Knowledge (XXG)

Mattis–Bardeen theory

Source 📝

1510: 976: 1505:{\displaystyle {\frac {\alpha _{s}}{\alpha _{n}}}={\frac {2}{\hbar \omega }}\int _{\Delta }^{\infty }{{\frac {\left}{(E^{2}-\Delta ^{2})^{1/2}^{1/2}}}dE}{-}\Theta (\hbar \omega -2\Delta ){\frac {1}{\hbar \omega }}\int _{\Delta -\hbar \omega }^{-\Delta }{{\frac {\left}{(E^{2}-\Delta ^{2})^{1/2}^{1/2}}}dE}} 1556:
should be conserved through the transition. This result implies that the missing area of the spectral weight is concentrated in the zero frequency limit, corresponding to the dirac delta function (which covers the conduction of the superconducting condensate, i.e. the Cooper pairs). Many experimental
969:
In finite temperature condition, the response of electrons due to the incident electromagnetic wave can be regarded as two parts, the “superconducting” and “normal” electrons. The first one corresponds to the superconducting ground state and the next to the thermally excited electrons from the ground
466:
In the superconducting state, each term of the Hamiltonian is dependent, because of the superconducting state consists of a phase-coherent superposition of occupied one-electron states, whereas it is independent in the normal state. Therefore, there appear interference terms in the absolute square of
461: 823: 227: 629: 27:
It was derived to explain the anomalous skin effect of superconductors. Originally, the anomalous skin effect indicates the non-classical response of metals to high frequency electromagnetic field in low temperature, which was solved by
964: 36:) fails because of the enhancement of the mean free path of the electrons in a good metal. Not only the normal metals, but superconductors also show the anomalous skin effect which has to be considered with the 1572:, microwave or far-infrared spectroscopy is suitable technique applying this theory. With the Mattis–Bardeen theory, we can derive fruitful properties of the superconducting gap, like gap symmetry. 640: 319: 890: 1544:
is the Heaviside theta function. The first term of the upper equation is the contribution of "normal" electrons, and the second term is due to the superconducting electrons.
70: 853: 1542: 970:
state. This picture is the so-called "two-fluid" model. If we consider the “normal” electrons, the ratio of the optical conductivity to the one of the normal state is
2071: 492: 311: 284: 257: 532: 512: 898: 1804: 1741: 1557:
data supports the prediction. This story on electrodynamics of superconductivity is the starting point of optical study. Because any superconducting
1779: 2163: 1901: 2011: 2099: 1820: 818:{\displaystyle \alpha _{s}=\int {\left|M\right|^{2}F(\Delta ,E,E+\hbar \omega )N_{s}(E)N_{s}(E+\hbar \omega )\times {\rm {}}}dE} 2016: 1734: 1799: 1643: 1769: 2140: 1992: 1936: 1911: 2042: 1971: 1987: 1906: 1774: 2194: 2094: 2089: 1727: 456:{\displaystyle H_{1}=\sum \limits _{k\sigma ,k'\sigma '}{B_{k'\sigma ',k\sigma }c_{k'\sigma '}^{*}}c_{k'\sigma '}} 2047: 56:
arises, and the dispersion relation can be described like the one of a semiconductor with band gap 2Δ around the
1830: 1881: 1589:
