Knowledge (XXG)

Mating of yeast

Source 📝

1078:
cells can mate with each other. The second reason is that haploid cells of one mating type, upon cell division, often produce cells of the opposite mating type with which they can mate (see section "Mating type switching", above). The relative rarity in nature of meiotic events that result from out-crossing appears to be inconsistent with the idea that production of genetic variation is the primary selective force maintaining mating capability in this organism. However this finding is consistent with the alternative idea that the primary selective force maintaining mating capability is enhanced recombinational repair of DNA damage during meiosis, since this benefit is realized during each meiosis subsequent to a mating, whether or not out-crossing occurs.
676: 855: 632: 177: 22: 123:
patterns regulated by the MAT locus, are crucial for the mating process. Additionally, the decision to mate involves a highly sensitive and complex signaling pathway that includes pheromone detection and response mechanisms. In nature, yeast mating often occurs between closely related cells, although
1077:
come into contact. Ruderfer et al. pointed out that such contacts are frequent between closely related yeast cells for two reasons. The first is that cells of opposite mating type are present together in the same ascus, the sac that contains the cells directly produced by a single meiosis, and these
597:
Presence of α-factor induces recruitment of Ptc1 to Ste5 via a 4 amino acid motif located within the Ste5 phosphosites. Ptc1 then dephosphorylates Ste5, ultimately resulting in the dissociation of the Fus3-Ste5 complex. Fus3 dissociates in a switch-like manner, dependent on the phosphorylation state
604:
In yeast, mating as well as the production of shmoos occur via an all-or-none, switch-like mechanism. This switch-like mechanism allows yeast cells to avoid making an unwise commitment to a highly demanding procedure. However, not only does the mating decision need to be conservative (in order to
1100:
to hydrogen peroxide, an agent that causes oxidative stress leading to oxidative DNA damage, strongly induces mating, meiosis, and formation of meiotic spores. This finding suggests that meiosis, and particularly meiotic recombination, may be an adaptation for repairing DNA damage. The overall
651:
and α mating types to be present in the population. Combined with the strong drive for haploid cells to mate with cells of the opposite mating type and form diploids, mating type switching and consequent mating will cause the majority of cells in a colony to be diploid, regardless of whether a
1052:
binds to the RE and promotes recombination of the HML region. In α cells, the α2 factor binds at the RE and establishes a repressive domain over RE such that recombination is unlikely to occur. An innate bias means that the default behaviour is repair from HMR. The exact mechanisms of these
622:
a and α yeast share the same mating response pathway, with the only difference being the type of receptor each mating type possesses. Thus the above description, given for a-type yeast stimulated with α-factor, works equally well for α-type yeast stimulated with a-factor.
1065:
strains and concluded that matings involving out-crossing occur only about once every 50,000 cell divisions. Thus it appears that, in nature, mating is most often between closely related yeast cells. Mating occurs when haploid cells of opposite mating type
1129:
causes life-threatening meningoencephalitis in immune compromised patients. It undergoes a filamentous transition during the sexual cycle to produce spores, the suspected infectious agent. The vast majority of environmental and clinical isolates of
598:
of the 4 phosphosites. All 4 phosphosites must be dephosphorylated in order for Fus3 to dissociate. Fus3's ability to compete with Ptc1 decreases as Ptc1 is recruited, and thus the rate of dephosphorylation increases with the presence of pheromone.
1138:. The diploid nuclei of blastospores can then undergo meiosis, including recombination, to form haploid basidiospores that can then be dispersed. This process is referred to as monokaryotic fruiting. Required for this process is a gene designated 563:
Mating in yeast is stimulated by the presence of a pheromone which binds to either the Ste2 receptor (in a-cells) or the Ste3 receptor (in α-cells). The binding of this pheromone then leads to the activation of a
539:
alleles, and will behave like a diploid cell: it will not produce or respond to mating pheromones, and when starved will attempt to undergo meiosis, with fatal results. Similarly, deletion of one copy of the
4876:: study shows that there are great similarities between the parts of DNA that determine the sex of plants and animals and the parts of DNA that determine mating types in certain fungi. Accessed 5 April 2008. 612:
Multi-site phosphorylation – Fus3 only dissociates from Ste5 and becomes fully active when all 4 of the phosphosites are dephosphorylated. Even one phosphorylated site will result in immunity to α-factor.
1134:
are mating type α. Filaments ordinarily have haploid nuclei, but these can undergo a process of diploidization (perhaps by endoduplication or stimulated nuclear fusion) to form diploid cells termed
305:
located on chromosome III. The MAT locus is usually divided into five regions (W, X, Y, Z1, and Z2) based on the sequences shared among the two mating types. The difference lies in the Y region (Y
258:
cells also repress the genes associated with being an α cell. Similarly, α cells activate genes which produce α-factor and produce a cell surface receptor (Ste3) which binds and responds to
160:
cell can only mate with an α cell, and vice versa) to produce a stable diploid cell. Diploid cells, usually upon facing stressful conditions such as nutrient depletion, can undergo
396:
or α), and respond to the mating pheromone produced by haploid cells of the opposite mating type, and can mate with cells of the opposite mating type. Haploid cells cannot undergo
215:-factor by growing a projection towards the source of the pheromone. The response of haploid cells only to the mating pheromones of the opposite mating type allows mating between 4245:"The Saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination" 913:
are attracted to the cut DNA ends and begin to degrade the DNA on both sides of the cut site. This DNA degradation by exonucleases eliminates the DNA which encoded the
4540:
Birdsell JA, Wills C (2003). "The evolutionary origin and maintenance of sexual recombination: A review of contemporary models.". In MacIntyre RJ, Clegg MT (eds.).
423:
and α transcriptional patterns, haploid cells of both mating types share a haploid transcriptional pattern which activates haploid-specific genes (such as
2572:
Malleshaiah MK, Shahrezaei V, Swain PS, Michnick SW (May 2010). "The scaffold protein Ste5 directly controls a switch-like mating decision in yeast".
2476:"The beta subunit of the heterotrimeric G protein triggers the Kluyveromyces lactis pheromone response pathway in the absence of the gamma subunit" 203:
cells respond to α-factor, the α cell mating pheromone, by growing a projection (known as a shmoo, due to its distinctive shape resembling the
1863:"Insights on life cycle and cell identity regulatory circuits for unlocking genetic improvement in Zygosaccharomyces and Kluyveromyces yeasts" 156:, with daughter cells budding from mother cells. Haploid cells are capable of mating with other haploid cells of the opposite mating type (an 4836: 3489: 2360: 2223: 2029: 1646: 615:
Two-stage binding – Fus3 and Ptc1 bind to separate docking sites on Ste5. Only after docking can they bind to, and act on, the phosphosites.
144:, have unique mating behaviours and regulatory mechanisms, demonstrating the diversity and adaptability of yeast reproductive strategies. 4583: 4566: 1186:
for the Greek α. The usual convention is to print both in the same weight, but doing so would make the two letters hard to tell apart in
4497:
Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L (September 2006). "Population genomic analysis of outcrossing and recombination in yeast".
510: 2047:"Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast" 4549: 351:
encodes the α1 and α2 genes, which in haploids direct the transcription of the α-specific transcriptional program (such as expressing
3673: 1217: 4717:
Lin X, Hull CM, Heitman J (April 2005). "Sexual reproduction between partners of the same mating type in Cryptococcus neoformans".
2201: 569: 2617:"Negative Feedback Phosphorylation of Gγ Subunit Ste18 and the Ste5 Scaffold Synergistically Regulates MAPK Activation in Yeast" 803:
These additional copies of the mating type information do not interfere with the function of whatever allele is present at the
1166:
could be to promote DNA repair in a DNA damaging environment that could include the defensive responses of the infected host.
487:
allele (the α1 and α2 genes) triggers the diploid transcriptional program. Similarly, the presence of only a single allele of
4665:"Oxidative stress activates FUS1 and RLM1 transcription in the yeast Saccharomyces cerevisiae in an oxidant-dependent Manner" 3895:
Faure G, Jézéquel K, Roisné-Hamelin F, Bitard-Feildel T, Lamiable A, Marcand S, et al. (February 2019). Wolfe K (ed.).
4392:"Donor Preference Meets Heterochromatin: Moonlighting Activities of a Recombinational Enhancer in Saccharomyces cerevisiae" 2007: 2474:
Navarro-Olmos R, Kawasaki L, Domínguez-Ramírez L, Ongay-Larios L, Pérez-Molina R, Coria R (February 2010). Boone C (ed.).
3507:"The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family" 2525:"MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5" 4904: 4769: 796:
loci are often referred to as the silent mating cassettes, as the information present there is 'read into' the active
1624: 1712:
Lee CS, Haber JE (April 2015). Gellert M, Craig N (eds.). "Mating-type Gene Switching in Saccharomyces cerevisiae".
4914: 4899: 4294:"The DNA repair protein yKu80 regulates the function of recombination enhancer during yeast mating type switching" 4204:"DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export" 2813:"Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1" 4343:"Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching" 1092: 601:
Kss1, a homologue of Fus3, does not affect shmooing, and does not contribute to the switch-like mating decision.
134: 4155:"The Conformation of Yeast Chromosome III Is Mating Type Dependent and Controlled by the Recombination Enhancer" 565: 56: 26: 675: 2666:"Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae" 2336: 2003: 3558:"Ubiquitin-dependent degradation of the yeast Mat(alpha)2 repressor enables a switch in developmental state" 1121: 1037: 608:
The decision to mate is extremely sensitive. There are 3 ways in which this ultrasensitivity is maintained:
579:
The switching mechanism arises as a result of competition between the Fus3 protein (a MAPK protein) and the
235: 152:
Yeasts can stably exist as either a diploid or a haploid. Both haploid and diploid yeast cells reproduce by
140: 96:, which governs the mating behaviour of the cells. Haploid yeast can switch mating types through a form of 3465: 3236:"Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes" 2197: 1620: 854: 85: 3405:
Muller N, Piel M, Calvez V, Voituriez R, Gonçalves-Sá J, Guo CL, et al. (April 2016). Rao CV (ed.).
1014:
allele cut by the HO endonuclease will almost always repair the damage using the information present at
461:
cell and an α cell, and thus possess 32 chromosomes (in 16 pairs), including one chromosome bearing the
247: 97: 4439:
Catalani E, Fanelli G, Silvestri F, Cherubini A, Del Quondam S, Bongiorni S, et al. (July 2021).
