Knowledge

Mayer–Vietoris sequence

Source 📝

4691: 4085: 4686:{\displaystyle {\begin{matrix}\cdots &H_{n+1}(X_{1})&\longrightarrow &H_{n}(A_{1}\cap B_{1})&\longrightarrow &H_{n}(A_{1})\oplus H_{n}(B_{1})&\longrightarrow &H_{n}(X_{1})&\longrightarrow &H_{n-1}(A_{1}\cap B_{1})&\longrightarrow &\cdots \\&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }&&f_{*}{\Bigg \downarrow }\\\cdots &H_{n+1}(X_{2})&\longrightarrow &H_{n}(A_{2}\cap B_{2})&\longrightarrow &H_{n}(A_{2})\oplus H_{n}(B_{2})&\longrightarrow &H_{n}(X_{2})&\longrightarrow &H_{n-1}(A_{2}\cap B_{2})&\longrightarrow &\cdots \\\end{matrix}}} 2227: 901: 3078: 153:, many other important (co)homology theories, especially singular (co)homology, are not computable directly from their definition for nontrivial spaces. For singular (co)homology, the singular (co)chains and (co)cycles groups are often too big to handle directly. More subtle and indirect approaches become necessary. The Mayer–Vietoris sequence is such an approach, giving partial information about the (co)homology groups of any space by relating it to the (co)homology groups of two of its subspaces and their intersection. 611: 1792: 2623: 3067: 3606: 2026: 325: 2612: 5535: 2423: 1404: 4012: 747: 5112: 2197: 2890: 124:
are constructed by piecing together very simple patches. Carefully choosing the two covering subspaces so that, together with their intersection, they have simpler (co)homology than that of the whole space may allow a complete deduction of the (co)homology of the space. In that respect, the
3329: 1878: 606:{\displaystyle \cdots \to H_{n+1}(X)\,\xrightarrow {\partial _{*}} \,H_{n}(A\cap B)\,\xrightarrow {\left({\begin{smallmatrix}i_{*}\\j_{*}\end{smallmatrix}}\right)} \,H_{n}(A)\oplus H_{n}(B)\,\xrightarrow {k_{*}-l_{*}} \,H_{n}(X)\,\xrightarrow {\partial _{*}} \,H_{n-1}(A\cap B)\to \cdots } 2443: 5933: 5327: 2297: 4895: 1185: 3833: 617: 6178: 4929: 2053: 3062:{\displaystyle {\tilde {H}}_{n}\left(S^{2}\vee S^{2}\right)\cong \delta _{2n}\,(\mathbb {Z} \oplus \mathbb {Z} )=\left\{{\begin{matrix}\mathbb {Z} \oplus \mathbb {Z} &{\mbox{if }}n=2,\\0&{\mbox{if }}n\neq 2.\end{matrix}}\right.} 2859: 830: 120:(co)homology. Because the (co)homology of most spaces cannot be computed directly from their definitions, one uses tools such as the Mayer–Vietoris sequence in the hope of obtaining partial information. Many spaces encountered in 211:
considered as the union of two cylinders. Vietoris later proved the full result for the homology groups in 1930 but did not express it as an exact sequence. The concept of an exact sequence only appeared in print in the 1952 book
1574: 3601:{\displaystyle \cdots \to H_{n}(A\cap B,C\cap D)\,{\xrightarrow {(i_{*},j_{*})}}\,H_{n}(A,C)\oplus H_{n}(B,D)\,{\xrightarrow {k_{*}-l_{*}}}\,H_{n}(X,Y)\,{\xrightarrow {\partial _{*}}}\,H_{n-1}(A\cap B,C\cap D)\to \cdots } 2428:
and the trivial part implies vanishing homology for dimensions greater than 2. The central map α sends 1 to (2, −2) since the boundary circle of a Möbius band wraps twice around the core circle. In particular α is
2021:{\displaystyle \cdots \longrightarrow 0\longrightarrow {\tilde {H}}_{n}\!\left(S^{k}\right)\,{\xrightarrow {\overset {}{\partial _{*}}}}\,{\tilde {H}}_{n-1}\!\left(S^{k-1}\right)\longrightarrow 0\longrightarrow \cdots } 5695: 1671: 2607:{\displaystyle {\tilde {H}}_{n}\left(X\right)\cong \delta _{1n}\,(\mathbb {Z} \oplus \mathbb {Z} _{2})={\begin{cases}\mathbb {Z} \oplus \mathbb {Z} _{2}&{\mbox{if }}n=1,\\0&{\mbox{if }}n\neq 1.\end{cases}}} 4900:
where the dimension preserving maps are restriction maps induced from inclusions, and the (co-)boundary maps are defined in a similar fashion to the homological version. There is also a relative formulation.