D. C. Mattis; J. Bardeen (1958). "Theory of the Anomalous Skin Effect in Normal and Superconducting Metals".
2173: 2032: 1964: 2084: 2057: 2037: 1959: 1954: 222:{\displaystyle \alpha _{s}=\int {\left|M_{s}\right|^{2}N_{s}(E)N_{s}(E+\hbar \omega )\times {\rm {}}}dE} 52:). After the transition to the superconducting state, the superconducting gap 2Δ in the single-particle 2158: 858: 2114: 1668: 1600: 2145: 1896: 1856: 1684: 831: 29: 1518: 32:. At sufficiently low temperatures and high frequencies, the classically predicted skin depth ( 1921: 1750: 1639: 61: 53: 21: 2130: 2104: 1876: 1851: 1784: 1676: 1631: 1608: 1553: 2153: 470: 289: 262: 235: 24:. It is commonly applied in the research field of optical spectroscopy on superconductors. 1886: 1591: 624:{\displaystyle F(\Delta ,E,E')={\frac {1}{2}}\left(1\pm {\frac {\Delta ^{2}}{EE'}}\right)} 48:
The most clear fact the BCS theory gives is the presence of the pairing of two electrons (
1672: 1604: 1891: 1835: 1825: 1789: 497: 959:{\displaystyle {\frac {\alpha _{s}}{\alpha _{n}}}={\frac {\sigma _{1s}}{\sigma _{n}}}} 828:
where the transition rate can be translated to real part of the complex conductivity,
2188: 1688: 1926: 1916: 1871: 1866: 57: 2052: 1861: 49: 33: 1764: 37: 1635: 1612: 467:
the matrix element. The result of the coherence changes the matrix element
2079: 1564:
never exceeds 200K and the superconducting gap value is about the 3.5
855:, because the electrodynamic energy absorption is proportional to the 1680: 1719: 1628:
Electrodynamics of Solids: Optical Properties of Electrons in Matter
2135: 2109: 1552:
The calculated optical conductivity breaks the sum rule that the
2168: 1723: 20:
is a theory that describes the electrodynamic properties of
1659:
R. G. Chambers (1950). "Anomalous Skin Effect in Metals".
1714:
Electrodynamics of Solids and Microwave Superconductivity
1521: 979: 901: 861: 834: 643: 535: 500: 473: 322: 292: 265: 238: 73: 286:
is the matrix element of an interaction Hamiltonian
2123: 2070: 2025: 2001: 1980: 1944: 1935: 1844: 1813: 1757: 1536: 1504: 958: 884: 847: 817: 623: 506: 486: 455: 305: 278: 251: 221: 64:, the transition probabilities can be written as 1735: 514:of single electron and the coherence factors 8: 1941: 1742: 1728: 1720: 1520: 1482: 1478: 1468: 1455: 1423: 1419: 1409: 1396: 1340: 1328: 1317: 1316: 1309: 1308: 1299: 1285: 1266: 1237: 1217: 1213: 1203: 1190: 1158: 1154: 1144: 1131: 1069: 1057: 1046: 1045: 1038: 1037: 1031: 1026: 1007: 996: 986: 980: 978: 948: 935: 929: 918: 908: 902: 900: 876: 866: 860: 839: 833: 805: 804: 735: 716: 673: 660: 648: 642: 595: 589: 568: 534: 499: 478: 472: 434: 423: 405: 373: 368: 340: 327: 321: 297: 291: 270: 264: 243: 237: 209: 208: 139: 120: 110: 100: 90: 78: 72: 1626:Dressel, Martin; Grüner, George (2002). 