3607:"A modeling study of budding yeast colony formation and its relationship to budding pattern and aging" 3179:"A combination of multisite phosphorylation and substrate sequestration produces switchlike responses" 2106:"Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts" 371:
2 gene with no apparent function that shares much of its sequence with α2; however, other yeasts like
4784: 4726: 4058: 3710: 3618: 3418: 3361: 3304: 3247: 3190: 3062:"Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine" 2865: 2581: 2162: 2058: 1760: 1404: 874:
gene is a tightly regulated haploid-specific gene that is only activated in haploid cells during the
594:
with Fus3 attempting to phosphorylate the phosphosites, and Ptc1 attempting to dephosphorylate them.
109: 3505:
Coughlan AY, Lombardi L, Braun-Galleani S, Martos AA, Galeote V, Bigey F, et al. (April 2020).
3013:"Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα" 635:
A haploid yeast dividing and undergoing a mating type switch, allowing mating and diploid formation.
4153:
Belton JM, Lajoie BR, Audibert S, Cantaloube S, Lassadi I, Goiffon I, et al. (December 2015).
2962:"Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response" 2762:
Nagiec MJ, McCarter PC, Kelley JB, Dixit G, Elston TC, Dohlman HG (September 2015). Boone C (ed.).
1292:"Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease" 1155: 514: 360: 3897:"Discovery and Evolution of New Domains in Yeast Heterochromatin Factor Sir4 and Its Partner Esc1" 975:
locus after cutting by the HO endonuclease almost always results in a mating type switch. When an
555:
allele, will cause a cell with a diploid complement of chromosomes to behave like a haploid cell.
4873: 4750: 4596: 4522: 1912:"Combined analysis of expression data and transcription factor binding sites in the yeast genome" 1861:
Solieri L, Cassanelli S, Huff F, Barroso L, Branduardi P, Louis EJ, et al. (December 2021).
4106:"Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae" 2245:
Lengeler KB, Davidson RC, D'souza C, Harashima T, Shen WC, Wang P, et al. (December 2000).
431:). Similarly, diploid cells activate diploid-specific genes and repress haploid-specific genes. 3797:"Design of a minimal silencer for the silent mating-type locus HML of Saccharomyces cerevisiae" 2427:"Tracking yeast pheromone receptor Ste2 endocytosis using fluorogen-activating protein tagging" 1096:
is a facultative sexual yeast that can undergo mating when nutrients are limiting. Exposure of
664:
gene; see below); this allows the stable propagation of haploid yeast, as haploid cells of the
104:. When two haploid cells of opposite mating types encounter each other, they undergo a complex 4909: 4832: 4800: 4742: 4694: 4645: 4588: 4545: 4514: 4476: 4421: 4372: 4323: 4274: 4225: 4184: 4135: 4086: 4024: 3975: 3926: 3877: 3826: 3777: 3728: 3679: 3669: 3646: 3587: 3538: 3485: 3446: 3387: 3330: 3273: 3216: 3140: 3091: 3042: 2993: 2942: 2893: 2834: 2793: 2744: 2695: 2646: 2597: 2554: 2505: 2456: 2407: 2356: 2317: 2276: 2219: 2178: 2135: 2086: 2025: 1984: 1943: 1892: 1843: 1788: 1729: 1694: 1642: 1601: 1552: 1490: 1432: 1373: 1321: 1272: 1223: 1213: 1125:
is a basidiomycetous fungus that grows as a budding yeast in culture and in an infected host.
287: 129: 108:
process that leads to cell fusion and the formation of a diploid cell. Diploid cells can then
47: 3160:"Adventures in Time and Space: What Shapes Behavioural Decisions in Drosophila melanogaster?" 4792: 4734: 4684: 4676: 4635: 4627: 4578: 4506: 4466: 4456: 4411: 4403: 4362: 4354: 4313: 4305: 4264: 4256: 4215: 4174: 4166: 4125: 4117: 4076: 4066: 4014: 4006: 3965: 3957: 3916: 3908: 3867: 3857: 3816: 3808: 3767: 3759: 3718: 3636: 3626: 3577: 3569: 3528: 3518: 3477: 3436: 3426: 3377: 3369: 3320: 3312: 3263: 3255: 3206: 3198: 3130: 3122: 3081: 3073: 3032: 3024: 2983: 2973: 2932: 2924: 2883: 2873: 2824: 2783: 2775: 2734: 2726: 2685: 2677: 2636: 2628: 2589: 2544: 2536: 2495: 2487: 2446: 2438: 2397: 2389: 2348: 2307: 2266: 2258: 2211: 2170: 2125: 2117: 2076: 2066: 2017: 1974: 1933: 1923: 1882: 1874: 1833: 1823: 1778: 1768: 1721: 1684: 1634: 1591: 1583: 1542: 1534: 1480: 1472: 1422: 1412: 1363: 1355: 1311: 1303: 1262: 1254: 1205: 653: 591: 528:
haploid cell. Despite having a haploid complement of chromosomes, the cell now has both the
404:
cells do not produce or respond to either mating pheromone and do not mate, but can undergo
373: 959:
serve as a source of genetic information to repair the HO-induced DNA damage at the active
72:, or diploid cells, which contain two sets of chromosomes. Haploid yeast cells come in two 4894: 4879: 2425:
Emmerstorfer-Augustin A, Augustin CM, Shams S, Thorner J (November 2018). Glick BS (ed.).
1910:
Nagaraj VH, O'Flanagan RA, Bruning AR, Mathias JR, Vershon AK, Sengupta AM (August 2004).
1725: 863: 843: 660:
have been altered such that they cannot perform mating type switching (by deletion of the
618:
Steric hindrance – competition between Fus3 and Ptc1 to control the 4 phosphosites on Ste3
415:
and α cells, different patterns of gene repression and activation are responsible for the
120: 180:
Two haploid yeast of opposite mating types secrete pheromones, grow projections and mate.
4823:
Scott MP, Matsudaira P, Lodish H, Darnell J, Zipursky L, Kaiser CA, et al. (2004).
4788: 4730: 4062: 3846:"A single Ho-induced double-strand break at the MAT locus is lethal in Candida glabrata" 3714: 3622: 3422: 3365: 3308: 3251: 3194: 2869: 2585: 2166: 2062: 1764: 1408: 1267: 1242: 4471: 4440: 4416: 4391: 4318: 4293: 4269: 4244: 4179: 4154: 3995:"Cell cycle-regulated histone acetylation required for expression of the yeast HO gene" 3970: 3946:"Mating-type switching by homology-directed recombinational repair: a matter of choice" 3945: 3921: 3896: 3872: 3845: 3821: 3796: 3772: 3747: 3641: 3606: 3533: 3506: 3473: 3441: 3406: 3382: 3349: 3325: 3292: 3268: 3235: 3211: 3178: 3135: 3110: 3086: 3061: 3037: 3012: 2988: 2961: 2937: 2912: 2888: 2853: 2788: 2763: 2739: 2714: 2690: 2665: 2641: 2616: 2549: 2524: 2500: 2475: 2451: 2426: 2402: 2377: 2352: 2344: 2207: 2130: 2105: 2081: 2046: 2021: 2013: 1887: 1862: 1838: 1807: 1630: 1596: 1571: 1547: 1522: 1485: 1460: 1427: 1392: 1368: 1343: 1316: 1291: 731: 631: 251: 105: 4689: 4664: 4640: 4615: 4367: 4342: 4081: 4046: 4019: 3994: 3723: 3698: 3582: 3557: 1938: 1911: 1783: 1748: 1689: 1672: 838:
will influence cell behaviour. Hidden mating type loci are epigenetically silenced by
572:
cascade components) to the membrane, and ultimately results in the phosphorylation of
211:) towards the source of α-factor. Similarly, α cells produce α-factor, and respond to 4888: 4825: 4309: 4130: 4105: 2271: 2246: 2215: 1808:"Post-Transcriptional Control of Mating-Type Gene Expression during Gametogenesis in 644: 434:
The different gene expression patterns of haploids and diploids are again due to the
89: 4631: 4600: 4441:"Nutraceutical Strategy to Counteract Eye Neurodegeneration and Oxidative Stress in 2854:"Ultrasensitivity in phosphorylation-dephosphorylation cycles with little substrate" 1393:"Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions" 605:
avoid wasting energy), but it must also be fast to avoid losing the potential mate.
4754: 4121: 2262: 1570:
Gastaldi S, Zamboni M, Bolasco G, Di Segni G, Tocchini-Valentini GP (August 2016).
895: 643:
and α. Consequently, even if a single haploid cell of a given mating type founds a
278:
The different sets of transcriptional repression and activation which characterize
176: 21: 4526: 2393: 1182:
For the sake of clarity, this article bolds the Latin letter "a" and uses regular
457:), which determines their mating type. Diploid cells result from the mating of an 4796: 4170: 4045:
Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH (February 2004).
3862: 3631: 3431: 2878: 2681: 2632: 2071: 1417: 4407: 4260: 3763: 1572:"Analysis of random PCR-originated mutants of the yeast Ste2 and Ste3 receptors" 1538: 1476: 1209: 1183: 1135: 910: 839: 580: 125: 73: 4616:"Sexual reproduction as a response to H2O2 damage in Schizosaccharomyces pombe" 4051:
Proceedings of the National Academy of Sciences of the United States of America
3202: 3011:
Errede B, Vered L, Ford E, Pena MI, Elston TC (September 2015). Boone C (ed.).
2045:
Bizzarri M, Giudici P, Cassanelli S, Solieri L (2016-04-11). Fairhead C (ed.).
1753:
Proceedings of the National Academy of Sciences of the United States of America
1258: 1040:(RE) located on the left arm of chromosome III. Deletion of this region causes 4341:
Wu C, Weiss K, Yang C, Harris MA, Tye BK, Newlon CS, et al. (June 1998).
3961: 3316: 3259: 2764:"Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK" 1673:"Evolution of a combinatorial transcriptional circuit: a case study in yeasts" 1204:. Methods in Molecular Biology (Clifton, N.J.). Vol. 177. pp. 9–14. 1187: 1109:. The mating-type switching system is similar, but has evolved independently. 918: 883: 657: 439: 101: 69: 3683: 2978: 1878: 1806:
Yeager R, Bushkin GG, Singer E, Fu R, Cooperman B, McMurray M (August 2021).