3253: 5790: 5530:{\displaystyle \cdots \to H_{c}^{n}(U\cap V)\,\xrightarrow {\delta } \,H_{c}^{n}(U)\oplus H_{c}^{n}(V)\,\xrightarrow {\Sigma } \,H_{c}^{n}(X)\,\xrightarrow {d^{*}} \,H_{c}^{n+1}(U\cap V)\to \cdots } 3757: 3825: 2418:{\displaystyle 0\rightarrow {\tilde {H}}_{2}(X)\rightarrow \mathbb {Z} \ {\xrightarrow {\overset {}{\alpha }}}\ \mathbb {Z} \oplus \mathbb {Z} \rightarrow \,{\tilde {H}}_{1}(X)\rightarrow 0} 1399:{\displaystyle \cdots \to {\tilde {H}}_{0}(A\cap B)\,{\xrightarrow {(i_{*},j_{*})}}\,{\tilde {H}}_{0}(A)\oplus {\tilde {H}}_{0}(B)\,{\xrightarrow {k_{*}-l_{*}}}\,{\tilde {H}}_{0}(X)\to 0.} 4007:{\displaystyle {\begin{matrix}X_{1}=A_{1}\cup B_{1}\\X_{2}=A_{2}\cup B_{2}\end{matrix}}\qquad {\text{and}}\qquad {\begin{matrix}f(A_{1})\subset A_{2}\\f(B_{1})\subset B_{2}\end{matrix}}} 4722: 74:, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a 5254: 742:{\displaystyle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \cdots \to H_{0}(A)\oplus H_{0}(B)\,{\xrightarrow {k_{*}-l_{*}}}\,H_{0}(X)\to 0.} 862: 6916:, Iwanami Series in Modern Mathematics, Translations of Mathematical Monographs, vol. 230 (Translated from the 2002 Japanese edition by Tamaki ed.), Providence, RI: 3664: 6063: 5107:{\displaystyle \cdots \to H^{n}(X)\,{\xrightarrow {\rho }}\,H^{n}(U)\oplus H^{n}(V)\,{\xrightarrow {\Delta }}\,H^{n}(U\cap V)\,{\xrightarrow {d^{*}}}\,H^{n+1}(X)\to \cdots } 4046: 5193: 2192:{\displaystyle {\tilde {H}}_{n}\!\left(S^{k}\right)\cong \delta _{kn}\,\mathbb {Z} ={\begin{cases}\mathbb {Z} &{\mbox{if }}n=k,\\0&{\mbox{if }}n\neq k,\end{cases}}} 1753: 184:
of the next. In general, this does not allow (co)homology groups of a space to be completely computed. However, because many important spaces encountered in topology are
1714: 5762: 5618: 1442: 886: 5722: 5166: 4073: 6593: 2751: 5742: 5598: 5578: 5558: 1773: 755: 196:, which are constructed by piecing together very simple patches, a theorem such as that of Mayer and Vietoris is potentially of broad and deep applicability. 7142: 1454: 5623: 1585: 7079: 6958: 6925: 6894: 6848: 6820: 6783: 6699: 6569: 6254:) in the case where the open cover used to compute the Čech cohomology consists of two open sets. This spectral sequence exists in arbitrary 5196: 3170: 7029: 6749: 6721: 6215: 149:
of a space, homology groups are important topological invariants. Although some (co)homology theories are computable using tools of
7063: 7021: 6950: 6691: 7056:
Séminaire de Géométrie Algébrique du Bois Marie – 1963–64 – Théorie des topos et cohomologie étale des schémas – (SGA 4) – Tome 2
199:
Mayer was introduced to topology by his colleague Vietoris when attending his lectures in 1926 and 1927 at a local university in
5928:{\displaystyle 0\to C_{n}(A\cap B)\,{\xrightarrow {\alpha }}\,C_{n}(A)\oplus C_{n}(B)\,{\xrightarrow {\beta }}\,C_{n}(A+B)\to 0} 6195: 1415: 126: 3667: 6187: 109: 7093: 6973: 6917: 6882: 7059: 3677: 889: 82: 6251: 6211: 3762: 2671: 2246:
A slightly more difficult application of the Mayer–Vietoris sequence is the calculation of the homology groups of the
900: 6840: 6812: 4890:{\displaystyle \cdots \to H^{n}(X;G)\to H^{n}(A;G)\oplus H^{n}(B;G)\to H^{n}(A\cap B;G)\to H^{n+1}(X;G)\to \cdots } 2226: 2207: 3077: 2206:. Such a complete understanding of the homology groups for spheres is in stark contrast with current knowledge of 3617: 2268: 301: 86: 75: 1414:
There is an analogy between the Mayer–Vietoris sequence (especially for homology groups of dimension 1) and the
7174: 161: 5219: 6886: 3121: 956: 7047: 3671: 2044: 835: 4713: 3102: 6173:{\displaystyle 0\to \Omega ^{n}(X)\to \Omega ^{n}(U)\oplus \Omega ^{n}(V)\to \Omega ^{n}(U\cap V)\to 0} 6206:
The derivation of the Mayer–Vietoris sequence from the Eilenberg–Steenrod axioms does not require the
5321:
For de Rham cohomology with compact supports, there exists a "flipped" version of the above sequence:
3623: 203:. He was told about the conjectured result and a way to its solution, and solved the question for the 6866: 6219: 5777: 185: 6741: 6735: 4021: 2528: 2433:
so homology of dimension 2 also vanishes. Finally, choosing (1, 0) and (1, −1) as a basis for
2125: 6878: 5773: 5171: 4706: 4702: 4076: 2667: 2231: 1833: 1677: 281: 249: 177: 165: 105: 101: 78: 51: 7110: 7051: 7039: 6998: 6587: 5257: 4920: 2430: 1722: 319:
