 1663:S2CID 1526:S2CID 1346:S2CID 1307:S2CID 809:TEMPO 405:basic 90:JSTOR 76:books 4108:PMID 4059:PMID 4041:ISSN 3986:PMID 3978:ISSN 3927:ISSN 3867:PMID 3849:ISSN 3798:ISBN 3765:ISBN 3726:PMID 3686:PMID 3605:PMID 3556:PMID 3515:ISSN 3472:PMID 3429:PMID 3366:PMID 3269:PMID 3224:PMID 3144:PMID 3101:ISSN 3062:ISSN 3023:PMID 3015:ISSN 2958:PMID 2896:PMID 2878:ISSN 2839:PMID 2831:ISSN 2782:ISSN 2712:PMID 2661:PMID 2548:PMID 2499:PMID 2380:ISSN 2339:ISSN 2145:PMID 1967:PMID 1769:PMID 1734:PMID 1618:PMID 1407:PMID 1338:PMID 1299:PMID 1194:PMID 1155:PMID 1106:PMID 1071:PMID 1036:PMID 888:MRAM 403:and 379:Iron 144:and 138:iron 126:MNPs 62:news 4098:PMC 4090:doi 4049:PMC 4033:doi 4021:112 3970:doi 3919:doi 3897:109 3857:PMC 3841:doi 3790:doi 3757:doi 3718:doi 3714:230 3708:". 3676:PMC 3666:doi 3635:doi 3595:PMC 3546:doi 3507:doi 3495:324 3464:doi 3421:doi 3394:doi 3358:doi 3331:doi 3296:doi 3261:doi 3216:doi 3181:doi 3136:doi 3093:doi 3089:360 3054:doi 3050:135 3005:doi 2950:doi 2886:PMC 2870:doi 2821:doi 2774:doi 2704:doi 2653:doi 2649:130 2626:doi 2583:doi 2538:PMC 2530:doi 2489:PMC 2481:doi 2442:doi 2407:doi 2403:124 2370:doi 2366:693 2331:doi 2319:412 2296:doi 2238:doi 2200:doi 2196:114 2172:doi 2168:113 2137:doi 2133:111 2102:doi 2067:doi 2024:doi 1994:doi 1959:doi 1921:doi 1878:doi 1843:doi 1831:322 1796:doi 1761:doi 1726:doi 1690:doi 1653:hdl 1645:doi 1641:100 1608:PMC 1600:doi 1561:doi 1549:100 1518:doi 1481:doi 1442:doi 1399:doi 1330:doi 1291:doi 1279:435 1256:doi 1229:doi 1186:doi 1145:PMC 1137:doi 1098:doi 1063:doi 1028:doi 986:doi 974:322 786:or 592:), 590:EGF 381:or 284:TEM 267:or 242:or 38:to 4184:: 4174:). 4106:. 4096:. 4086:50 4084:. 4080:. 4057:. 4047:. 4039:. 4031:. 4019:. 4015:. 3992:. 3984:. 3976:. 3968:. 3958:54 3956:. 3933:. 3925:. 3917:. 3909:. 3895:. 3891:. 3865:. 3855:. 3847:. 3839:. 3827:42 3825:. 3821:. 3796:. 3763:. 3732:. 3724:. 3712:. 3684:. 3674:. 3662:16 3660:. 3656:. 3631:15 3629:. 3603:. 3589:. 3585:. 3562:. 3554:. 3542:31 3540:. 3536:. 3513:. 3505:. 3493:. 3470:. 3462:. 3450:. 3427:. 3417:41 3415:. 3390:22 3388:. 3364:. 3354:14 3352:. 3327:27 3325:. 3302:. 3292:14 3290:. 3267:. 3257:16 3255:. 3222:. 3212:26 3210:. 3187:. 3177:15 3175:. 3142:. 3132:76 3130:. 3107:. 3099:. 3087:. 3083:. 3060:. 3048:. 3044:. 3021:. 3013:. 3003:. 2993:31 2991:. 2987:. 2964:. 2956:. 2946:32 2944:. 2940:. 2917:. 2894:. 2884:. 2876:. 2866:48 2864:. 2860:. 2837:. 2829:. 2817:82 2815:. 2811:. 2788:. 2780:. 2770:15 2768:. 2764:. 2741:. 2718:. 2710:. 2698:. 2694:. 2659:. 2647:. 2624:. 2612:. 2589:. 2581:. 2571:15 2569:. 2546:. 2536:. 2526:63 2524:. 2520:. 2497:. 2487:. 2475:. 2471:. 2448:. 2440:. 2430:44 2428:. 2401:. 2378:. 2364:. 2360:. 2337:. 2329:. 2317:. 2292:20 2290:. 2271:. 2267:. 2244:. 