38:theory of Bardeen, Cooper and Schrieffer 1581: 1445: 1375: 1322: 1292: 1272: 1248: 1180: 1110: 1051: 1013: 792: 750: 703: 196: 154: 7: 337: 44:Response to an electromagnetic wave 1522: 1465: 1406: 1337: 1303: 1286: 1260: 1242: 1200: 1141: 1066: 1032: 1027: 685: 592: 542: 14: 1707:Introduction to Superconductivity 885:{\displaystyle \sigma _{1}E^{2}} 1531: 1525: 1475: 1452: 1436: 1433: 1416: 1389: 1384: 1381: 1366: 1351: 1263: 1245: 1210: 1187: 1171: 1168: 1151: 1124: 1119: 1116: 1101: 1092: 1086: 1080: 801: 798: 783: 774: 768: 762: 756: 741: 728: 722: 709: 682: 562: 539: 259:is the density of states. And 205: 202: 187: 178: 172: 166: 160: 145: 132: 126: 1: 634:Then, the transition rate is 848:{\displaystyle \sigma _{1}} 2211: 2072:Technological applications 1537:{\displaystyle \Theta (x)} 1814:Characteristic parameters 1831:London penetration depth 1636:10.1017/CBO9780511606168 494:into the matrix element 2124:List of superconductors 2002:By critical temperature 1613:10.1103/PhysRev.111.412 1538: 1506: 960: 886: 849: 819: 625: 508: 488: 457: 307: 280: 253: 223: 1770:Bean's critical state 1539: 1507: 961: 887: 850: 820: 626: 509: 489: 487:{\displaystyle M_{s}} 458: 308: 306:{\displaystyle H_{1}} 281: 279:{\displaystyle M_{s}} 254: 252:{\displaystyle N_{s}} 224: 18:Mattis–Bardeen theory 1945:By magnetic response 1548:Use in optical study 1519: 977: 899: 859: 832: 641: 533: 498: 471: 320: 290: 263: 236: 71: 1897:persistent currents 1882:Little–Parks effect 1673:1950Natur.165..239C 1605:1958PhRv..111..412M 1307: 1036: 428: 1857:Andreev reflection 1852:Abrikosov vortices 1534: 1502: 1281: 1022: 956: 882: 845: 815: 621: 504: 484: 453: 401: 367: 303: 276: 249: 219: 34:normal skin effect 30:Robert G. Chambers 2195:Superconductivity 2182: 2181: 2100:quantum computing 2066: 2065: 1922:superdiamagnetism 1751:Superconductivity 1709:. Second edition. 1705:Michael Tinkham, 1667:(4189): 239–240. 1493: 1331: 1320: 1279: 1228: 1060: 1049: 1020: 1002: 954: 924: 614: 576: 507:{\displaystyle M} 336: 62:Fermi golden rule 54:density of states 22:superconductivity 2202: 2131:bilayer graphene 2105:Rutherford cable 2017:room temperature 2012:high temperature 1942: 1902:proximity effect 1877:Josephson effect 1821:coherence length 1744: 1737: 1730: 1721: 1693: 1692: 1681:10.1038/165239b0 1656: 1650: 1649: 1623: 1617: 1616: 1586: 1543: 1541: 1540: 1535: 1511: 1509: 1508: 1503: 1501: 1494: 1492: 1491: 1490: 1486: 1473: 1472: 1460: 1459: 1432: 1431: 1427: 1414: 1413: 1401: 1400: 1387: 1350: 1346: 1345: 1344: 1332: 1329: 1321: 1318: 1310: 1306: 1298: 1280: 1278: 1267: 1241: 1236: 1229: 1227: 1226: 1225: 1221: 1208: 1207: 1195: 1194: 1167: 1166: 1162: 1149: 1148: 1136: 1135: 1122: 1079: 1075: 1074: 1073: 1061: 1058: 1050: 1047: 1039: 1035: 1030: 1021: 1019: 1008: 1003: 1001: 1000: 991: 990: 981: 965: 963: 962: 957: 955: 953: 952: 943: 942: 930: 925: 923: 922: 913: 912: 903: 891: 889: 888: 883: 881: 880: 871: 870: 854: 852: 851: 846: 844: 843: 824: 822: 821: 816: 808: 807: 806: 740: 739: 721: 720: 678: 677: 672: 653: 652: 630: 628: 627: 622: 620: 616: 615: 613: 612: 600: 599: 590: 577: 569: 561: 513: 511: 510: 505: 493: 491: 490: 485: 483: 482: 462: 460: 459: 454: 452: 451: 450: 442: 429: 427: 422: 421: 413: 400: 399: 389: 381: 366: 365: 357: 332: 331: 312: 310: 309: 304: 302: 301: 285: 283: 282: 277: 275: 274: 258: 256: 255: 250: 248: 247: 228: 226: 225: 220: 212: 211: 210: 144: 143: 125: 124: 115: 114: 109: 105: 