For unreduced homology, the Mayer–Vietoris sequence states that the following sequence is exact:
189: 173: 35: 6239: 7151: 7075: 7025: 6990: 6954: 6942: 6921: 6900: 6890: 6844: 6816: 6779: 6745: 6731: 6717: 6695: 6575: 6565: 6247: 6243: 6055: 3296: 1717: 1683: 265: 237: 156:
The most natural and convenient way to express the relation involves the algebraic concept of
142: 130: 117: 93: 71: 55: 5747: 5603: 1421: 871: 7102: 7088: 7067: 6982: 6800: 6771: 6267: 6235: 2854:{\displaystyle {\tilde {H}}_{n}(K\vee L)\cong {\tilde {H}}_{n}(K)\oplus {\tilde {H}}_{n}(L)} 2036: 1869: 1164: 217: 181: 113: 67: 6935: 6858: 6793: 5700: 5195:
from above. It can be briefly described as follows. For a cohomology class represented by
5144: 4051: 6931: 6854: 6804: 6789: 6767: 6759: 6207: 6191: 4916: 2203: 825:{\displaystyle i:A\cap B\hookrightarrow A,j:A\cap B\hookrightarrow B,k:A\hookrightarrow X} 221: 97: 39: 2258: 3759:
such that the composition of pushforwards is the pushforward of a composition: that is,
5727: 5583: 5563: 5543: 1758: 1445: 1139:). Notice that the maps in the Mayer–Vietoris sequence depend on choosing an order for 157: 150: 146: 17: 7134: 7168: 7114: 7043: 7013: 7002: 6968: 6830: 6272: 5781: 2663: 1865: 865: 63: 6870: 2742: 2247: 1853: 1845: 204: 1791: 6186:
From a formal point of view, the Mayer–Vietoris sequence can be derived from the
1569:{\displaystyle H_{1}(X)\cong (H_{1}(A)\oplus H_{1}(B))/{\text{Ker}}(k_{*}-l_{*})} 4909: 2745:
by construction. The reduced version of the sequence then yields (by exactness)
416: 85:
of the (co)homology groups of the subspaces, and the (co)homology groups of the
31: 4430: 4410: 4390: 4370: 4350: 6775: 6683: 6054:
The same computation applied to the short exact sequences of vector spaces of
5130: 2622: 193: 7155: 6994: 6904: 1179:
intersection. The sequence is identical for positive dimensions and ends as:
1105:
lie in the same homology class; nor does choosing a different representative
224:, where the results of Mayer and Vietoris were expressed in the modern form. 6834: 6709: 6223: 2651: 1176: 6579: 5690:{\displaystyle \delta :\omega \mapsto (i_{*}^{U}\omega ,-i_{*}^{V}\omega )} 284:
relating the singular homology groups (with coefficient group the integers
2288: 2040: 1807: 169: 121: 6559: 3128:
of the top and bottom 'vertices' of the double cone, respectively. Then
1680:
statement of the Seifert–van Kampen theorem. Compare with the fact that
1666:{\displaystyle {\text{Ker}}(k_{*}-l_{*})\cong {\text{Im}}(i_{*},j_{*}).} 7106: 7071: 6986: 6250:
that relates Čech cohomology to sheaf cohomology (sometimes called the
4915:
and the underlying topological space has the additional structure of a
2234:
with appropriate edge identifications) decomposed as two Möbius strips
59: 47: 920:
is the sum of two 1-chains whose boundary lies in the intersection of
7091:(1930), "Über die Homologiegruppen der Vereinigung zweier Komplexe", 200: 5886: 5831: 5471: 5435: 5372: 5058: 5019: 4964: 3534: 3475: 3382: 2351: 1938: 1334: 1235: 686: 552: 501: 409: 365: 81:, whose entries are the (co)homology groups of the whole space, the 3274:− 1)-sphere, it is easy to derive the homology groups of the 1167:
there is also a Mayer–Vietoris sequence, under the assumption that
108:. In general, the sequence holds for those theories satisfying the 6255: 3076: 2621: 2271:
along their boundary circle (see illustration on the right). Then
2225: 1790: 899: 208: 6051:). This gives the Mayer–Vietoris sequence for singular homology. 3827:
The Mayer–Vietoris sequence is also natural in the sense that if
3248:{\displaystyle {\tilde {H}}_{n}(SY)\cong {\tilde {H}}_{n-1}(Y).} 936:
lowering the dimension may be defined as follows. An element in
133:, and a precise relation exists for homology of dimension one. 4018:
then the connecting morphism of the Mayer–Vietoris sequence,
1448:, the reduced Mayer–Vietoris sequence yields the isomorphism 27:
Algebraic tool for computing invariants of topological spaces
6183:
yields the Mayer–Vietoris sequence for de Rham cohomology.
3056: 2600: 2185: 6737:
A History of Algebraic and Differential Topology 1900–1960
2291:
to circles, so the nontrivial part of the sequence yields
1011:. This implies that the images of both these boundary ( 6714:
Modern Algebra and the Rise of Mathematical Structures
4090: 3929: 3838: 3037: 3009: 2990: 2582: 2554: 2164: 2136: 264:
need not be disjoint.) The Mayer–Vietoris sequence in
6066: 5984:) is the chain group consisting of sums of chains in 5793: 5750: 5730: 5703: 5626: 5606: 5586: 5566: 5546: 5330: 5222: 5174: 5147: 4932: 4725: 4088: 4054: 4024: 3836: 3765: 3680: 3626: 3332: 3173: 2893: 2754: 2446: 2300: 2056: 1881: 1761: 1725: 1686: 1588: 1457: 1424: 1188: 874: 838: 758: 620: 328: 3299:
form of the Mayer–Vietoris sequence also exists. If
3160:. Hence the Mayer–Vietoris sequence yields, for all 1840:− 1)-dimensional equatorial sphere. Since the 6397: 6395: 92:The Mayer–Vietoris sequence holds for a variety of 6172: 5927: 5756: 5736: 5716: 5689: 5612: 5592: 5572: 5552: 5529: 5248: 5187: 5160: 5106: 4889: 4685: 4067: 4040: 4006: 3819: 3752:{\displaystyle f_{*}:H_{k}(X_{1})\to H_{k}(X_{2})} 3751: 3658: 3600: 3247: 3061: 2853: 2606: 2417: 2191: 2020: 1767: 1747: 1708: 1665: 1568: 1436: 1398: 1147:. In particular, the boundary map changes sign if 880: 856: 824: 741: 605: 6533: 6371: 6359: 5724:extends a form with compact support to a form on 4716:to the homological version. It is the following: 3258:The illustration on the right shows the 1-sphere 2076: 1981: 1913: 7062:(in French), vol. 270, Berlin; Heidelberg: 3820:{\displaystyle (g\circ h)_{*}=g_{*}\circ h_{*}.} 70:. The method consists of splitting a space into 311:. There is an unreduced and a reduced version. 6877:, Israel Mathematical Conference Proceedings, 2662:, and suppose furthermore that the identified 1015:− 1)-cycles are contained in the intersection 959:for example, can be written as the sum of two 8: 7143:Notices of the American Mathematical Society 6382: 6380: 6238:, the Mayer–Vietoris sequence is related to 2031:Exactness immediately implies that the map ∂ 125:Mayer–Vietoris sequence is analogous to the 4701:The Mayer–Vietoris long exact sequence for 2880:. For this specific case, using the result 1410:Analogy with the Seifert–van Kampen theorem 6642: 6592:: CS1 maint: location missing publisher ( 6290: 4079:(the horizontal maps are the usual ones): 1806:To completely compute the homology of the 7042:(1972), "Cohomologie dans les topos", in 6312: 6143: 6121: 6099: 6077: 6065: 5898: 5893: 5881: 5880: 5865: 5843: 5838: 5826: 5825: 5804: 5792: 5749: 5729: 5708: 5702: 5675: 5670: 5651: 5646: 5625: 5605: 5585: 5565: 5545: 5494: 5489: 5484: 5476: 5466: 5451: 5446: 5441: 5430: 5415: 5410: 5388: 5383: 5378: 5367: 5346: 5341: 5329: 5240: 5227: 5221: 5179: 5173: 5152: 5146: 5077: 5072: 5063: 5053: 5052: 5031: 5026: 5014: 5013: 4998: 4976: 4971: 4959: 4958: 4943: 4931: 4854: 4820: 4792: 4764: 4736: 4724: 4660: 4647: 4628: 4608: 4595: 4575: 4562: 4546: 4533: 4513: 4500: 4487: 4467: 4448: 4429: 4428: 4422: 4409: 4408: 4402: 4389: 4388: 4382: 4369: 4368: 4362: 4349: 4348: 4342: 4314: 4301: 4282: 4262: 4249: 4229: 4216: 4200: 4187: 4167: 4154: 4141: 4121: 4102: 4089: 4087: 4059: 4053: 4029: 4023: 3994: 3978: 3958: 3942: 3928: 3922: 3911: 3898: 3885: 3871: 3858: 3845: 3837: 3835: 3808: 3795: 3782: 3764: 3740: 3727: 3711: 3698: 3685: 3679: 3650: 3637: 3625: 3553: 3548: 3539: 3529: 3528: 3507: 3502: 3493: 3480: 3470: 3469: 3448: 3420: 3415: 3403: 3390: 3377: 3376: 3343: 3331: 3221: 3210: 3209: 3187: 3176: 3175: 3172: 3036: 3008: 3002: 3001: 2994: 2993: 2989: 2975: 2974: 2967: 2966: 2962: 2953: 2935: 2922: 2907: 2896: 2895: 2892: 2836: 2825: 2824: 2805: 2794: 2793: 2768: 2757: 2756: 2753: 2581: 2553: 2545: 2541: 2540: 2532: 2531: 2523: 2511: 2507: 2506: 2498: 2497: 2493: 2484: 2460: 2449: 2448: 2445: 2394: 2383: 2382: 2380: 2373: 2372: 2365: 2364: 2346: 2339: 2338: 2320: 2309: 2308: 2299: 2163: 2135: 2129: 2128: 2120: 2113: 2112: 2111: 2102: 2085: 2070: 2059: 2058: 2055: 1990: 1969: 1958: 1957: 1955: 1944: 1933: 1932: 1922: 1907: 1896: 1895: 1880: 1760: 1730: 1724: 1691: 1685: 1651: 1638: 1626: 1614: 1601: 1589: 1587: 1557: 1544: 1532: 1527: 1509: 1487: 1462: 1456: 1423: 1375: 1364: 1363: 1361: 1352: 1339: 1329: 1328: 1313: 1302: 1301: 1282: 1271: 1270: 1268: 1256: 1243: 1230: 1229: 1208: 1197: 1196: 1187: 873: 837: 757: 718: 713: 704: 691: 681: 680: 665: 643: 619: 570: 565: 557: 547: 532: 527: 519: 506: 496: 481: 459: 454: 437: 423: 414: 404: 383: 378: 370: 360: 339: 327: 6869:(1999), "Emmy Noether and Topology", in 6688:Differential Forms in Algebraic Topology 6561:Differential forms in algebraic