Knowledge

Markov–Kakutani fixed-point theorem

Source 📝

1087: 1555: 235: 607: 491: 699: 1197: 769: 255: 1236: 1123: 1405: 1358: 1291: 287: 866: 1449: 1425: 1378: 1331: 1311: 1264: 1143: 906: 886: 836: 809: 789: 722: 650: 630: 511: 438: 418: 395: 375: 347: 327: 307: 130: 110: 90: 70: 914: 1684: 41: 1457: 139: 1613: 1689: 1666: 519: 1694: 1601: 1428: 44:
has a common fixed point. This theorem is a key tool in one of the quickest proofs of amenability of abelian groups.
446: 658: 33: 1360:
invariant. Applying the result for a single mapping successively, it follows that any finite subset of
1661:, Methods of Mathematical Physics, vol. 1 (2nd revised ed.), Academic Press, p. 152, 1605: 1151: 812: 25: 727: 1662: 1619: 1609: 441: 240: 1208: 1095: 1383: 1336: 1269: 260: 29: 841: 1593: 1434: 1410: 1363: 1316: 1296: 1249: 1128: 891: 871: 821: 794: 774: 707: 635: 615: 496: 423: 403: 380: 360: 332: 312: 292: 115: 95: 75: 55: 1082:{\displaystyle |f(Tx(N))-f(x(N))|={1 \over N+1}|f(T^{N+1}x)-f(x)|\leq {2M \over N+1}.} 1678: 1380:
has a non-empty fixed point set given as the intersection of the compact convex sets
1644:
Kakutani, S. (1938), "Two fixed point theorems concerning bicompact convex sets",
17: 37: 1623: 1550:{\displaystyle K^{S}=\{y\in K\mid Ty=y,\,T\in S\}=\bigcap _{T\in S}K^{T}\,} 72:
be a locally convex topological vector space, with a compact convex subset
230:{\displaystyle T(\lambda x+(1-\lambda )y)=\lambda T(x)+(1-\lambda )T(y)} 1293:
by the result for a single mapping. The other mappings in the family
1631:
Markov, A. (1936), "Quelques théorèmes sur les ensembles abéliens",
815:; this is where the assumption of local convexity is used.) 602:{\displaystyle x(N)={1 \over N+1}\sum _{n=0}^{N}T^{n}(x).} 1460: 1437: 1413: 1386: 1366: 1339: 1319: 1299: 1272: 1252: 1211: 1154: 1131: 1098: 917: 894: 874: 844: 824: 797: 777: 730: 710: 661: 638: 618: 522: 499: 449: 426: 406: 383: 363: 335: 315: 295: 263: 243: 142: 118: 98: 78: 58: 1246:The set of fixed points of a single affine mapping 1549: 1443: 1419: 1399: 1372: 1352: 1325: 1305: 1285: 1258: 1230: 1191: 1137: 1117: 1081: 900: 880: 860: 830: 803: 783: 763: 716: 693: 644: 624: 601: 505: 485: 432: 412: 389: 369: 341: 321: 301: 281: 249: 229: 124: 104: 84: 64: 32:, states that a commuting family of continuous 8: 1514: 1474: 632:is compact, there is a convergent subnet in 486:{\displaystyle \{x(N)\}_{N\in \mathbb {N} }} 466: 450: 724:is a fixed point, it suffices to show that 1604:. Vol. 96 (2nd ed.). New York: 1546: 1540: 1524: 1504: 1465: 1459: 1436: 1412: 1391: 1385: 1365: 1344: 1338: 1318: 1298: 1277: 1271: 1251: 1227: 1210: 1188: 1153: 1130: 1109: 1097: 1053: 1045: 1012: 997: 979: 971: 918: 916: 893: 873: 853: 845: 843: 823: 796: 776: 729: 709: 690: 672: 660: 637: 617: 581: 571: 560: 538: 521: 498: 477: 476: 469: 448: 425: 405: 382: 362: 334: 314: 294: 262: 242: 141: 117: 97: 77: 57: 694:{\displaystyle x(N_{i})\rightarrow y.\,} 1569: 1560:is non-empty (and compact and convex). 