104: 83: 82: 2210: 2209: 2205: 2204: 2203: 2201: 2200: 2199: 2185: 2184: 2183: 2178: 2149: 2119: 2062: 2021: 2008:low temperature 1997: 1976: 1931: 1887:Meissner effect 1840: 1836:Silsbee current 1809: 1775:Ginzburg–Landau 1753: 1748: 1702: 1700:Further reading 1697: 1696: 1658: 1657: 1653: 1646: 1625: 1624: 1620: 1592:Physical Review 1588: 1587: 1583: 1578: 1569: 1562: 1554:spectral weight 1550: 1517: 1516: 1474: 1464: 1451: 1415: 1405: 1392: 1388: 1336: 1312: 1311: 1271: 1209: 1199: 1186: 1150: 1140: 1127: 1123: 1065: 1041: 1040: 1012: 992: 982: 975: 974: 944: 931: 914: 904: 897: 896: 872: 862: 857: 856: 835: 830: 829: 731: 712: 662: 661: 644: 639: 638: 605: 601: 591: 582: 578: 554: 531: 530: 496: 495: 474: 469: 468: 443: 435: 430: 414: 406: 382: 374: 369: 358: 350: 323: 318: 317: 293: 288: 287: 266: 261: 260: 239: 234: 233: 135: 116: 96: 92: 91: 74: 69: 68: 46: 12: 11: 5: 2208: 2206: 2198: 2197: 2187: 2186: 2180: 2179: 2177: 2176: 2171: 2166: 2161: 2156: 2151: 2147: 2143: 2138: 2133: 2127: 2125: 2121: 2120: 2118: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2085:electromagnets 2082: 2076: 2074: 2068: 2067: 2064: 2063: 2061: 2060: 2055: 2050: 2045: 2040: 2035: 2029: 2027: 2026:By composition 2023: 2022: 2020: 2019: 2014: 2009: 2005: 2003: 1999: 1998: 1996: 1995: 1993:unconventional 1990: 1984: 1982: 1981:By explanation 1978: 1977: 1975: 1974: 1969: 1968: 1967: 1962: 1957: 1948: 1946: 1939: 1937:Classification 1933: 1932: 1930: 1929: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1848: 1846: 1842: 1841: 1839: 1838: 1833: 1828: 1826:critical field 1823: 1817: 1815: 1811: 1810: 1808: 1807: 1802: 1797: 1795:Mattis–Bardeen 1792: 1787: 1782: 1780:Kohn–Luttinger 1777: 1772: 1767: 1761: 1759: 1755: 1754: 1749: 1747: 1746: 1739: 1732: 1724: 1718: 1717: 1712:Shu-Ang-Zhou, 1710: 1701: 1698: 1695: 1694: 1651: 1644: 1618: 1599:(2): 412–417. 1580: 1579: 1577: 1574: 1567: 1560: 1549: 1546: 1533: 1530: 1527: 1524: 1513: 1512: 1500: 1497: 1489: 1485: 1481: 1477: 1471: 1467: 1463: 1458: 1454: 1450: 1447: 1444: 1441: 1438: 1435: 1430: 1426: 1422: 1418: 1412: 1408: 1404: 1399: 1395: 1391: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1349: 1343: 1339: 1335: 1327: 1324: 1315: 1305: 1302: 1297: 1294: 1291: 1288: 1284: 1277: 1274: 1270: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1240: 1235: 1232: 1224: 1220: 1216: 1212: 1206: 1202: 1198: 1193: 1189: 1185: 1182: 1179: 1176: 1173: 1170: 1165: 1161: 1157: 1153: 1147: 1143: 1139: 1134: 1130: 1126: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1078: 1072: 1068: 1064: 1056: 1053: 1044: 1034: 1029: 1025: 1018: 1015: 1011: 1006: 999: 995: 989: 985: 967: 966: 951: 947: 941: 938: 934: 928: 921: 917: 911: 907: 879: 875: 869: 865: 842: 838: 826: 825: 814: 811: 803: 800: 797: 794: 791: 788: 785: 782: 779: 776: 773: 770: 767: 764: 761: 758: 755: 752: 749: 746: 743: 738: 734: 730: 727: 724: 719: 715: 711: 708: 705: 702: 699: 696: 693: 690: 687: 684: 681: 676: 671: 668: 665: 659: 656: 651: 647: 632: 631: 619: 611: 608: 604: 598: 594: 588: 585: 581: 575: 572: 567: 564: 560: 557: 553: 550: 547: 544: 541: 538: 