topology 6336: 6666: 6630: 6606: 6545: 6509: 6497: 6485: 6473: 6461: 6449: 6437: 6413: 6401: 6386: 6283: 5780:of chain groups (constituent groups of 5272:, for example. The exterior derivative 5249:{\displaystyle \omega _{U}-\omega _{V}} 207:in 1929. He applied his results to the 6618: 6585: 6521: 6425: 2868:. The illustration on the right shows 1027:() can be defined to be the class of ∂ 6654: 6347: 6324: 6301: 6000:whose images are contained in either 3307:and is the union of the interiors of 3148:contractible. Also, the intersection 3081:This decomposition of the suspension 7: 6971:(1929), "Über abstrakte Topologie", 2626:This decomposition of the wedge sum 857:{\displaystyle l:B\hookrightarrow X} 228:Basic versions for singular homology 6947:Algebraic Topology: An Introduction 6242:. Specifically, it arises from the 6008:generate all of the homology group 137:Background, motivation, and history 6912:Kōno, Akira; Tamaki, Dai (2006) , 6140: 6118: 6096: 6074: 5751: 5436: 5176: 5020: 4919:, the Mayer–Vietoris sequence for 4904:As an important special case when 4026: 3536: 3270:-sphere is the suspension of the ( 3262:as the suspension of the 0-sphere 3089:yields all the homology groups of 2638:yields all the homology groups of 1941: 1868:. The Mayer–Vietoris sequence for 1049:). Choosing another decomposition 904:Illustration of the boundary map ∂ 554: 367: 25: 6809:Foundations of Algebraic Topology 6216:extraordinary cohomology theories 5992:. It is a fact that the singular 5774:long exact sequence associated to 5296:and therefore together define an 5137:denotes the restriction map, and 4075:. That is, the following diagram 2253:. One uses the decomposition of 415: 214:Foundations of Algebraic Topology 112:, and it has variations for both 6252:Mayer–Vietoris spectral sequence 6210:, so in addition to existing in 5168:is defined similarly as the map 3659:{\displaystyle f:X_{1}\to X_{2}} 6196:long exact sequence in homology 3927: 3921: 3670:map, then there is a canonical 908:on the torus where the 1-cycle 632: 631: 630: 629: 628: 627: 626: 625: 624: 623: 622: 621: 7135:"Leopold Vietoris (1891–2002)" 6164: 6161: 6149: 6136: 6133: 6127: 6111: 6105: 6092: 6089: 6083: 6070: 5919: 5916: 5904: 5877: 5871: 5855: 5849: 5822: 5810: 5797: 5684: 5639: 5636: 5521: 5518: 5506: 5463: 5457: 5427: 5421: 5400: 5394: 5364: 5352: 5334: 5260:subordinate to the open cover 5098: 5095: 5089: 5049: 5037: 5010: 5004: 4988: 4982: 4955: 4949: 4936: 4881: 4878: 4866: 4847: 4844: 4826: 4813: 4810: 4798: 4782: 4770: 4757: 4754: 4742: 4729: 4671: 4666: 4640: 4619: 4614: 4601: 4586: 4581: 4568: 4552: 4539: 4524: 4519: 4493: 4478: 4473: 4460: 4325: 4320: 4294: 4273: 4268: 4255: 4240: 4235: 4222: 4206: 4193: 4178: 4173: 4147: 4132: 4127: 4114: 4041:{\displaystyle \partial _{*},} 3984: 3971: 3948: 3935: 3779: 3766: 3746: 3733: 3720: 3717: 3704: 3643: 3592: 3589: 3565: 3525: 3513: 3466: 3454: 3438: 3426: 3409: 3383: 3373: 3349: 3336: 3323:, then the exact sequence is: 3239: 3233: 3215: 3202: 3193: 3181: 2979: 2963: 2901: 2848: 2842: 2830: 2817: 2811: 2799: 2786: 2774: 2762: 2517: 2494: 2454: 2409: 2406: 2400: 2388: 2377: 2335: 2332: 2326: 2314: 2304: 2064: 2012: 2006: 1963: 1901: 1891: 1885: 1742: 1736: 1703: 1697: 1657: 1631: 1620: 1594: 1563: 1537: 1524: 1521: 1515: 1499: 1493: 1480: 1474: 1468: 1390: 1387: 1381: 1369: 1325: 1319: 1307: 1294: 1288: 1276: 1262: 1236: 1226: 1214: 1202: 1192: 947:) is the homology class of an 848: 816: 798: 774: 733: 730: 724: 677: 671: 655: 649: 636: 597: 594: 582: 544: 538: 493: 487: 471: 465: 401: 389: 357: 351: 332: 1: 7133:Reitberger, Heinrich (2002), 6918:American Mathematical Society 6883:American Mathematical Society 6534:Eilenberg & Steenrod 1952 6372:Eilenberg & Steenrod 1952 6360:Eilenberg & Steenrod 1952 5188:{\displaystyle \partial _{*}} 3279: 3266:. Noting in general that the 2881: 2218:about which little is known. 2035:is an isomorphism. Using the 1844:-dimensional hemispheres are 1716:is the abelianization of the 176:) between them such that the 7060:Lecture Notes in Mathematics 6875:The Heritage of Emmy Noether 6212:ordinary cohomology theories 5620:is the signed inclusion map 2872:as the sum of two 2-spheres 890:direct sum of abelian groups 6716:, Birkhäuser, p. 345, 6558:Bott, Raoul (16 May 1995). 