707:
Haploid yeast switch mating type by replacing the information present at the
4680: 4584:
10.1002/(SICI)1097-0061(199812)14:16<1529::AID-YEA357>3.0.CO;2-0
4071: 3844:
Maroc L, Zhou-Li Y, Boisnard S, Fairhead C (October 2020). Heitman J (ed.).
3126: 3028: 2928: 2779: 2540: 2491: 2442: 416: 223: 192: 81: 61: 4804: 4746: 4698: 4518: 4480: 4461: 4425: 4358: 4327: 4278: 4229: 4220: 4203: 4188: 4139: 4090: 4028: 4010: 3979: 3930: 3881: 3830: 3781: 3650: 3591: 3542: 3481: 3450: 3391: 3334: 3277: 3220: 3144: 3109:
Marini G, Nüske E, Leng W, Alberti S, Pigino G (June 2020). Bloom K (ed.).
3095: 3046: 2997: 2946: 2913:"Ser/Thr protein phosphatases in fungi: structure, regulation and function" 2897: 2797: 2748: 2699: 2650: 2601: 2558: 2509: 2460: 2411: 2321: 2312: 2295: 2280: 2139: 2090: 1988: 1947: 1928: 1896: 1847: 1773: 1733: 1698: 1638: 1605: 1556: 1494: 1436: 1377: 1325: 1276: 1227: 1162:; also Michod et al.). Lin et al. suggested that one benefit of meiosis in 419:
differences between haploid and diploid cells. In addition to the specific
4649: 4592: 4376: 3732: 3077: 2838: 2296:"The unfolded protein response is required for haploid tolerance in yeast" 2247:"Signal transduction cascades regulating fungal development and virulence" 2182: 1792: 1307: 4846: 3912: 3812: 2829: 2812: 1828: 875: 4738: 4544:. Evolutionary Biology Series. Vol. 33. Springer. pp. 27–137. 3573: 3523: 3373: 3060:
Wang X, Tian W, Banh BT, Statler BM, Liang J, Stone DE (November 2019).
2730: 2593: 2121: 1979: 1962: 1359: 586:. These proteins both attempt to control the 4 phosphorylation sites of 84:
to identify and interact with the opposite type, thus displaying simple
3407:"A Predictive Model for Yeast Cell Polarization in Pheromone Gradients" 2153:
Leupold U (February 1980). "Transposable mating-type genes in yeasts".
1963:"Changes in developmental state: demolish the old to construct the new" 1159: 887: 846:
scaffold that prevents transcription from the silent mating cassettes.
652:
haploid or diploid cell founded the colony. The vast majority of yeast
568:. The dimeric portion of this G-protein recruits Ste5 (and its related 405: 401: 397: 389: 204: 161: 153: 113: 65: 3350:"Sensory input attenuation allows predictive sexual response in yeast" 3293:"Asymmetry in sexual pheromones is not required for ascomycete mating" 4047:"Evolution of the MAT locus and its Ho endonuclease in yeast species" 2174: 1587: 1391:
Chen W, Nie Q, Yi TM, Chou CS (July 2016). Edelstein-Keshet L (ed.).
994:
will almost always be repaired by copying the information present at
672:
cells (and α cells will remain α cells), and will not form diploids.
639:
Wild type haploid yeast are capable of switching mating type between
283: 1154:
mediates homologous chromosome pairing during meiosis and repair of
902:
locus (due to the DNA sequence specificity of the HO endonuclease).
4510: 3159: 124:
mating type switching and pheromone signaling allow for occasional
1147: 853: 730:
for the other is possible because yeast cells carry an additional
674: 630: 208: 175: 165: 51: 20: 3111:"Reorganization of budding yeast cytoplasm upon energy depletion" 1523:"Mating-type genes and MAT switching in Saccharomyces cerevisiae" 807:
locus because they are not expressed, so a haploid cell with the
1143: 1049: 587: 583: 573: 513:
to program the mating behaviour of the cell. For example, using
262:-factor, and α cells repress the genes associated with being an 231: 119:
The differences between 'a' and 'α' cells, driven by specific
2670:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
1671:
Tsong AE, Miller MG, Raisner RM, Johnson AD (November 2003).
438:
locus. Haploid cells only contain one copy of each of the 16
2004:"Chapter 4 - Genetics – Variation, Sexuality, and Evolution" 1461:"An Evolutionary Perspective on Yeast Mating-Type Switching" 219:
and α cells, but not between cells of the same mating type.
3605:
Wang Y, Lo WC, Chou CS (November 2017). Komarova NL (ed.).
4202:
Kaplun L, Ivantsiv Y, Bakhrat A, Raveh D (December 2003).
2615:
Choudhury S, Baradaran-Mashinchi P, Torres MP (May 2018).
834:
locus is transcribed, and thus only the allele present at
472:
allele. The combination of the information encoded by the
3348:
Banderas A, Koltai M, Anders A, Sourjik V (August 2016).
2960:
Li Y, Roberts J, AkhavanAghdam Z, Hao N (December 2017).
647:
of yeast, mating type switching will cause cells of both
309:
and Yα), which contains most of the genes and promoters.
2852:
Martins BM, Swain PS (2013-08-08). Mac Gabhann F (ed.).
921:
by copying in the genetic information present at either
100:, allowing them to change mating type as often as every 3699:"Genetic recombination: sex-change operations in yeast" 1200:
Bergman LW (2001). "Growth and maintenance of yeast".
331:-specific transcriptional program (such as expressing 4874:
Fungi Can Tell Us About The Origin Of Sex Chromosomes
3993:
Krebs JE, Kuo MH, Allis CD, Peterson CL (June 1999).
3748:"The yeast mating-type switching mechanism: a memoir" 781:
ight) locus typically carries a silenced copy of the
327:
1, which in haploids direct the transcription of the
282:
and α cells are caused by the presence of one of two
2523:
Winters MJ, Pryciak PM (April 2019). Boone C (ed.).
2337:"17 - Telomeres and Aging in the Yeast Model System" 1241:
Börner GV, Hochwagen A, MacQueen AJ (October 2023).
761:
eft) locus typically carries a silenced copy of the
46:, is a fundamental biological process that promotes 2378:"Sex and sugar in yeast: two distinct GPCR systems" 1006:allele, switching the mating type of the cell from 822:cell, despite also having a (silenced) copy of the 4824: 3944:Thon G, Maki T, Haber JE, Iwasaki H (April 2019). 2713:Ariño J, Casamayor A, González A (January 2011). 1747:Wagstaff JE, Klapholz S, Esposito RE (May 1982). 1061:Ruderfer et al. analyzed the ancestry of natural 1029:locus and switching the mating type of α cell to 917:allele; however, the resulting gap in the DNA is 4492: 4490: 3795:Weber JM, Ehrenhofer-Murray AE (December 2010). 2911:Ariño J, Velázquez D, Casamayor A (April 2019). 2376:Versele M, Lemaire K, Thevelein JM (July 2001). 898:, which physically cleaves DNA, but only at the 502:, triggers the haploid transcriptional program. 427:) and represses diploid-specific genes (such as 238:and repressed in cells of the two mating types. 112:or, under nutrient-limiting conditions, undergo 4768:Michod RE, Bernstein H, Nedelcu AM (May 2008). 4292:Ruan C, Workman JL, Simpson RT (October 2005). 715:cell will switch to an α cell by replacing the 544:locus in a diploid cell, leaving only a single 88:. This mating type is determined by a specific 4770:"Adaptive value of sex in microbial pathogens" 4040: 4038: 1337: 1335: 4663:Staleva L, Hall A, Orlow SJ (December 2004). 4243:Houston P, Simon PJ, Broach JR (March 2004). 2811:Gartner A, Nasmyth K, Ammerer G (July 1992). 2294:Lee K, Neigeborn L, Kaufman RJ (April 2003). 1666: 1664: 1454: 1452: 1450: 1448: 1446: 385:Differences between haploid and diploid cells 8: 3466:"Gene Rearrangement in Eukaryotic Organisms" 1516: 1514: 1512: 1510: 1508: 1506: 1504: 1342:Merlini L, Dudin O, Martin SG (March 2013). 1053:interactions are still under investigation. 