503: 481: 477: 464: 463: 449: 446: 441: 438: 433: 426: 420: 417: 412: 409: 404: 398: 395: 392: 388: 385: 380: 377: 372: 364: 361: 356: 353: 349: 346: 343: 339: 335: 330: 326: 300: 296: 273: 269: 246: 242: 230: 229: 218: 215: 207: 204: 201: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 156: 153: 150: 147: 142: 138: 134: 131: 128: 123: 119: 113: 108: 103: 99: 95: 89: 86: 81: 77: 45: 42: 13: 10: 9: 6: 4: 3: 2: 2207: 2196: 2193: 2192: 2190: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2128: 2126: 2122: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2077: 2075: 2073: 2069: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2043:heavy fermion 2041: 2039: 2036: 2034: 2031: 2030: 2028: 2024: 2018: 2015: 2013: 2010: 2007: 2006: 2004: 2000: 1994: 1991: 1989: 1986: 1985: 1983: 1979: 1973: 1972:ferromagnetic 1970: 1966: 1963: 1961: 1958: 1956: 1953: 1952: 1950: 1949: 1947: 1943: 1940: 1938: 1934: 1928: 1925: 1923: 1920: 1918: 1917:supercurrents 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1849: 1847: 1843: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1818: 1816: 1812: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1762: 1760: 1756: 1752: 1745: 1740: 1738: 1733: 1731: 1726: 1725: 1722: 1715: 1711: 1708: 1704: 1703: 1699: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1655: 1652: 1647: 1641: 1637: 1633: 1629: 1622: 1619: 1614: 1610: 1606: 1602: 1598: 1594: 1593: 1585: 1582: 1575: 1573: 1571: 1563: 1555: 1547: 1545: 1528: 1498: 1495: 1487: 1483: 1479: 1469: 1461: 1456: 1448: 1442: 1439: 1428: 1424: 1420: 1410: 1402: 1397: 1393: 1378: 1372: 1369: 1363: 1360: 1357: 1354: 1347: 1341: 1333: 1325: 1313: 1300: 1295: 1289: 1282: 1275: 1268: 1257: 1254: 1251: 1238: 1233: 1230: 1222: 1218: 1214: 1204: 1196: 1191: 1183: 1177: 1174: 1163: 1159: 1155: 1145: 1137: 1132: 1128: 1113: 1107: 1104: 1098: 1095: 1089: 1083: 1076: 1070: 1062: 1054: 1042: 1023: 1016: 1009: 1004: 997: 993: 987: 983: 973: 972: 971: 949: 945: 939: 936: 932: 926: 919: 915: 909: 905: 895: 894: 893: 877: 873: 867: 863: 840: 836: 812: 809: 795: 789: 786: 780: 777: 771: 765: 759: 753: 747: 744: 736: 732: 725: 717: 713: 706: 700: 697: 694: 691: 688: 679: 674: 669: 666: 663: 657: 654: 649: 645: 637: 636: 635: 617: 609: 606: 602: 596: 586: 583: 579: 573: 570: 565: 558: 555: 551: 548: 545: 536: 529: 528: 527: 525: 521: 517: 501: 479: 475: 447: 444: 439: 436: 431: 424: 418: 415: 410: 407: 402: 396: 393: 390: 386: 383: 378: 375: 370: 362: 359: 354: 351: 347: 344: 341: 333: 328: 324: 316: 315: 314: 298: 294: 271: 267: 244: 240: 216: 213: 199: 193: 190: 184: 181: 175: 169: 163: 157: 151: 148: 140: 136: 129: 121: 117: 111: 106: 101: 97: 93: 87: 84: 79: 75: 67: 66: 65: 63: 59: 55: 51: 43: 41: 39: 35: 31: 25: 23: 19: 2053:oxypnictides 1988:conventional 1927:superstripes 1872:flux pumping 1867:flux pinning 1862:Cooper pairs 1794: 1713: 1706: 1664: 1660: 1654: 1627: 1621: 1596: 1590: 1584: 1565: 1558: 1551: 1514: 968: 827: 633: 523: 519: 515: 465: 231: 58:Fermi energy 47: 26: 17: 15: 1912:SU(2) color 1892:Homes's law 1319:E(E +  1048:E(E +  60:. From the 50:Cooper pair 2048:iron-based 