377:be a continuous affine self-mapping of 42:locally convex topological vector space 1576: 353:Proof for a single affine self-mapping 112:be a family of continuous mappings of 7: 811:. (The dual separates points by the 22:Markov–Kakutani fixed-point theorem 1266:is a non-empty compact convex set 1145:goes to infinity, it follows that 14: 1427:ranges over the subset. From the 132:to itself which commute and are 1685:Theorems in functional analysis 1598:A Course in Functional Analysis 1182: 1176: 1167: 1158: 1046: 1042: 1036: 1027: 1005: 998: 972: 968: 965: 959: 953: 944: 941: 935: 926: 919: 854: 846: 758: 752: 743: 734: 681: 678: 665: 593: 587: 532: 526: 462: 456: 276: 264: 224: 218: 212: 200: 194: 188: 176: 170: 158: 146: 1: 1602:Graduate Texts in Mathematics 1192:{\displaystyle f(Ty)=f(y).\,} 1657:Reed, M.; Simon, B. (1980), 1125:and passing to the limit as 1711: 764:{\displaystyle f(Ty)=f(y)} 1690:Topological vector spaces 1451:it follows that the set 250:{\displaystyle \lambda } 1231:{\displaystyle Ty=y.\,} 1118:{\displaystyle N=N_{i}} 888:by a positive constant 329:. Then the mappings in 1646:Proc. Imp. Akad. Tokyo 1551: 1445: 1421: 1401: 1374: 1354: 1327: 1307: 1287: 1260: 1232: 1193: 1139: 1119: 1083: 902: 882: 862: 832: 805: 785: 765: 718: 695: 646: 626: 603: 576: 507: 487: 434: 414: 391: 371: 343: 323: 303: 283: 251: 231: 126: 106: 86: 66: 1633:Dokl. Akad. Nauk SSSR 1552: 1446: 1422: 1402: 1400:{\displaystyle K^{T}} 1375: 1355: 1353:{\displaystyle K^{T}} 1328: 1308: 1288: 1286:{\displaystyle K^{T}} 1261: 1233: 1194: 1140: 1120: 1084: 903: 883: 863: 833: 806: 786: 766: 719: 696: 647: 627: 604: 556: 508: 488: 435: 415: 392: 372: 349:share a fixed point. 344: 324: 304: 284: 282:{\displaystyle (0,1)} 252: 232: 127: 107: 87: 67: 38:compact convex subset 1695:Fixed-point theorems 1458: 1435: 1411: 1384: 1364: 1337: 1317: 1297: 1270: 1250: 1209: 1152: 1129: 1096: 915: 908:. On the other hand 892: 872: 842: 822: 795: 775: 728: 708: 659: 636: 616: 520: 497: 447: 424: 404: 381: 361: 333: 313: 293: 261: 241: 140: 116: 96: 76: 56: 34:affine self-mappings 1659:Functional Analysis 1579:, pp. 151–152. 861:{\displaystyle |f|} 813:Hahn-Banach theorem 1547: 1535: 1441: 1417: 1397: 1370: 1350: 1323: 1303: 1283: 1256: 1228: 1189: 1135: 1115: 1079: 898: 878: 858: 828: 801: 781: 761: 714: 691: 642: 622: 599: 503: 483: 430: 410: 387: 367: 339: 319: 299: 279: 247: 227: 122: 102: 82: 62: 1615:978-0-387-97245-9 1520: 1444:{\displaystyle K} 1420:{\displaystyle T} 1373:{\displaystyle S} 1326:{\displaystyle T} 1306:{\displaystyle S} 1259:{\displaystyle T} 1138:{\displaystyle i} 1074: 995: 901:{\displaystyle M} 881:{\displaystyle K} 831:{\displaystyle K} 804:{\displaystyle X} 784:{\displaystyle f} 717:{\displaystyle y} 645:{\displaystyle K} 625:{\displaystyle K} 554: 506:{\displaystyle K} 433:{\displaystyle K} 413:{\displaystyle x} 390:{\displaystyle K} 370:{\displaystyle T} 342:{\displaystyle S} 322:{\displaystyle S} 302:{\displaystyle T} 125:{\displaystyle K} 105:{\displaystyle S} 85:{\displaystyle K} 65:{\displaystyle X} 1702: 1671: 1653: 1640: 1627: 1580: 1574: 1556: 1554: 1553: 1548: 1545: 1544: 1534: 1470: 1469: 1450: 1448: 1447: 1442: 1426: 1424: 1423: 1418: 1406: 1404: 1403: 1398: 1396: 1395: 1379: 1377: 1376: 1371: 1359: 1357: 1356: 1351: 1349: 1348: 1332: 1330: 1329: 1324: 1312: 1310: 1309: 1304: 1292: 1290: 1289: 1284: 1282: 1281: 1265: 1263: 1262: 1257: 1242:Proof of theorem 1237: 1235: 1234: 1229: 1198: 1196: 1195: 1190: 1144: 1142: 1141: 1136: 1124: 1122: 1121: 1116: 1114: 1113: 1088: 1086: 1085: 1080: 1075: 1073: 1062: 1054: 1049: 