250:(Ste2) which binds to α-factor and triggers 4712: 4710: 4708: 3556:Laney JD, Hochstrasser M (September 2003). 1290:Michaelis S, Barrowman J (September 2012). 132:. Furthermore, certain yeast species, like 4831:(Fifth ed.). WH Freeman and Col, NY. 4110:Microbiology and Molecular Biology Reviews 2251:Microbiology and Molecular Biology Reviews 1296:Microbiology and Molecular Biology Reviews 1044:cells to incorrectly repair using HMR. In 862:The process of mating type switching is a 726:allele. This replacement of one allele of 468:allele and another chromosome bearing the 230:and α cells are due to a different set of 4688: 4639: 4582: 4470: 4460: 4415: 4366: 4317: 4268: 4219: 4178: 4129: 4080: 4070: 4018: 3969: 3920: 3871: 3861: 3820: 3771: 3722: 3640: 3630: 3581: 3532: 3522: 3440: 3430: 3381: 3324: 3267: 3210: 3134: 3085: 3036: 2987: 2977: 2936: 2887: 2877: 2828: 2787: 2738: 2689: 2640: 2548: 2499: 2450: 2401: 2311: 2270: 2129: 2080: 2070: 1978: 1937: 1927: 1886: 1837: 1827: 1782: 1772: 1688: 1595: 1546: 1484: 1426: 1416: 1367: 1315: 1266: 1010:to α. Similarly, an α cell which has its 363:) which causes the cell to be an α cell. 3291:Gonçalves-Sá J, Murray A (August 2011). 3164:Theses and Dissertations (Comprehensive) 2002:Watkinson SC, Boddy L, Money NP (2016). 967:Directionality of the mating type switch 929:, filling in a new allele of either the 830:. Only the allele present at the active 442:and thus can only possess one allele of 3177:Liu X, Bardwell L, Nie Q (April 2010). 2715:"Type 2C protein phosphatases in fungi" 1961:Voth WP, Stillman DJ (September 2003). 1175: 3668:. Boca Raton: CRC Press. p. 174. 3234:Bhaduri S, Pryciak PM (October 2011). 1344:"Mate and fuse: how yeast cells do it" 1036:This is the result of the action of a 3666:Handbook of nucleic acid purification 1726:10.1128/microbiolspec.MDNA3-0013-2014 411:Like the differences between haploid 377:do have a functional and distinct MAT 68:cells, which contain a single set of 7: 2203:Encyclopedia of Biological Chemistry 940:gene. Thus, the silenced alleles of 858:Yeast mating type promoter structure 4614:Bernstein C, Johns V (April 1989). 4390:Dodson AE, Rine J (November 2016). 4208:The Journal of Biological Chemistry 2966:The Journal of Biological Chemistry 2300:The Journal of Biological Chemistry 850:Mechanics of the mating type switch 392:cells are one of two mating types ( 242:cells activate genes which produce 4880:Andrew Murray's Seminar: Yeast Sex 2664:Chen RE, Thorner J (August 2007). 2353:10.1016/B978-0-12-369391-4.X5000-0 2341:Handbook of Models for Human Aging 2022:10.1016/B978-0-12-382034-1.00004-9 60:(baker's yeast) are single-celled 14: 4777:Infection, Genetics and Evolution 1142:, a conserved homologue of genes 195:which signals the presence of an 172:Differences between a and α cells 168:: two a spores and two α spores. 80:and 'α', each producing specific 34:with shmoo responding to α-factor 4310:10.1128/MCB.25.19.8476-8485.2005 4104:Pâques F, Haber JE (June 1999). 1459:Hanson SJ, Wolfe KH (May 2017). 4632:10.1128/jb.171.4.1893-1897.1989 408:to produce four haploid cells. 116:to produce new haploid spores. 4298:Molecular and Cellular Biology 4122:10.1128/MMBR.63.2.349-404.1999 3158:Malek H, Long T (2019-01-01). 2263:10.1128/MMBR.64.4.746-785.2000 2216:10.1016/B0-12-443710-9/00723-7 691:locus on yeast chromosome III. 199:cell to neighbouring α cells. 1: 4851:Saccharomyces Genome Database 4669:Molecular Biology of the Cell 3724:10.1016/S0960-9822(06)00012-1 3464:Brenner S, Miller JH (2001). 3115:Molecular Biology of the Cell 3017:Molecular Biology of the Cell 2768:Molecular Biology of the Cell 2529:Molecular Biology of the Cell 2480:Molecular Biology of the Cell 2431:Molecular Biology of the Cell 2104:Zill OA, Rine J (June 2008). 1690:10.1016/S0092-8674(03)00885-7 1619:Brenner S, Miller JH (2001). 814:allele present at the active 703:: the silent mating cassettes 4797:10.1016/j.meegid.2008.01.002 4171:10.1016/j.celrep.2015.10.063 3901:Genome Biology and Evolution 3863:10.1371/journal.pgen.1008627 3632:10.1371/journal.pcbi.1005843 3432:10.1371/journal.pcbi.1004795 2879:10.1371/journal.pcbi.1003175 2682:10.1016/j.bbamcr.2007.05.003 2633:10.1016/j.celrep.2018.03.135 2196:Lennarz WJ, Lane MD (2004). 2072:10.1371/journal.pone.0152558 1418:10.1371/journal.pcbi.1004988 1105:locus is similar to that in 4567:"Fusion of a fission yeast" 4408:10.1534/genetics.116.194696 4261:10.1534/genetics.166.3.1187 3764:10.1534/genetics.110.122531 3066:The Journal of Cell Biology 2394:10.1093/embo-reports/kve132 2198:"Transcriptional Silencing" 1539:10.1534/genetics.111.134577 1477:10.1534/genetics.117.202036 505:The alleles present at the 16:Biological process of yeast 4931: 3611:PLOS Computational Biology 3411:PLOS Computational Biology 3203:10.1016/j.bpj.2009.12.4307 2858:PLOS Computational Biology 1749:"Meiosis in haploid yeast" 1397:PLOS Computational Biology 1243:"Meiosis in budding yeast" 4565:Davey J (December 1998). 4445:Fed with High-Sugar Diet" 3962:10.1007/s00294-018-0900-2 3317:10.1016/j.cub.2011.06.054 3260:10.1016/j.cub.2011.08.033 1210:10.1385/1-59259-210-4:009 1093:Schizosaccharomyces pombe 524:allele can be added to a 135:Schizosaccharomyces pombe 64:that can exist as either 44:yeast sexual reproduction 3746:Klar AJ (October 2010). 3697:Shore D (January 1997). 3470:Encyclopedia of Genetics 2979:10.1074/jbc.AC117.000548 1810:Saccharomyces cerevisiae 1626:Encyclopedia of Genetics 1259:10.1093/genetics/iyad125 905:Once HO cuts the DNA at 668:mating type will remain 566:heterotrimeric G protein 164:to produce four haploid 57:Saccharomyces cerevisiae 54:species. Yeasts such as 27:Saccharomyces cerevisiae 4681:10.1091/mbc.e04-02-0142 4620:Journal of Bacteriology 4443:Drosophila melanogaster 4347:Genes & Development 4072:10.1073/pnas.0304170101 3999:Genes & Development 3562:Genes & Development 3127:10.1091/mbc.E20-02-0125 3029:10.1091/mbc.e15-03-0176 2929:10.15698/mic2019.05.677 2817:Genes & Development 2780:10.1091/mbc.e15-01-0037 2541:10.1091/mbc.E18-12-0793 2492:10.1091/mbc.e09-06-0472 2443:10.1091/mbc.E18-07-0424 2110:Genes & Development 1967:Genes & Development 1122:Cryptococcus neoformans 1115:Cryptococcus neoformans 866:event initiated by the 711:locus. For example, an 679:Location of the silent 141:Cryptococcus neoformans 4827:Molecular Cell Biology 4462:10.3390/antiox10081197 4359:10.1101/gad.12.11.1726 4221:10.1074/jbc.M308671200 4011:10.1101/gad.13.11.1412 3801:Nucleic Acids Research 3482:10.1006/rwgn.2001.0518 2313:10.1074/jbc.M210475200 1929:10.1186/1471-2164-5-59 1879:10.1093/femsyr/foab058 1774:10.1073/pnas.79.9.2986 1720:(2): MDNA3–0013–2014. 1639:10.1006/rwgn.2001.0162 1038:recombination enhancer 1002:being repaired to the 986:allele present at the 859: 692: 636: 323:encodes a gene called 246:-factor and produce a 181: 86:sexual differentiation 35: 3354:Nature Communications 3078:10.1083/jcb.201901155 1714:Microbiology Spectrum 1521:Haber JE (May 2012). 1308:10.1128/MMBR.00010-12 1057:Mating and inbreeding 857: 678: 634: 627:Mating type switching 515:genetic manipulations 248:cell surface receptor 179: 98:genetic recombination 24: 4542:Evolutionary Biology 3476:. pp. 798–800. 2830:10.1101/gad.6.7.1280 2347:. pp. 191–205. 2210:. pp. 200–203. 