1907:reentrance 1645:0521592534 1576:References 1845:Phenomena 1523:Θ 1466:Δ 1462:− 1449:ω 1446:ℏ 1407:Δ 1403:− 1379:ω 1376:ℏ 1358:− 1338:Δ 1326:ω 1323:ℏ 1304:Δ 1301:− 1296:ω 1293:ℏ 1290:− 1287:Δ 1283:∫ 1276:ω 1273:ℏ 1261:Δ 1255:− 1252:ω 1249:ℏ 1243:Θ 1239:− 1201:Δ 1197:− 1184:ω 1181:ℏ 1142:Δ 1138:− 1114:ω 1111:ℏ 1096:− 1067:Δ 1055:ω 1052:ℏ 1033:∞ 1028:Δ 1024:∫ 1017:ω 1014:ℏ 994:α 984:α 946:σ 933:σ 916:α 906:α 864:σ 837:σ 796:ω 793:ℏ 778:− 760:× 754:ω 751:ℏ 707:ω 704:ℏ 686:Δ 658:∫ 646:α 593:Δ 587:± 543:Δ 445:σ 425:∗ 416:σ 397:σ 384:σ 360:σ 345:σ 338:∑ 200:ω 197:ℏ 182:− 164:× 158:ω 155:ℏ 88:∫ 76:α 2189:Category 2080:cryotron 2038:cuprates 2033:covalent 1790:Matthias 1758:Theories 1689:33268593 610:′ 559:′ 448:′ 440:′ 419:′ 411:′ 387:′ 379:′ 363:′ 355:′ 2174:more... 2058:organic 1669:Bibcode 1601:Bibcode 40:(BCS). 1951:Types 1785:London 1687:  1661:Nature 1642:  1515:where 313:where 232:where 2164:TBCCO 2136:BSCCO 2115:wires 2110:SQUID 1685:S2CID 2169:YBCO 2159:NbTi 2154:NbSn 2141:LBCO 1640:ISBN 16:The 2146:MgB 2095:NMR 2090:MRI 1965:1.5 1805:WHH 1800:RVB 1765:BCS 1677:doi 1665:165 1632:doi 1609:doi 1597:111 526:). 518:(Δ, 2191:: 1960:II 1683:. 1675:. 1663:. 1638:. 1630:. 1607:. 1595:. 892:. 524:E' 2148:2 1955:I 1743:e 1736:t 1729:v 1716:. 1691:. 1679:: 1671:: 1648:. 1634:: 1615:. 1611:: 1603:: 1570:T 1568:B 1566:k 1561:c 1559:T 1532:) 1529:x 1526:( 1499:E 1496:d 1488:2 1484:/ 1480:1 1476:] 1470:2 1457:2 1453:) 1443:+ 1440:E 1437:( 1434:[ 1429:2 1425:/ 1421:1 1417:) 1411:2 1398:2 1394:E 1390:( 1385:] 1382:) 1373:+ 1370:E 1367:( 1364:f 1361:2 1355:1 1352:[ 1348:] 1342:2 1334:+ 1330:) 1314:[ 1269:1 1264:) 1258:2 1246:( 1234:E 1231:d 1223:2 1219:/ 1215:1 1211:] 1205:2 1192:2 1188:) 1178:+ 1175:E 1172:( 1169:[ 1164:2 1160:/ 1156:1 1152:) 1146:2 1133:2 1129:E 1125:( 1120:] 1117:) 1108:+ 1105:E 1102:( 1099:f 1093:) 1090:E 1087:( 1084:f 1081:[ 1077:] 1071:2 1063:+ 1059:) 1043:[ 1010:2 1005:= 998:n 988:s 950:n 940:s 937:1 927:= 920:n 910:s 878:2 874:E 868:1 841:1 813:E 810:d 802:] 799:) 790:+ 787:E 784:( 781:f 775:) 772:E 769:( 766:f 763:[ 757:) 748:+ 745:E 742:( 737:s 733:N 729:) 726:E 723:( 718:s 714:N 710:) 701:+ 698:E 695:, 692:E 689:, 683:( 680:F 675:2 670:| 667:M 664:| 655:= 650:s 618:) 607:E 603:E 597:2 584:1 580:( 574:2 571:1 566:= 563:) 556:E 552:, 549:E 546:, 540:( 537:F 522:, 520:E 516:F 502:M 480:s 476:M 437:k 432:c 408:k 403:c 394:k 391:, 376:k 371:B 352:k 348:, 342:k 334:= 329:1 325:H 299:1 295:H 272:s 268:M 245:s 241:N 217:E 214:d 206:] 203:) 194:+ 191:E 188:( 185:f 179:) 176:E 173:( 170:f 167:[ 161:) 152:+ 149:E 146:( 141:s 137:N 133:) 130:E 127:( 122:s 118:N 112:2 107:| 102:s 98:M 94:| 85:= 80:s

Index

superconductivity
Robert G. Chambers
normal skin effect
theory of Bardeen, Cooper and Schrieffer
Cooper pair
density of states
Fermi energy
Fermi golden rule
spectral weight
Physical Review
Bibcode
1958PhRv..111..412M
doi
10.1103/PhysRev.111.412
doi
10.1017/CBO9780511606168
ISBN
0521592534
Bibcode
1950Natur.165..239C
doi
10.1038/165239b0
S2CID
33268593
v
t
e
Superconductivity
BCS
Bean's critical state

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.