1023: 1022: 1001: 996: 994: 980: 975: 922: 907: 905: 904: 899: 887: 885: 884: 879: 867: 865: 864: 859: 857: 849: 837: 835: 834: 829: 810: 808: 807: 802: 790: 788: 787: 782: 770: 768: 767: 762: 723: 721: 720: 715: 700: 698: 697: 692: 677: 676: 651: 649: 648: 643: 631: 629: 628: 623: 608: 606: 605: 600: 586: 585: 575: 570: 555: 553: 539: 512: 510: 509: 504: 492: 490: 489: 484: 482: 481: 480: 439: 437: 436: 431: 419: 417: 416: 411: 396: 394: 393: 388: 376: 374: 373: 368: 348: 346: 345: 340: 328: 326: 325: 320: 308: 306: 305: 300: 288: 286: 285: 280: 256: 254: 253: 248: 236: 234: 233: 228: 131: 129: 128: 123: 111: 109: 108: 103: 91: 89: 88: 83: 71: 69: 68: 63: 1710: 1709: 1705: 1704: 1703: 1701: 1700: 1699: 1675: 1674: 1669: 1656: 1643: 1630: 1616: 1606:Springer-Verlag 1594:Conway, John B. 1592: 1589: 1584: 1583: 1575: 1571: 1566: 1536: 1461: 1456: 1455: 1433: 1432: 1409: 1408: 1387: 1382: 1381: 1362: 1361: 1340: 1335: 1334: 1315: 1314: 1295: 1294: 1273: 1268: 1267: 1248: 1247: 1244: 1207: 1206: 1150: 1149: 1127: 1126: 1105: 1094: 1093: 1063: 1055: 1008: 984: 913: 912: 890: 889: 870: 869: 840: 839: 820: 819: 793: 792: 791:in the dual of 773: 772: 726: 725: 706: 705: 668: 657: 656: 634: 633: 614: 613: 577: 543: 518: 517: 495: 494: 465: 445: 444: 422: 421: 402: 401: 379: 378: 359: 358: 355: 331: 330: 311: 310: 291: 290: 259: 258: 239: 238: 138: 137: 136:, meaning that 114: 113: 94: 93: 74: 73: 54: 53: 50: 30:Shizuo Kakutani 12: 11: 5: 1708: 1706: 1698: 1697: 1692: 1687: 1677: 1676: 1673: 1672: 1667: 1654: 1641: 1628: 1614: 1588: 1585: 1582: 1581: 1568: 1567: 1565: 1562: 1558: 1557: 1543: 1539: 1533: 1530: 1527: 1523: 1519: 1516: 1513: 1510: 1507: 1503: 1500: 1497: 1494: 1491: 1488: 1485: 1482: 1479: 1476: 1473: 1468: 1464: 1440: 1416: 1394: 1390: 1369: 1347: 1343: 1322: 1302: 1280: 1276: 1255: 1243: 1240: 1239: 1238: 1226: 1223: 1220: 1217: 1214: 1200: 1199: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1134: 1112: 1108: 1104: 1101: 1090: 1089: 1078: 1072: 1069: 1066: 1061: 1058: 1052: 1048: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1021: 1018: 1015: 1011: 1007: 1004: 1000: 993: 990: 987: 983: 978: 974: 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 940: 937: 934: 931: 928: 925: 921: 897: 877: 868:is bounded on 856: 852: 848: 827: 800: 780: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 713: 704:To prove that 702: 701: 689: 686: 683: 680: 675: 671: 667: 664: 641: 621: 610: 609: 598: 595: 592: 589: 584: 580: 574: 569: 566: 563: 559: 552: 549: 546: 542: 537: 534: 531: 528: 525: 502: 479: 475: 472: 468: 464: 461: 458: 455: 452: 429: 409: 386: 366: 354: 351: 338: 318: 298: 278: 275: 272: 269: 266: 246: 226: 223: 220: 217: 214: 211: 208: 205: 202: 199: 196: 193: 190: 187: 184: 181: 178: 175: 172: 169: 166: 163: 160: 157: 154: 151: 148: 145: 121: 101: 81: 61: 49: 46: 24:, named after 13: 10: 9: 6: 4: 3: 2: 1707: 1696: 1693: 1691: 1688: 1686: 1683: 1682: 1680: 1670: 1668:0-12-585050-6 1664: 1660: 1655: 1651: 1647: 1642: 1638: 1634: 1629: 1625: 1621: 1617: 1611: 1607: 1603: 1599: 1595: 1591: 1590: 1586: 1578: 1573: 1570: 1563: 1561: 1541: 1537: 1531: 1528: 1525: 1521: 1517: 1511: 1508: 1505: 1501: 1498: 1495: 1492: 1489: 1486: 1483: 1480: 1477: 1471: 1466: 1462: 1454: 1453: 1452: 1438: 1430: 1414: 1392: 1388: 