1829:10.3390/biom11081223 1633:. pp. 275–278. 1156:double-strand breaks 687:loci and the active 226:differences between 4789:2008InfGE...8..267M 4739:10.1038/nature03448 4731:2005Natur.434.1017L 4725:(7036): 1017–1021. 4214:(49): 48727–48734. 4063:2004PNAS..101.1632B 3715:1997CBio....7..R24S 3623:2017PLSCB..13E5843W 3574:10.1101/gad.1115703 3524:10.7554/eLife.55336 3423:2016PLSCB..12E4795M 3374:10.1038/ncomms12590 3366:2016NatCo...712590B 3309:2011CBio...21.1337G 3252:2011CBio...21.1615B 3195:2010BpJ....98.1396L 3183:Biophysical Journal 2972:(50): 20354–20361. 2870:2013PLSCB...9E3175M 2731:10.1128/EC.00249-10 2594:10.1038/nature08946 2586:2010Natur.465..101M 2306:(14): 11818–11827. 2167:1980Natur.283..811L 2122:10.1101/gad.1640008 2063:2016PLoSO..1152558B 2016:. pp. 99–139. 1980:10.1101/gad.1142103 1867:FEMS Yeast Research 1765:1982PNAS...79.2986W 1409:2016PLSCB..12E4988C 1360:10.1098/rsob.130008 788:allele. The silent 191:-factor', a mating 110:reproduce asexually 4905:Molecular genetics 3913:10.1093/gbe/evz010 3813:10.1093/nar/gkq689 1202:Two-Hybrid Systems 998:. This results in 990:locus, the cut at 971:The repair of the 860: 826:allele present at 818:locus is still an 693: 637: 339:) that defines an 207:cartoon character 182: 50:and adaptation in 36: 4915:Sexual dimorphism 4900:Molecular biology 4838:978-0-7167-4366-8 4675:(12): 5574–5582. 4577:(16): 1529–1566. 4353:(11): 1726–1737. 4304:(19): 8476–8485. 4005:(11): 1412–1421. 3807:(22): 7991–8000. 3568:(18): 2259–2270. 3491:978-0-12-227080-2 3303:(16): 1337–1346. 3246:(19): 1615–1623. 3121:(12): 1232–1245. 3072:(11): 3730–3752. 3023:(18): 3343–3358. 2774:(18): 3359–3371. 2580:(7294): 101–105. 2437:(22): 2720–2736. 2362:978-0-12-369391-4 2225:978-0-12-443710-4 2161:(5750): 811–812. 2116:(12): 1704–1716. 2031:978-0-12-382034-1 1973:(18): 2201–2204. 1648:978-0-12-227080-2 1146:in bacteria, and 1101:structure of the 734:copy of both the 288:mating-type locus 254:within the cell. 130:genetic variation 48:genetic diversity 4922: 4862: 4860: 4858: 4842: 4830: 4809: 4808: 4774: 4765: 4759: 4758: 4714: 4703: 4702: 4692: 4660: 4654: 4653: 4643: 4626:(4): 1893–1897. 4611: 4605: 4604: 4586: 4562: 4556: 4555: 4537: 4531: 4530: 4505:(9): 1077–1081. 4494: 4485: 4484: 4474: 4464: 4436: 4430: 4429: 4419: 4402:(3): 1065–1074. 4387: 4381: 4380: 4370: 4338: 4332: 4331: 4321: 4289: 4283: 4282: 4272: 4255:(3): 1187–1197. 4240: 4234: 4233: 4223: 4199: 4193: 4192: 4182: 4165:(9): 1855–1867. 4150: 4144: 4143: 4133: 4101: 4095: 4094: 4084: 4074: 4057:(6): 1632–1637. 4042: 4033: 4032: 4022: 3990: 3984: 3983: 3973: 3950:Current Genetics 3941: 3935: 3934: 3924: 3892: 3886: 3885: 3875: 3865: 3856:(10): e1008627. 3841: 3835: 3834: 3824: 3792: 3786: 3785: 3775: 3743: 3737: 3736: 3726: 3694: 3688: 3687: 3661: 3655: 3654: 3644: 3634: 3617:(11): e1005843. 3602: 3596: 3595: 3585: 3553: 3547: 3546: 3536: 3526: 3502: 3496: 3495: 3461: 3455: 3454: 3444: 3434: 3402: 3396: 3395: 3385: 3345: 3339: 3338: 3328: 3288: 3282: 3281: 3271: 3231: 3225: 3224: 3214: 3189:(8): 1396–1407. 3174: 3168: 3167: 3155: 3149: 3148: 3138: 3106: 3100: 3099: 3089: 3057: 3051: 3050: 3040: 3008: 3002: 3001: 2991: 2981: 2957: 2951: 2950: 2940: 2908: 2902: 2901: 2891: 2881: 2849: 2843: 2842: 2832: 2823:(7): 1280–1292. 2808: 2802: 2801: 2791: 2759: 2753: 2752: 2742: 2710: 2704: 2703: 2693: 2676:(8): 1311–1340. 2661: 2655: 2654: 2644: 2627:(5): 1504–1515. 2612: 2606: 2605: 2569: 2563: 2562: 2552: 2535:(8): 1037–1049. 2520: 2514: 2513: 2503: 2471: 2465: 2464: 2454: 2422: 2416: 2415: 2405: 2373: 2367: 2366: 2335:Conn PM (2006). 2332: 2326: 2325: 2315: 2291: 2285: 2284: 2274: 2242: 2236: 2235: 2233: 2232: 2193: 2187: 2186: 2175:10.1038/283811a0 2150: 2144: 2143: 2133: 2101: 2095: 2094: 2084: 2074: 2042: 2036: 2035: 2012:(3rd ed.). 1999: 1993: 1992: 1982: 1958: 1952: 1951: 1941: 1931: 1907: 1901: 1900: 1890: 1858: 1852: 1851: 1841: 1831: 1803: 1797: 1796: 1786: 1776: 1759:(9): 2986–2990. 1744: 1738: 1737: 1709: 1703: 1702: 1692: 1668: 1659: 1658: 1656: 1655: 1621:"Cassette Model" 1616: 1610: 1609: 1599: 1588:10.1002/mbo3.361 1576:MicrobiologyOpen 1567: 1561: 1560: 1550: 1518: 1499: 1498: 1488: 1456: 1441: 1440: 1430: 1420: 1388: 1382: 1381: 1371: 1339: 1330: 1329: 1319: 1287: 1281: 1280: 1270: 1238: 1232: 1231: 1197: 1191: 1180: 896:DNA endonuclease 765:allele, and the 722:allele with the 592:scaffold protein 559:Decision to mate 491:, whether it is 483:1 gene) and the 374:Candida albicans 42:, also known as 4930: 4929: 4925: 4924: 4923: 4921: 4920: 4919: 4885: 4884: 4870: 4865: 4856: 4854: 4845: 4839: 4822: 4818: 4816:Further reading 4813: 4812: 4772: 4767: 4766: 4762: 4716: 4715: 4706: 4662: 4661: 4657: 4613: 4612: 4608: 4564: 4563: 4559: 4552: 4539: 4538: 4534: 4499:Nature Genetics 4496: 4495: 4488: 4438: 4437: 4433: 4389: 4388: 4384: 4340: 4339: 4335: 4291: 4290: 4286: 4242: 4241: 4237: 4201: 4200: 4196: 4152: 4151: 4147: 4103: 4102: 4098: 4044: 4043: 4036: 3992: 3991: 3987: 3943: 3942: 3938: 3894: 3893: 3889: 3843: 3842: 3838: 3794: 3793: 3789: 3745: 3744: 3740: 3703:Current Biology 3696: 3695: 3691: 3676: 3663: 3662: 3658: 3604: 3603: 3599: 3555: 3554: 3550: 3504: 3503: 3499: 3492: 3463: 3462: 3458: 3417:(4): e1004795. 3404: 3403: 3399: 3347: 3346: 3342: 3297:Current Biology 3290: 3289: 3285: 3240:Current Biology 3233: 3232: 3228: 3176: 3175: 3171: 3157: 3156: 3152: 3108: 3107: 3103: 3059: 3058: 3054: 3010: 3009: 3005: 2959: 2958: 2954: 2910: 2909: 2905: 2864:(8): e1003175. 2851: 2850: 2846: 2810: 2809: 2805: 2761: 2760: 2756: 2719:Eukaryotic Cell 2712: 2711: 2707: 2663: 2662: 2658: 2614: 2613: 2609: 2571: 2570: 2566: 2522: 2521: 2517: 2473: 2472: 2468: 2424: 2423: 2419: 2375: 2374: 2370: 2363: 2334: 2333: 2329: 2293: 2292: 2288: 2244: 2243: 2239: 2230: 2228: 2226: 2195: 2194: 2190: 2152: 2151: 2147: 2103: 2102: 2098: 2057:(4): e0152558. 2044: 2043: 2039: 2032: 2001: 2000: 1996: 1960: 1959: 1955: 1909: 1908: 1904: 1860: 1859: 1855: 1805: 1804: 1800: 1746: 1745: 1741: 1711: 1710: 1706: 1670: 1669: 1662: 1653: 1651: 1649: 1618: 1617: 1613: 1569: 1568: 1564: 1520: 1519: 1502: 1458: 1457: 1444: 1403:(7): e1004988. 1390: 1389: 1385: 1341: 1340: 1333: 1289: 1288: 1284: 1240: 1239: 1235: 1220: 1199: 1198: 1194: 1181: 1177: 1172: 1150:in eukaryotes. 1118: 1113:Self-mating in 1089: 1084: 1059: 969: 890:encoded by the 879: 864:gene conversion 852: 844:heterochromatin 842:, which form a 705: 629: 561: 387: 361:prepro-α-factor 335:and repressing 276: 234:being actively 174: 150: 121:gene expression 40:mating of yeast 17: 12: 11: 5: 4928: 4926: 4918: 4917: 4912: 4907: 4902: 4897: 4887: 4886: 4883: 4882: 4877: 4869: 4868:External links 4866: 4864: 4863: 4843: 4837: 4819: 4817: 4814: 4811: 4810: 4783:(3): 267–285. 4760: 4704: 4655: 4606: 4557: 4551:978-0306472619 4550: 4532: 4511:10.1038/ng1859 4486: 4431: 4382: 4333: 4284: 4235: 4194: 4145: 4116:(2): 349–404. 4096: 4034: 3985: 3956:(2): 351–362. 3936: 3907:(2): 572–585. 3887: 3836: 3787: 3758:(2): 443–449. 3738: 3709:(1): R24–R27. 3689: 3674: 3664:Liu D (2009). 3656: 3597: 3548: 3497: 3490: 3474:Academic Press 3456: 3397: 3340: 3283: 3226: 3169: 3150: 3101: 3052: 3003: 2952: 2923:(5): 217–256. 2917:Microbial Cell 2903: 2844: 2803: 2754: 2705: 2656: 2607: 2564: 2515: 2486:(3): 489–498. 