5141:is the difference. The map 1748:{\displaystyle \pi _{1}(X)} 971:whose images lie wholly in 180:of one morphism equals the 58:. The result is due to two 7191: 7094:Monatshefte für Mathematik 6974:Monatshefte für Mathematik 6841:Cambridge University Press 6813:Princeton University Press 6609:, Proposition 2.21, p. 119 6564:. Tu, Loring W. New York. 6234:From the point of view of 3156:is homotopy equivalent to 2210:, especially for the case 2208:homotopy groups of spheres 1856:, the homology groups for 1416:Seifert–van Kampen theorem 127:Seifert–van Kampen theorem 6776:10.1007/978-3-642-18868-8 6500:, Exercise 32 on page 158 6488:, Exercise 31 on page 158 6188:Eilenberg–Steenrod axioms 5216:as a difference of forms 1061:does not affect , since ∂ 110:Eilenberg–Steenrod axioms 6766:, Universitext, Berlin: 6686:; Tu, Loring W. (1982), 4705:groups with coefficient 3616:The homology groups are 1709:{\displaystyle H_{1}(X)} 1003:is a cycle, ∂x = 0, so ∂ 7048:Grothendieck, Alexander 6887:Oxford University Press 6202:Other homology theories 5757:{\displaystyle \Sigma } 5613:{\displaystyle \delta } 3674:map of homology groups 2884:for 2-spheres, one has 2279:and their intersection 1437:{\displaystyle A\cap B} 957:barycentric subdivision 881:{\displaystyle \oplus } 248:be two subspaces whose 44:Mayer–Vietoris sequence 18:Mayer-Vietoris sequence 6914:Generalized cohomology 6740:, Birkhäuser, p.  6643:Kōno & Tamaki 2006 6452:, Example 2.46, p. 150 6440:, Theorem 2A.1, p. 166 6174: 5929: 5758: 5738: 5718: 5691: 5614: 5594: 5574: 5554: 5531: 5250: 5189: 5162: 5108: 4891: 4697:Cohomological versions 4687: 4069: 4042: 4008: 3821: 3753: 3660: 3602: 3278:-sphere by induction, 3249: 3094: 3063: 2855: 2643: 2608: 2419: 2243: 2193: 2022: 1828:be two hemispheres of 1803: 1795:The decomposition for 1769: 1749: 1710: 1676:This is precisely the 1667: 1570: 1438: 1400: 979:, respectively. Thus ∂ 929: 882: 858: 826: 743: 607: 6867:Hirzebruch, Friedrich 6175: 5930: 5778:short exact sequences 5759: 5739: 5719: 5717:{\displaystyle i^{U}} 5692: 5615: 5595: 5575: 5555: 5532: 5251: 5190: 5163: 5161:{\displaystyle d^{*}} 5109: 4892: 4688: 4070: 4068:{\displaystyle f_{*}} 4043: 4009: 3822: 3754: 3661: 3620:in the sense that if 3603: 3250: 3080: 3064: 2856: 2625: 2609: 2420: 2229: 2194: 2023: 1794: 1770: 1750: 1711: 1668: 1579:where, by exactness, 1571: 1439: 1401: 903: 883: 859: 827: 744: 608: 186:topological manifolds 50:tool to help compute 6690:, Berlin, New York: 6220:topological K-theory 6064: 5791: 5748: 5728: 5701: 5624: 5604: 5584: 5564: 5544: 5328: 5220: 5172: 5145: 4930: 4723: 4086: 4052: 4022: 3834: 3763: 3678: 3624: 3330: 3171: 2891: 2752: 2444: 2298: 2257:as the union of two 2054: 1879: 1759: 1723: 1684: 1586: 1455: 1422: 1186: 872: 836: 756: 618: 326: 256:. (The interiors of 190:simplicial complexes 52:algebraic invariants 7052:Verdier, Jean-Louis 7040:Verdier, Jean-Louis 6879:Bar-Ilan University 6764:Sheaves in topology 6038:) is isomorphic to 6021:). In other words, 5890: 5835: 5680: 5656: 5505: 5482: 5456: 5439: 5420: 5393: 5376: 5351: 5069: 5023: 4968: 4703:singular cohomology 3545: 3499: 3412: 2864:for all dimensions 2668:deformation retract 2358: 2289:homotopy equivalent 2232:fundamental polygon 1952: 1872:groups then yields 1834:homotopy equivalent 1775:is path-connected. 1358: 1265: 932:The boundary maps ∂ 710: 563: 525: 452: 376: 282:long exact sequence 174:group homomorphisms 106:singular cohomology 102:simplicial homology 79:long exact sequence 7107:10.1007/BF01696765 7072:10.1007/BFb0061320 7018:Algebraic Topology 6987:10.1007/BF02307601 6889:, pp. 61–63, 6836:Algebraic Topology 6619:Bott & Tu 1982 6170: 6056:differential forms 5925: 5754: 5734: 5714: 5687: 5666: 5642: 5610: 5590: 5570: 5550: 5527: 5485: 5442: 5406: 5379: 5337: 5258:partition of unity 5246: 5185: 5158: 5104: 4921:de Rham cohomology 4887: 4683: 4681: 4065: 4038: 4004: 4002: 3919: 3817: 3749: 3656: 3598: 3286:Further discussion 3245: 3095: 3059: 3054: 3041: 3013: 2851: 2672:open neighborhoods 2644: 2604: 2599: 2586: 2558: 2415: 2244: 2230:The Klein bottle ( 2189: 2184: 2168: 2140: 2043:(two points) as a 2018: 1852:-discs, which are 1832:with intersection 1804: 1779:Basic applications 1765: 1745: 1706: 1663: 1566: 1434: 1396: 1097:), and therefore ∂ 930: 878: 854: 822: 739: 603: 446: 445: 89:of the subspaces. 