1367: 1345: 1341: 1320: 1313:commute with 1300: 1278: 1274: 1253: 1241: 1224: 1221: 1218: 1215: 1212: 1205: 1204: 1203: 1185: 1179: 1173: 1170: 1164: 1161: 1155: 1148: 1147: 1146: 1132: 1110: 1106: 1102: 1099: 1076: 1070: 1067: 1064: 1059: 1056: 1050: 1039: 1033: 1030: 1024: 1019: 1016: 1013: 1009: 1002: 991: 988: 985: 981: 976: 962: 956: 950: 947: 938: 932: 929: 923: 911: 910: 909: 895: 875: 850: 825: 816: 814: 798: 778: 755: 749: 746: 740: 737: 731: 711: 687: 684: 673: 669: 662: 655: 654: 653: 639: 619: 596: 590: 582: 578: 572: 567: 564: 561: 557: 550: 547: 544: 540: 535: 529: 523: 516: 515: 514: 500: 473: 470: 459: 453: 443: 427: 407: 398: 384: 364: 352: 350: 336: 316: 296: 273: 270: 267: 244: 221: 215: 209: 206: 203: 197: 191: 185: 182: 179: 173: 167: 164: 161: 155: 152: 149: 143: 135: 119: 99: 79: 59: 47: 45: 43: 39: 35: 31: 27: 26:Andrey Markov 23: 19: 1658: 1649: 1645: 1636: 1632: 1597: 1572: 1559: 1245: 1201: 1091: 838:is compact, 817: 703: 611: 399: 356: 133: 51: 21: 15: 1577:Conway 1990 1429:compactness 18:mathematics 1679:Categories 1587:References 771:for every 1652:: 242–245 1639:: 311–314 1564:Citations 1529:∈ 1522:⋂ 1509:∈ 1487:∣ 1481:∈ 1333:so leave 1051:≤ 1031:− 948:− 682:→ 558:∑ 474:∈ 440:define a 245:λ 210:λ 207:− 183:λ 168:λ 165:− 150:λ 48:Statement 1624:21195908 1596:(1990). 237:for all 1092:Taking 92:. Let 1665:  1622:  1612:  1202:Hence 818:Since 612:Since 134:affine 20:, the 40:in a 36:of a 1663:ISBN 1620:OCLC 1610:ISBN 493:in 400:For 357:Let 289:and 52:Let 28:and 1431:of 1407:as 513:by 442:net 420:in 309:in 257:in 16:In 1681:: 1650:14 1648:, 1637:10 1635:, 1618:. 1608:. 1600:. 652:: 397:. 1626:. 1542:T 1538:K 1532:S 1526:T 1518:= 1515:} 1512:S 1506:T 1502:, 1499:y 1496:= 1493:y 1490:T 1484:K 1478:y 1475:{ 1472:= 1467:S 1463:K 1439:K 1415:T 1393:T 1389:K 1368:S 1346:T 1342:K 1321:T 1301:S 1279:T 1275:K 1254:T 1225:. 1222:y 1219:= 1216:y 1213:T 1186:. 1183:) 1180:y 1177:( 1174:f 1171:= 1168:) 1165:y 1162:T 1159:( 1156:f 1133:i 1111:i 1107:N 1103:= 1100:N 1077:. 1071:1 1068:+ 1065:N 1060:M 1057:2 1047:| 1043:) 1040:x 1037:( 1034:f 1028:) 1025:x 1020:1 1017:+ 1014:N 1010:T 1006:( 1003:f 999:| 992:1 989:+ 986:N 982:1 977:= 973:| 969:) 966:) 963:N 960:( 957:x 954:( 951:f 945:) 942:) 939:N 936:( 933:x 930:T 927:( 924:f 920:| 896:M 876:K 855:| 851:f 847:| 826:K 799:X 779:f 759:) 756:y 753:( 750:f 747:= 744:) 741:y 738:T 735:( 732:f 712:y 688:. 685:y 679:) 674:i 670:N 666:( 663:x 640:K 620:K 597:. 594:) 591:x 588:( 583:n 579:T 573:N 568:0 565:= 562:n 551:1 548:+ 545:N 541:1 536:= 533:) 530:N 527:( 524:x 501:K 478:N 471:N 467:} 463:) 460:N 457:( 454:x 451:{ 428:K 408:x 385:K 365:T 337:S 317:S 297:T 277:) 274:1 271:, 268:0 265:( 225:) 222:y 219:( 216:T 213:) 204:1 201:( 198:+ 195:) 192:x 189:( 186:T 180:= 177:) 174:y 171:) 162:1 159:( 156:+ 153:x 147:( 144:T 120:K 100:S 80:K 60:X

Index

mathematics
Andrey Markov
Shizuo Kakutani
affine self-mappings
compact convex subset
locally convex topological vector space
net
Hahn-Banach theorem
compactness
Conway 1990
Conway, John B.
Graduate Texts in Mathematics
Springer-Verlag
ISBN
978-0-387-97245-9
OCLC
21195908
ISBN
0-12-585050-6
Categories
Theorems in functional analysis
Topological vector spaces
Fixed-point theorems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.