2234:18 2232:. 2228:. 2194:. 2166:. 2143:. 2131:. 2108:. 2100:. 2090:17 2088:. 2065:. 2055:99 2053:. 2030:. 2020:16 2018:. 2006:^ 1990:20 1988:. 1965:. 1955:46 1953:. 1941:^ 1927:. 1919:. 1909:14 1907:. 1884:. 1876:. 1866:13 1864:. 1841:. 1829:. 1792:15 1790:. 1767:. 1757:46 1755:. 1732:. 1722:46 1720:. 1702:^ 1684:. 1661:. 1651:. 1639:. 1616:. 1606:. 1598:. 1586:. 1582:. 1559:. 1547:. 1524:. 1516:. 1506:14 1504:. 1479:. 1469:50 1467:. 1463:. 1440:. 1430:92 1428:. 1405:. 1397:. 1387:35 1385:. 1358:^ 1344:. 1336:. 1305:. 1297:. 1289:. 1277:. 1252:34 1250:. 1227:. 1215:. 1192:. 1182:45 1180:. 1176:. 1153:. 1143:. 1133:11 1131:. 1127:. 1104:. 1094:26 1092:. 1069:. 1059:43 1057:. 1034:. 1022:. 1010:^ 984:. 972:. 955:^ 761:. 723:, 670:) 666:, 654:, 600:, 596:, 465:pH 429:. 343:, 263:, 259:, 214:. 197:, 193:, 189:, 185:, 181:, 177:, 169:, 140:, 49:. 4114:. 4092:: 4065:. 4035:: 4027:: 4000:. 3972:: 3964:: 3941:. 3921:: 3913:: 3903:: 3873:. 3843:: 3833:: 3806:. 3792:: 3773:. 3759:: 3740:. 3720:: 3692:. 3668:: 3641:. 3637:: 3611:. 3591:4 3570:. 3548:: 3521:. 3509:: 3501:: 3478:. 3466:: 3458:: 3452:3 3435:. 3423:: 3400:. 3396:: 3372:. 3360:: 3337:. 3333:: 3310:. 3298:: 3275:. 3263:: 3230:. 3218:: 3195:. 3183:: 3150:. 3138:: 3115:. 3095:: 3068:. 3056:: 3029:. 3007:: 2999:: 2972:. 2952:: 2902:. 2872:: 2845:. 2823:: 2796:. 2776:: 2726:. 2706:: 2700:8 2667:. 2655:: 2632:. 2628:: 2620:: 2614:1 2597:. 2585:: 2577:: 2554:. 2532:: 2505:. 2483:: 2477:4 2456:. 2444:: 2436:: 2413:. 2409:: 2386:. 2372:: 2345:. 2333:: 2325:: 2302:. 2298:: 2273:1 2252:. 2240:: 2206:. 2202:: 2178:. 2174:: 2151:. 2139:: 2116:. 2104:: 2096:: 2073:. 2069:: 2061:: 2038:. 2026:: 2000:. 1996:: 1973:. 1961:: 1935:. 1923:: 1915:: 1892:. 1880:: 1872:: 1849:. 1845:: 1837:: 1802:. 1798:: 1775:. 1763:: 1740:. 1728:: 1696:. 1692:: 1686:2 1669:. 1655:: 1647:: 1624:. 1602:: 1594:: 1588:6 1567:. 1563:: 1555:: 1532:. 1520:: 1512:: 1489:. 1483:: 1475:: 1448:. 1444:: 1436:: 1413:. 1401:: 1393:: 1352:. 1332:: 1313:. 1293:: 1285:: 1262:. 1258:: 1235:. 1231:: 1223:: 1217:4 1200:. 1188:: 1161:. 1139:: 1112:. 1100:: 1077:. 1065:: 1042:. 1030:: 1024:9 992:. 988:: 980:: 662:( 650:( 457:3 455:O 453:2 449:4 447:O 445:3 234:( 124:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 43:.

Index


references
primary sources
secondary or tertiary sources
"Magnetic nanoparticles"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
nanoparticle
magnetic fields
iron
nickel
cobalt
chemical
microbeads
magnetic nanochains
catalysis
nanomaterial-based catalysts
biomedicine
photonic crystals
microfluidics
magnetic resonance imaging
magnetic particle imaging
data storage
environmental remediation
nanofluids
superparamagnetism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.