2466: 2417: 2388:(7): 574–579. 2368: 2361: 2345:Academic Press 2327: 2286: 2257:(4): 746–785. 2237: 2224: 2208:Academic Press 2188: 2145: 2096: 2037: 2030: 2014:Academic Press 1994: 1953: 1902: 1853: 1798: 1739: 1704: 1683:(4): 389–399. 1660: 1647: 1631:Academic Press 1611: 1582:(4): 670–686. 1562: 1500: 1442: 1383: 1331: 1302:(3): 626–651. 1282: 1233: 1218: 1192: 1174: 1173: 1171: 1168: 1117: 1111: 1088: 1085: 1083: 1080: 1058: 1055: 1018:, copying the 979:cell cuts the 968: 965: 877: 851: 848: 704: 694: 628: 625: 620: 619: 616: 613: 560: 557: 386: 383: 275: 268: 187:cells produce 173: 170: 149: 146: 15: 13: 10: 9: 6: 4: 3: 2: 4927: 4916: 4913: 4911: 4908: 4906: 4903: 4901: 4898: 4896: 4893: 4892: 4890: 4881: 4878: 4875: 4872: 4871: 4867: 4853:. SGD Project 4852: 4848: 4844: 4840: 4834: 4829: 4828: 4821: 4820: 4815: 4806: 4802: 4798: 4794: 4790: 4786: 4782: 4778: 4771: 4764: 4761: 4756: 4752: 4748: 4744: 4740: 4736: 4732: 4728: 4724: 4720: 4713: 4711: 4709: 4705: 4700: 4696: 4691: 4686: 4682: 4678: 4674: 4670: 4666: 4659: 4656: 4651: 4647: 4642: 4637: 4633: 4629: 4625: 4621: 4617: 4610: 4607: 4602: 4598: 4594: 4590: 4585: 4580: 4576: 4572: 4568: 4561: 4558: 4553: 4547: 4543: 4536: 4533: 4528: 4524: 4520: 4516: 4512: 4508: 4504: 4500: 4493: 4491: 4487: 4482: 4478: 4473: 4468: 4463: 4458: 4454: 4450: 4446: 4444: 4435: 4432: 4427: 4423: 4418: 4413: 4409: 4405: 4401: 4397: 4393: 4386: 4383: 4378: 4374: 4369: 4364: 4360: 4356: 4352: 4348: 4344: 4337: 4334: 4329: 4325: 4320: 4315: 4311: 4307: 4303: 4299: 4295: 4288: 4285: 4280: 4276: 4271: 4266: 4262: 4258: 4254: 4250: 4246: 4239: 4236: 4231: 4227: 4222: 4217: 4213: 4209: 4205: 4198: 4195: 4190: 4186: 4181: 4176: 4172: 4168: 4164: 4160: 4156: 4149: 4146: 4141: 4137: 4132: 4127: 4123: 4119: 4115: 4111: 4107: 4100: 4097: 4092: 4088: 4083: 4078: 4073: 4068: 4064: 4060: 4056: 4052: 4048: 4041: 4039: 4035: 4030: 4026: 4021: 4016: 4012: 4008: 4004: 4000: 3996: 3989: 3986: 3981: 3977: 3972: 3967: 3963: 3959: 3955: 3951: 3947: 3940: 3937: 3932: 3928: 3923: 3918: 3914: 3910: 3906: 3902: 3898: 3891: 3888: 3883: 3879: 3874: 3869: 3864: 3859: 3855: 3851: 3850:PLOS Genetics 3847: 3840: 3837: 3832: 3828: 3823: 3818: 3814: 3810: 3806: 3802: 3798: 3791: 3788: 3783: 3779: 3774: 3769: 3765: 3761: 3757: 3753: 3749: 3742: 3739: 3734: 3730: 3725: 3720: 3716: 3712: 3708: 3704: 3700: 3693: 3690: 3685: 3681: 3677: 3675:9781420070972 3671: 3667: 3660: 3657: 3652: 3648: 3643: 3638: 3633: 3628: 3624: 3620: 3616: 3612: 3608: 3601: 3598: 3593: 3589: 3584: 3579: 3575: 3571: 3567: 3563: 3559: 3552: 3549: 3544: 3540: 3535: 3530: 3525: 3520: 3516: 3512: 3508: 3501: 3498: 3493: 3487: 3483: 3479: 3475: 3471: 3467: 3460: 3457: 3452: 3448: 3443: 3438: 3433: 3428: 3424: 3420: 3416: 3412: 3408: 3401: 3398: 3393: 3389: 3384: 3379: 3375: 3371: 3367: 3363: 3359: 3355: 3351: 3344: 3341: 3336: 3332: 3327: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3294: 3287: 3284: 3279: 3275: 3270: 3265: 3261: 3257: 3253: 3249: 3245: 3241: 3237: 3230: 3227: 3222: 3218: 3213: 3208: 3204: 3200: 3196: 3192: 3188: 3184: 3180: 3173: 3170: 3165: 3161: 3154: 3151: 3146: 3142: 3137: 3132: 3128: 3124: 3120: 3116: 3112: 3105: 3102: 3097: 3093: 3088: 3083: 3079: 3075: 3071: 3067: 3063: 3056: 3053: 3048: 3044: 3039: 3034: 3030: 3026: 3022: 3018: 3014: 3007: 3004: 2999: 2995: 2990: 2985: 2980: 2975: 2971: 2967: 2963: 2956: 2953: 2948: 2944: 2939: 2934: 2930: 2926: 2922: 2918: 2914: 2907: 2904: 2899: 2895: 2890: 2885: 2880: 2875: 2871: 2867: 2863: 2859: 2855: 2848: 2845: 2840: 2836: 2831: 2826: 2822: 2818: 2814: 2807: 2804: 2799: 2795: 2790: 2785: 2781: 2777: 2773: 2769: 2765: 2758: 2755: 2750: 2746: 2741: 2736: 2732: 2728: 2724: 2720: 2716: 2709: 2706: 2701: 2697: 2692: 2687: 2683: 2679: 2675: 2671: 2667: 2660: 2657: 2652: 2648: 2643: 2638: 2634: 2630: 2626: 2622: 2618: 2611: 2608: 2603: 2599: 2595: 2591: 2587: 2583: 2579: 2575: 2568: 2565: 2560: 2556: 2551: 2546: 2542: 2538: 2534: 2530: 2526: 2519: 2516: 2511: 2507: 2502: 2497: 2493: 2489: 2485: 2481: 2477: 2470: 2467: 2462: 2458: 2453: 2448: 2444: 2440: 2436: 2432: 2428: 2421: 2418: 2413: 2409: 2404: 2399: 2395: 2391: 2387: 2383: 2379: 2372: 2369: 2364: 2358: 2354: 2350: 2346: 2342: 2338: 2331: 2328: 2323: 2319: 2314: 2309: 2305: 2301: 2297: 2290: 2287: 2282: 2278: 2273: 2268: 2264: 2260: 2256: 2252: 2248: 2241: 2238: 2227: 2221: 2217: 2213: 2209: 2205: 2204: 2199: 2192: 2189: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2149: 2146: 2141: 2137: 2132: 2127: 2123: 2119: 2115: 2111: 2107: 2100: 2097: 2092: 2088: 2083: 2078: 2073: 2068: 2064: 2060: 2056: 2052: 2048: 2041: 2038: 2033: 2027: 2023: 2019: 2015: 2011: 2010: 2005: 1998: 1995: 1990: 1986: 1981: 1976: 1972: 1968: 1964: 1957: 1954: 1949: 1945: 1940: 1935: 1930: 1925: 1921: 1917: 1913: 1906: 1903: 1898: 1894: 1889: 1884: 1880: 1876: 1872: 1868: 1864: 1857: 1854: 1849: 1845: 1840: 1835: 1830: 1825: 1821: 1817: 1813: 1811: 1802: 1799: 1794: 1790: 1785: 1780: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1743: 1740: 1735: 1731: 1727: 1723: 1719: 1715: 1708: 1705: 1700: 1696: 1691: 1686: 1682: 1678: 1674: 1667: 1665: 1661: 1650: 1644: 1640: 1636: 1632: 1628: 1627: 1622: 1615: 1612: 1607: 1603: 1598: 1593: 1589: 1585: 1581: 1577: 1573: 1566: 1563: 1558: 1554: 1549: 1544: 1540: 1536: 1532: 1528: 1524: 1517: 1515: 1513: 1511: 1509: 1507: 1505: 1501: 1496: 1492: 1487: 1482: 1478: 1474: 1470: 1466: 1462: 1455: 1453: 1451: 1449: 1447: 1443: 1438: 1434: 1429: 1424: 1419: 1414: 1410: 1406: 1402: 1398: 1394: 1387: 1384: 1379: 1375: 1370: 1365: 1361: 1357: 1354:(3): 130008. 1353: 1349: 1345: 1338: 1336: 1332: 1327: 1323: 1318: 1313: 1309: 1305: 1301: 1297: 1293: 1286: 1283: 1278: 1274: 1269: 1264: 1260: 1256: 1252: 1248: 1244: 1237: 1234: 1229: 1225: 1221: 1219:1-59259-210-4 1215: 1211: 1207: 1203: 1196: 1193: 1189: 1185: 1179: 1176: 1169: 1167: 1165: 1164:C. neoformans 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1132:C. neoformans 1128: 1127:C. neoformans 1124: 1123: 1116: 1112: 1110: 1108: 1107:S. cerevisiae 1104: 1099: 1095: 1094: 1087:Fission yeast 1086: 1082:Special cases 1081: 1079: 1076: 1072: 1071: 1064: 1063:S. cerevisiae 1056: 1054: 1051: 1047: 1043: 1039: 1034: 1032: 1028: 1024: 1023: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 984: 978: 974: 966: 964: 962: 958: 954: 950: 946: 945: 939: 935: 934: 928: 924: 920: 916: 912: 908: 903: 901: 897: 893: 889: 885: 881: 873: 869: 865: 856: 849: 847: 845: 841: 837: 833: 829: 825: 821: 817: 813: 812: 806: 801: 799: 795: 791: 787: 786: 780: 776: 772: 768: 764: 760: 756: 752: 748: 745:alleles: the 744: 740: 739: 733: 729: 725: 721: 720: 714: 710: 702: 698: 695: 690: 686: 682: 677: 673: 671: 667: 663: 659: 655: 650: 646: 642: 633: 626: 624: 617: 614: 611: 610: 609: 606: 602: 599: 595: 593: 589: 585: 582: 577: 575: 571: 567: 558: 556: 554: 550: 549: 543: 538: 534: 533: 527: 523: 522: 516: 512: 508: 503: 501: 497: 496: 490: 486: 482: 478: 477: 471: 467: 466: 460: 456: 452: 451: 445: 441: 437: 432: 430: 426: 422: 418: 414: 409: 407: 403: 399: 395: 391: 384: 382: 380: 376: 375: 370: 366: 365:S. cerevisiae 362: 358: 355:, repressing 354: 350: 346: 342: 338: 334: 330: 326: 322: 318: 317: 310: 308: 304: 300: 299: 293: 289: 285: 281: 273: 269: 267: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 220: 218: 214: 210: 206: 202: 198: 194: 190: 186: 178: 171: 169: 167: 163: 159: 155: 147: 145: 143: 142: 137: 136: 131: 127: 122: 117: 115: 111: 107: 103: 99: 95: 91: 90:genetic locus 87: 83: 79: 75: 71: 67: 63: 59: 58: 53: 49: 45: 41: 33: 29: 28: 23: 19: 4855:. Retrieved 4850: 4826: 4780: 4776: 4763: 4722: 4718: 4672: 4668: 4658: 4623: 4619: 4609: 4574: 4570: 4560: 4541: 4535: 4502: 4498: 4452: 4449:Antioxidants 4448: 4442: 4434: 4399: 4395: 4385: 4350: 4346: 4336: 4301: 4297: 4287: 4252: 4248: 4238: 4211: 4207: 4197: 4162: 4159:Cell Reports 4158: 4148: 4113: 4109: 4099: 4054: 4050: 4002: 3998: 3988: 3953: 3949: 3939: 3904: 3900: 3890: 3853: 3849: 3839: 3804: 3800: 3790: 3755: 3751: 3741: 3706: 3702: 3692: 3665: 3659: 3614: 3610: 3600: 3565: 3561: 3551: 3514: 3510: 3500: 3469: 3459: 3414: 3410: 3400: 3360:(1): 12590. 