56:topological spaces 36:algebraic topology 7089:Vietoris, Leopold 7081:978-3-540-06012-3 6960:978-0-387-90271-5 6927:978-0-8218-3514-2 6896:978-0-19-851045-1 6850:978-0-521-79540-1 6822:978-0-691-07965-3 6801:Eilenberg, Samuel 6785:978-3-540-20665-1 6701:978-0-387-90613-3 6571:978-0-387-90613-3 6248:spectral sequence 6192:homology theories 5891: 5836: 5737:{\displaystyle U} 5593:{\displaystyle X} 5573:{\displaystyle V} 5553:{\displaystyle U} 5483: 5440: 5377: 5070: 5024: 4969: 3925: 3546: 3500: 3413: 3218: 3184: 3040: 3012: 2904: 2833: 2802: 2765: 2630:of two 2-spheres 2585: 2557: 2457: 2391: 2363: 2359: 2357: 2356: 2345: 2317: 2167: 2139: 2067: 1966: 1953: 1951: 1950: 1904: 1768:{\displaystyle X} 1718:fundamental group 1629: 1592: 1535: 1372: 1359: 1310: 1279: 1266: 1205: 1081:, which implies ∂ 711: 564: 526: 453: 377: 315:Unreduced version 266:singular homology 238:topological space 143:fundamental group 141:Similarly to the 131:fundamental group 98:homology theories 16:(Redirected from 7182: 7158: 7139: 7121: 7117: 7084: 7034: 7009: 7005: 6963: 6938: 6907: 6861: 6825: 6805:Steenrod, Norman 6796: 6760:Dimca, Alexandru 6754: 6726: 6704: 6670: 6664: 6658: 6657:, pp. 35–36 6652: 6646: 6645:, pp. 25–26 6640: 6634: 6628: 6622: 6616: 6610: 6604: 6598: 6597: 6591: 6583: 6555: 6549: 6543: 6537: 6531: 6525: 6519: 6513: 6507: 6501: 6495: 6489: 6483: 6477: 6471: 6465: 6459: 6453: 6447: 6441: 6435: 6429: 6423: 6417: 6411: 6405: 6399: 6390: 6384: 6375: 6369: 6363: 6357: 6351: 6345: 6339: 6334: 6328: 6322: 6316: 6310: 6304: 6299: 6293: 6288: 6268:Excision theorem 6236:sheaf cohomology 6230:Sheaf cohomology 6179: 6177: 6176: 6171: 6148: 6147: 6126: 6125: 6104: 6103: 6082: 6081: 5934: 5932: 5931: 5926: 5903: 5902: 5892: 5882: 5870: 5869: 5848: 5847: 5837: 5827: 5809: 5808: 5763: 5761: 5760: 5755: 5743: 5741: 5740: 5735: 5723: 5721: 5720: 5715: 5713: 5712: 5696: 5694: 5693: 5688: 5679: 5674: 5655: 5650: 5619: 5617: 5616: 5611: 5599: 5597: 5596: 5591: 5579: 5577: 5576: 5571: 5559: 5557: 5556: 5551: 5536: 5534: 5533: 5528: 5504: 5493: 5481: 5480: 5467: 5455: 5450: 5431: 5419: 5414: 5392: 5387: 5368: 5350: 5345: 5317: 5310: 5306: 5302: 5295: 5285: 5278: 5271: 5255: 5253: 5252: 5247: 5245: 5244: 5232: 5231: 5215: 5211: 5201: 5194: 5192: 5191: 5186: 5184: 5183: 5167: 5165: 5164: 5159: 5157: 5156: 5140: 5136: 5128: 5113: 5111: 5110: 5105: 5088: 5087: 5071: 5068: 5067: 5054: 5036: 5035: 5025: 5015: 5003: 5002: 4981: 4980: 4970: 4960: 4948: 4947: 4908:is the group of 4896: 4894: 4893: 4888: 4865: 4864: 4825: 4824: 4797: 4796: 4769: 4768: 4741: 4740: 4692: 4690: 4689: 4684: 4682: 4665: 4664: 4652: 4651: 4639: 4638: 4613: 4612: 4600: 4599: 4580: 4579: 4567: 4566: 4551: 4550: 4538: 4537: 4518: 4517: 4505: 4504: 4492: 4491: 4472: 4471: 4459: 4458: 4434: 4433: 4427: 4426: 4416: 4414: 4413: 4407: 4406: 4396: 4394: 4393: 4387: 4386: 4376: 4374: 4373: 4367: 4366: 4356: 4354: 4353: 4347: 4346: 4336: 4319: 4318: 4306: 4305: 4293: 4292: 4267: 4266: 4254: 4253: 4234: 4233: 4221: 4220: 4205: 4204: 4192: 4191: 4172: 4171: 4159: 4158: 4146: 4145: 4126: 4125: 4113: 4112: 4074: 4072: 4071: 4066: 4064: 4063: 4047: 4045: 4044: 4039: 4034: 4033: 4013: 4011: 4010: 4005: 4003: 3999: 3998: 3983: 3982: 3963: 3962: 3947: 3946: 3926: 3923: 3920: 3916: 3915: 3903: 3902: 3890: 3889: 3876: 3875: 3863: 3862: 3850: 3849: 3826: 3824: 3823: 3818: 3813: 3812: 3800: 3799: 3787: 3786: 3758: 3756: 3755: 3750: 3745: 3744: 3732: 3731: 3716: 3715: 3703: 3702: 3690: 3689: 3665: 3663: 3662: 3657: 3655: 3654: 3642: 3641: 3607: 3605: 3604: 3599: 3564: 3563: 3547: 3544: 3543: 3530: 3512: 3511: 3501: 3498: 3497: 3485: 3484: 3471: 3453: 3452: 3425: 3424: 3414: 3408: 3407: 3395: 3394: 3378: 3348: 3347: 3254: 3252: 3251: 3246: 3232: 3231: 3220: 3219: 3211: 3192: 3191: 3186: 3185: 3177: 3085:of the 0-sphere 3068: 3066: 3065: 3060: 3058: 3055: 3042: 3038: 3014: 3010: 3005: 2997: 2978: 2970: 2961: 2960: 2945: 2941: 2940: 2939: 2927: 2926: 2912: 2911: 2906: 2905: 2897: 2860: 2858: 2857: 2852: 2841: 2840: 2835: 2834: 2826: 2810: 2809: 2804: 2803: 2795: 2773: 2772: 2767: 2766: 2758: 2713:it follows that 2613: 2611: 2610: 2605: 2603: 2602: 2587: 2583: 2559: 2555: 2550: 2549: 2544: 2535: 2516: 2515: 2510: 2501: 2492: 2491: 2476: 2465: 2464: 2459: 2458: 2450: 2424: 2422: 2421: 2416: 2399: 2398: 2393: 2392: 2384: 2376: 2368: 2361: 2360: 