3357: 3353: 3343: 3300: 3296: 3286: 3243: 3239: 3229: 3186: 3182: 3172: 3163: 3153: 3118: 3114: 3104: 3069: 3065: 3055: 3020: 3016: 3006: 2969: 2965: 2955: 2920: 2916: 2906: 2861: 2857: 2847: 2820: 2816: 2806: 2771: 2767: 2757: 2725:(1): 21–33. 2722: 2718: 2708: 2673: 2669: 2659: 2624: 2621:Cell Reports 2620: 2610: 2577: 2573: 2567: 2532: 2528: 2518: 2483: 2479: 2469: 2434: 2430: 2420: 2385: 2382:EMBO Reports 2381: 2371: 2340: 2330: 2303: 2299: 2289: 2254: 2250: 2240: 2229:. Retrieved 2202: 2191: 2158: 2154: 2148: 2113: 2109: 2099: 2054: 2050: 2040: 2008: 1997: 1970: 1966: 1956: 1919: 1916:BMC Genomics 1915: 1905: 1870: 1866: 1856: 1819: 1816:Biomolecules 1815: 1809: 1801: 1756: 1752: 1742: 1717: 1713: 1707: 1680: 1676: 1652:. Retrieved 1625: 1614: 1579: 1575: 1565: 1533:(1): 33–64. 1530: 1526: 1468: 1464: 1400: 1396: 1386: 1351: 1348:Open Biology 1347: 1299: 1295: 1285: 1250: 1246: 1236: 1201: 1195: 1178: 1163: 1158:in DNA (see 1151: 1139: 1136:blastospores 1131: 1126: 1120: 1119: 1114: 1106: 1102: 1097: 1091: 1090: 1074: 1069: 1067: 1062: 1060: 1045: 1041: 1035: 1030: 1026: 1025:gene to the 1021: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 982: 980: 976: 972: 970: 960: 956: 952: 948: 943: 941: 937: 932: 930: 926: 922: 914: 911:exonucleases 906: 904: 899: 891: 871: 867: 861: 840:SIR proteins 835: 831: 827: 823: 819: 815: 810: 808: 804: 802: 797: 793: 789: 784: 782: 778: 774: 770: 766: 762: 758: 754: 750: 746: 742: 737: 735: 727: 723: 718: 716: 712: 708: 706: 700: 696: 688: 684: 680: 669: 665: 661: 658:laboratories 648: 640: 638: 621: 607: 603: 600: 596: 578: 562: 552: 547: 545: 541: 536: 531: 529: 525: 520: 518: 506: 504: 499: 494: 492: 488: 484: 480: 479:allele (the 475: 473: 469: 464: 462: 458: 454: 449: 447: 443: 435: 433: 428: 424: 420: 412: 410: 393: 388: 378: 372: 368: 364: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 315: 313: 311: 306: 302: 297: 295: 291: 279: 277: 271: 263: 259: 255: 243: 239: 227: 221: 216: 212: 200: 196: 188: 184: 183: 157: 151: 148:Mating types 139: 133: 128:, enhancing 118: 93: 77: 74:mating types 55: 43: 39: 37: 31: 25: 18: 4455:(8): 1197. 1822:(8): 1223. 1471:(1): 9–32. 1184:font weight 951:present at 773:omothallic 753:omothallic 656:studied in 581:phosphatase 440:chromosomes 236:transcribed 126:outcrossing 70:chromosomes 30:mating the 4889:Categories 2231:2024-05-09 1654:2024-05-09 1188:italicized 1170:References 894:gene is a 884:cell cycle 870:gene. The 511:sufficient 509:locus are 417:phenotypic 359:producing 347:allele of 343:cell. The 319:allele of 224:phenotypic 102:cell cycle 82:pheromones 62:eukaryotes 3684:614294429 2009:The Fungi 1922:(1): 59. 252:signaling 193:pheromone 106:signaling 92:known as 4910:Mycology 4857:21 March 4805:18295550 4747:15846346 4699:15385622 4601:44652765 4519:16892060 4481:34439445 4426:27655944 4396:Genetics 4328:16166630 4279:15082540 4249:Genetics 4230:14506225 4189:26655901 4140:10357855 4091:14745027 4029:10364158 3980:30382337 3931:30668669 3882:33057400 3831:20699276 3782:20940334 3752:Genetics 3651:29121651 3592:12952895 3543:32338594 3451:27077831 3392:27557894 3335:21835624 3278:21945277 3221:20409458 3145:32293990 3096:31570500 3047:26179918 2998:29123025 2947:31114794 2898:23950701 2798:26179917 2749:21076010 2700:17604854 2651:29719261 2602:20400943 2559:30726174 2510:20016006 2461:30207829 2412:11463740 2322:12560331 2281:11104818 2140:18559484 2091:27065237 2051:PLOS ONE 1989:12975315 1948:15331021 1897:34791177 1848:34439889 1734:26104712 1699:14622594 1606:27150158 1557:22555442 1527:Genetics 1495:28476860 1465:Genetics 1437:27404800 1378:23466674 1326:22933563 1277:37616582 1268:10550323 1247:Genetics 1228:11530618 1098:S. pombe 919:repaired 732:silenced 446:(either 381:2 gene. 4785:Bibcode 4755:3195603 4727:Bibcode 4650:2703462 4593:9885154 4472:8388935 4417:5105842 4377:9620858 4319:1265738 4270:1470794 4180:4681004 4059:Bibcode 3971:6420890 3922:6394760 3873:7591073 3822:3001064 3773:2942867 3733:9072164 3711:Bibcode 3642:5697893 3619:Bibcode 3534:7282813 3442:4831791 3419:Bibcode 3383:5007329 3362:Bibcode 3326:3159855 3305:Bibcode 3269:3196376 3248:Bibcode 3212:2856190 3191:Bibcode 3136:7353153 3087:6829655 3038:4569322 2989:5733576 2938:6506691 2889:3738489 2866:Bibcode 2839:1628831 2789:4569323 2740:3019798 2691:2031910 2642:5987779 2582:Bibcode 2550:6589907 2501:2814793 2452:6249837 2403:1083946 2183:6987523 2163:Bibcode 2131:2428066 2082:4827841 2059:Bibcode 1888:8673824 1839:8394074 1793:7045878 1761:Bibcode 1597:4985600 1548:3338269 1486:5419495 1428:4942089 1405:Bibcode 1369:3718343 1317:3429625 1160:Meiosis 1048:cells, 963:locus. 888:protein 882:of the 800:locus. 654:strains 406:meiosis 402:Diploid 398:meiosis 390:Haploid 367:has an 290:called 284:alleles 205:Al Capp 162:meiosis 154:mitosis 114:meiosis 66:haploid 4895:Mating 4847:"Fus3" 4835:  4803:  4753:  4745:  4719:Nature 4697:  4690:532035 4687:  4648:  4641:209837 4638:  4599:  4591:  4548:  4527:783720 4525:  4517:  4479:  4469:  4424:  4414:  4375:  4368:316872 4365:  4326:  4316:  4277:  4267:  4228:  4187:  4177:  4138:  4128:  4089:  4082:341799 4079:  4027:  4020:316758 4017:  3978:  3968:  3929:  3919:  3880:  3870:  3829:  3819:  3780:  3770:  3731:  3682:  3672:  3649:  3639:  3590:  3583:196463 3580:  3541:  3531:  3488:  3449:  3439:  3390:  3380:  3333:  3323:  3276:  3266:  3219:  3209:  3143:  3133:  3094:  3084:  3045:  3035:  2996:  2986:  2945:  2935:  2896:  2886:  2837:  2796:  2786:  2747:  2737:  2698:  2688:  2649:  2639:  2600:  2574:Nature 2557:  2547:  2508:  2498:  2459:  2449:  2410:  2400:  2359:  2320:  2279:  2269:  2222:  2181:  2155:Nature 2138:  2128:  2089:  2079:  2028:  1987:  1946:  1939:517709 1936:  1895:  1885:  1846:  1836:  1791:  1784:346333 1781:  1732:  1697:  1645:  1604:  1594:  1555:  1545:  1493:  1483:  1435:  1425:  1376:  1366:  1324:  1314:  1275:  1265:  1226:  1216:  886:. The 777:ating 757:ating 645:colony 266:cell. 222:These 166:spores 4773:(PDF) 4751:S2CID 4597:S2CID 4571:Yeast 4523:S2CID 4131:98970 3511:eLife 2272:99013 1873:(8). 1253:(2). 1190:text. 1148:RAD51 880:phase 357:STE2, 286:of a 274:locus 232:genes 209:Shmoo 52:yeast 4859:2014 4833:ISBN 4801:PMID 4743:PMID 4695:PMID 4646:PMID 4589:PMID 4546:ISBN 4515:PMID 4477:PMID 4422:PMID 4373:PMID 4324:PMID 4275:PMID 4226:PMID 4185:PMID 4136:PMID 4087:PMID 4025:PMID 3976:PMID 3927:PMID 3878:PMID 3827:PMID 3778:PMID 3729:PMID 3680:OCLC 3670:ISBN 3647:PMID 3588:PMID 3539:PMID 3486:ISBN 3447:PMID 3388:PMID 3331:PMID 3274:PMID 3217:PMID 3141:PMID 3092:PMID 3043:PMID 2994:PMID 2943:PMID 2894:PMID 2835:PMID 2794:PMID 2745:PMID 2696:PMID 2674:1773 2647:PMID 2598:PMID 2555:PMID 2506:PMID 2457:PMID 2408:PMID 2357:ISBN 2318:PMID 2277:PMID 2220:ISBN 2179:PMID 2136:PMID 2087:PMID 2026:ISBN 1985:PMID 1944:PMID 1893:PMID 1844:PMID 1789:PMID 1730:PMID 1695:PMID 1677:Cell 1643:ISBN 1602:PMID 1553:PMID 1491:PMID 1433:PMID 1374:PMID 1322:PMID 1273:PMID 1224:PMID 1214:ISBN 1152:Dmc1 1144:RecA 1140:dmc1 1075:MATα 1073:and 1050:Mcm1 1012:MATα 1004:MATα 955:and 949:MATα 947:and 938:MATα 824:MATα 792:and 763:MATα 743:MATα 741:and 724:MATα 699:and 683:and 590:, a 588:Ste5 584:Ptc1 574:Fus3 570:MAPK 553:MATα 537:MATα 535:and 526:MATα 517:, a 500:MATα 485:MATα 470:MATα 455:MATα 429:IME1 353:STE3 345:MATα 337:STE3 333:STE2 312:The 303:MATα 270:The 138:and 38:The 4793:doi 4735:doi 4723:434 4685:PMC 4677:doi 4636:PMC 4628:doi 4624:171 4579:doi 4507:doi 4467:PMC 4457:doi 4412:PMC 4404:doi 4400:204 4363:PMC 4355:doi 4314:PMC 4306:doi 4265:PMC 4257:doi 4253:166 4216:doi 4212:278 4175:PMC 4167:doi 4126:PMC 4118:doi 4077:PMC 4067:doi 4055:101 4015:PMC 4007:doi 3966:PMC 3958:doi 3917:PMC 3909:doi 3868:PMC 3858:doi 3817:PMC 3809:doi 3768:PMC 3760:doi 3756:186 3719:doi 3637:PMC 3627:doi 3578:PMC 3570:doi 3529:PMC 3519:doi 3478:doi 3437:PMC 3427:doi 3378:PMC 3370:doi 3321:PMC 3313:doi 3264:PMC 3256:doi 3207:PMC 3199:doi 3131:PMC 3123:doi 3082:PMC 3074:doi 3070:218 3033:PMC 3025:doi 2984:PMC 2974:doi 2970:292 2933:PMC 2925:doi 2884:PMC 2874:doi 2825:doi 2784:PMC 2776:doi 2735:PMC 2727:doi 2686:PMC 2678:doi 2637:PMC 2629:doi 2590:doi 2578:465 2545:PMC 2537:doi 2496:PMC 2488:doi 2447:PMC 2439:doi 2398:PMC 2390:doi 2349:doi 2308:doi 2304:278 2267:PMC 2259:doi 2212:doi 2171:doi 2159:283 2126:PMC 2118:doi 2077:PMC 2067:doi 2018:doi 1975:doi 1934:PMC 1924:doi 1883:PMC 1875:doi 1834:PMC 1824:doi 1779:PMC 1769:doi 1722:doi 1685:doi 1681:115 1635:doi 1592:PMC 1584:doi 1543:PMC 1535:doi 1531:191 1481:PMC 1473:doi 1469:206 1423:PMC 1413:doi 1364:PMC 1356:doi 1312:PMC 1304:doi 1263:PMC 1255:doi 1251:225 1206:doi 1103:MAT 1068:MAT 1027:MAT 1020:MAT 1016:HMR 1000:MAT 996:HML 992:MAT 988:MAT 981:MAT 973:MAT 961:MAT 957:HMR 953:HML 942:MAT 936:or 931:MAT 927:HMR 925:or 923:HML 915:MAT 907:MAT 900:MAT 836:MAT 832:MAT 828:HML 816:MAT 809:MAT 805:MAT 798:MAT 794:HMR 790:HML 783:MAT 767:HMR 747:HML 736:MAT 728:MAT 717:MAT 709:MAT 701:HMR 697:HML 689:MAT 685:HMR 681:HML 551:or 546:MAT 542:MAT 530:MAT 519:MAT 507:MAT 498:or 493:MAT 489:MAT 474:MAT 463:MAT 453:or 448:MAT 444:MAT 436:MAT 349:MAT 321:MAT 314:MAT 301:or 296:MAT 292:MAT 272:MAT 94:MAT 4891:: 4849:. 4799:. 4791:. 4779:. 4775:. 4749:. 4741:. 4733:. 4721:. 4707:^ 4693:. 4683:. 4673:15 4671:. 4667:. 4644:. 4634:. 4622:. 4618:. 4595:. 4587:. 4575:14 4573:. 4569:. 4521:. 4513:. 4503:38 4501:. 4489:^ 4475:. 4465:. 4453:10 4451:. 4447:. 4420:. 4410:. 4398:. 4394:. 4371:. 4361:. 4351:12 4349:. 4345:. 4322:. 4312:. 4302:25 4300:. 4296:. 4273:. 4263:. 4251:. 4247:. 4224:. 4210:. 4206:. 4183:. 4173:. 4163:13 4161:. 4157:. 4134:. 4124:. 4114:63 4112:. 4108:. 4085:. 4075:. 4065:. 4053:. 4049:. 4037:^ 4023:. 4013:. 4003:13 4001:. 3997:. 3974:. 3964:. 3954:65 3952:. 3948:. 3925:. 3915:. 3905:11 3903:. 3899:. 3876:. 3866:. 3854:16 3852:. 3848:. 3825:. 3815:. 3805:38 3803:. 3799:. 3776:. 3766:. 3754:. 3750:. 3727:. 3717:. 3705:. 3701:. 3678:. 3645:. 3635:. 3625:. 3615:13 3613:. 3609:. 3586:. 3576:. 3566:17 3564:. 3560:. 3537:. 3527:. 3517:. 3513:. 3509:. 3484:. 3472:. 3468:. 3445:. 3435:. 3425:. 3415:12 3413:. 3409:. 3386:. 3376:. 3368:. 3356:. 3352:. 3329:. 3319:. 3311:. 3301:21 3299:. 3295:. 3272:. 3262:. 3254:. 3244:21 3242:. 3238:. 3215:. 3205:. 3197:. 3187:98 3185:. 3181:. 3162:. 3139:. 3129:. 3119:31 3117:. 3113:. 3090:. 3080:. 3068:. 3064:. 3041:. 3031:. 3021:26 3019:. 3015:. 2992:. 2982:. 2968:. 2964:. 2941:. 2931:. 2919:. 2915:. 2892:. 2882:. 2872:. 2860:. 2856:. 2833:. 2819:. 2815:. 2792:. 2782:. 2772:26 2770:. 2766:. 2743:. 2733:. 2723:10 2721:. 2717:. 2694:. 2684:. 2672:. 2668:. 2645:. 2635:. 2625:23 2623:. 2619:. 2596:. 2588:. 2576:. 2553:. 2543:. 2533:30 2531:. 2527:. 2504:. 2494:. 2484:21 2482:. 2478:. 2455:. 2445:. 2435:29 2433:. 2429:. 2406:. 2396:. 2384:. 2380:. 2355:. 2343:. 2339:. 2316:. 2302:. 2298:. 2275:. 2265:. 2255:64 2253:. 2249:. 2218:. 2206:. 2200:. 2177:. 2169:. 2157:. 2134:. 2124:. 2114:22 2112:. 2108:. 2085:. 2075:. 2065:. 2055:11 2053:. 2049:. 2024:. 2006:. 1983:. 1971:17 1969:. 1965:. 1942:. 1932:. 1918:. 1914:. 1891:. 1881:. 1871:21 1869:. 1865:. 1842:. 1832:. 1820:11 1818:. 1814:. 1787:. 1777:. 1767:. 1757:79 1755:. 1751:. 1728:. 1716:. 1693:. 1679:. 1675:. 1663:^ 1641:. 1629:. 1623:. 1600:. 1590:. 1578:. 1574:. 1551:. 1541:. 1529:. 1525:. 1503:^ 1489:. 1479:. 1467:. 1463:. 1445:^ 1431:. 1421:. 1411:. 1401:12 1399:. 1395:. 1372:. 1362:. 1350:. 1346:. 1334:^ 1320:. 1310:. 1300:76 1298:. 1294:. 1271:. 1261:. 1249:. 1245:. 1222:. 1212:. 1033:. 909:, 892:HO 872:HO 868:HO 662:HO 576:. 425:HO 400:. 294:: 76:, 4861:. 4841:. 4807:. 4795:: 4787:: 4781:8 4757:. 4737:: 4729:: 4701:. 4679:: 4652:. 4630:: 4603:. 4581:: 4554:. 4529:. 4509:: 4483:. 4459:: 4428:. 4406:: 4379:. 4357:: 4330:. 4308:: 4281:. 4259:: 4232:. 4218:: 4191:. 4169:: 4142:. 4120:: 4093:. 4069:: 4061:: 4031:. 4009:: 3982:. 3960:: 3933:. 3911:: 3884:. 3860:: 3833:. 3811:: 3784:. 3762:: 3735:. 3721:: 3713:: 3707:7 3686:. 3653:. 3629:: 3621:: 3594:. 3572:: 3545:. 3521:: 3515:9 3494:. 3480:: 3453:. 3429:: 3421:: 3394:. 3372:: 3364:: 3358:7 3337:. 3315:: 3307:: 3280:. 3258:: 3250:: 3223:. 3201:: 3193:: 3166:. 3147:. 3125:: 3098:. 3076:: 3049:. 3027:: 3000:. 2976:: 2949:. 2927:: 2921:6 2900:. 2876:: 2868:: 2862:9 2841:. 2827:: 2821:6 2800:. 2778:: 2751:. 2729:: 2702:. 2680:: 2653:. 2631:: 2604:. 2592:: 2584:: 2561:. 2539:: 2512:. 2490:: 2463:. 2441:: 2414:. 2392:: 2386:2 2365:. 2351:: 2324:. 2310:: 2283:. 2261:: 2234:. 2214:: 2185:. 2173:: 2165:: 2142:. 2120:: 2093:. 2069:: 2061:: 2034:. 2020:: 1991:. 1977:: 1950:. 1926:: 1920:5 1899:. 1877:: 1850:. 1826:: 1812:" 1795:. 1771:: 1763:: 1736:. 1724:: 1718:3 1701:. 1687:: 1657:. 1637:: 1608:. 1586:: 1580:5 1559:. 1537:: 1497:. 1475:: 1439:. 1415:: 1407:: 1380:. 1358:: 1352:3 1328:. 1306:: 1279:. 1257:: 1230:. 1208:: 1070:a 1046:a 1042:a 1031:a 1022:a 1008:a 983:a 977:a 944:a 933:a 878:1 876:G 820:a 811:a 785:a 779:r 775:m 771:h 769:( 759:l 755:m 751:h 749:( 738:a 719:a 713:a 670:a 666:a 649:a 641:a 548:a 532:a 521:a 495:a 481:a 476:a 465:a 459:a 450:a 421:a 413:a 394:a 379:a 369:a 341:a 329:a 325:a 316:a 307:a 298:a 280:a 264:a 260:a 256:a 244:a 240:a 228:a 217:a 213:a 201:a 197:a 189:a 185:a 158:a 78:a 32:a

Index


Saccharomyces cerevisiae
genetic diversity
yeast
Saccharomyces cerevisiae
eukaryotes
haploid
chromosomes
mating types
pheromones
sexual differentiation
genetic locus
genetic recombination
cell cycle
signaling
reproduce asexually
meiosis
gene expression
outcrossing
genetic variation
Schizosaccharomyces pombe
Cryptococcus neoformans
mitosis
meiosis
spores

pheromone
Al Capp
Shmoo
phenotypic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.