2352: 2347: 2343: 2342: 2325: 2324: 2319: 2318: 2310: 2198: 2196: 2195: 2190: 2188: 2187: 2169: 2165: 2141: 2137: 2132: 2116: 2110: 2109: 2094: 2090: 2089: 2075: 2074: 2069: 2068: 2060: 2037:reduced homology 2027: 2025: 2024: 2019: 2005: 2001: 2000: 1980: 1979: 1968: 1967: 1959: 1954: 1949: 1948: 1939: 1934: 1931: 1927: 1926: 1912: 1911: 1906: 1905: 1897: 1870:reduced homology 1774: 1772: 1771: 1766: 1754: 1752: 1751: 1746: 1735: 1734: 1715: 1713: 1712: 1707: 1696: 1695: 1672: 1670: 1669: 1664: 1656: 1655: 1643: 1642: 1630: 1627: 1619: 1618: 1606: 1605: 1593: 1590: 1575: 1573: 1572: 1567: 1562: 1561: 1549: 1548: 1536: 1533: 1531: 1514: 1513: 1492: 1491: 1467: 1466: 1443: 1441: 1440: 1435: 1405: 1403: 1402: 1397: 1380: 1379: 1374: 1373: 1365: 1360: 1357: 1356: 1344: 1343: 1330: 1318: 1317: 1312: 1311: 1303: 1287: 1286: 1281: 1280: 1272: 1267: 1261: 1260: 1248: 1247: 1231: 1213: 1212: 1207: 1206: 1198: 1165:reduced homology 887: 885: 884: 879: 863: 861: 860: 855: 831: 829: 828: 823: 748: 746: 745: 740: 723: 722: 712: 709: 708: 696: 695: 682: 670: 669: 648: 647: 612: 610: 609: 604: 581: 580: 562: 561: 548: 537: 536: 524: 523: 511: 510: 497: 486: 485: 464: 463: 451: 447: 442: 441: 428: 427: 405: 388: 387: 375: 374: 361: 350: 349: 288:) of the spaces 218:Samuel Eilenberg 68:Leopold Vietoris 62:mathematicians, 21: 7190: 7189: 7185: 7184: 7183: 7181: 7180: 7179: 7175:Homology theory 7165: 7164: 7137: 7132: 7129: 7127:Further reading 7124: 7119: 7087: 7082: 7064:Springer-Verlag 7038: 7032: 7022:Springer-Verlag 7012: 7007: 6967: 6961: 6951:Springer-Verlag 6943:Massey, William 6941: 6928: 6911: 6897: 6865: 6851: 6829: 6823: 6799: 6786: 6768:Springer-Verlag 6758: 6752: 6732:Dieudonné, Jean 6730: 6724: 6708: 6702: 6692:Springer-Verlag 6682: 6678: 6673: 6665: 6661: 6653: 6649: 6641: 6637: 6629: 6625: 6617: 6613: 6605: 6601: 6584: 6572: 6557: 6556: 6552: 6544: 6540: 6532: 6528: 6520: 6516: 6508: 6504: 6496: 6492: 6484: 6480: 6472: 6468: 6460: 6456: 6448: 6444: 6436: 6432: 6424: 6420: 6412: 6408: 6400: 6393: 6385: 6378: 6370: 6366: 6358: 6354: 6346: 6342: 6335: 6331: 6323: 6319: 6311: 6307: 6300: 6296: 6291:Hirzebruch 1999 6289: 6285: 6281: 6264: 6240:Čech cohomology 6232: 6208:dimension axiom 6204: 6139: 6117: 6095: 6073: 6062: 6061: 6046: 6029: 6016: 5975: 5894: 5861: 5839: 5800: 5789: 5788: 5782:chain complexes 5770: 5746: 5745: 5726: 5725: 5704: 5699: 5698: 5622: 5621: 5602: 5601: 5582: 5581: 5562: 5561: 5542: 5541: 5472: 5326: 5325: 5312: 5311:. One then has 5308: 5304: 5297: 5287: 5284: 5280: 5277: 5273: 5261: 5236: 5223: 5218: 5217: 5213: 5203: 5199: 5175: 5170: 5169: 5148: 5143: 5142: 5138: 5134: 5118: 5073: 5059: 5027: 4994: 4972: 4939: 4928: 4927: 4917:smooth manifold 4850: 4816: 4788: 4760: 4732: 4721: 4720: 4699: 4680: 4679: 4674: 4669: 4656: 4643: 4624: 4622: 4617: 4604: 4591: 4589: 4584: 4571: 4558: 4542: 4529: 4527: 4522: 4509: 4496: 4483: 4481: 4476: 4463: 4444: 4442: 4436: 4435: 4418: 4415: 4398: 4395: 4378: 4375: 4358: 4355: 4338: 4334: 4333: 4328: 4323: 4310: 4297: 4278: 4276: 4271: 4258: 4245: 4243: 4238: 4225: 4212: 4196: 4183: 4181: 4176: 4163: 4150: 4137: 4135: 4130: 4117: 4098: 4096: 4084: 4083: 4055: 4050: 4049: 4025: 4020: 4019: 4001: 4000: 3990: 3974: 3965: 3964: 3954: 3938: 3918: 3917: 3907: 3894: 3881: 3878: 3877: 3867: 3854: 3841: 3832: 3831: 3804: 3791: 3778: 3761: 3760: 3736: 3723: 3707: 3694: 3681: 3676: 3675: 3646: 3633: 3622: 3621: 3614: 3549: 3535: 3503: 3489: 3476: 3444: 3416: 3399: 3386: 3339: 3328: 3327: 3293: 3288: 3208: 3174: 3169: 3168: 3075: 3053: 3052: 3034: 3028: 3027: 3006: 2985: 2949: 2931: 2918: 2917: 2913: 2894: 2889: 2888: 2823: 2792: 2755: 2750: 2749: 2620: 2598: 2597: 2579: 2573: 2572: 2551: 2539: 2524: 2505: 2480: 2466: 2447: 2442: 2441: 2381: 2307: 2296: 2295: 2224: 2204:Kronecker delta 2202:where δ is the 2183: 2182: 2161: 2155: 2154: 2133: 2121: 2098: 2081: 2077: 2057: 2052: 2051: 2034: 1986: 1982: 1956: 1940: 1918: 1914: 1894: 1877: 1876: 1789: 1781: 1757: 1756: 1726: 1721: 1720: 1687: 1682: 1681: 1647: 1634: 1610: 1597: 1584: 1583: 1553: 1540: 1505: 1483: 1458: 1453: 1452: 1420: 1419: 1412: 1362: 1348: 1335: 1300: 1269: 1252: 1239: 1195: 1184: 1183: 1161: 1159:Reduced version 1134: 1040: 1026: 941: 935: 907: 898: 870: 869: 834: 833: 754: 753: 714: 700: 687: 661: 639: 616: 615: 566: 553: 528: 515: 502: 477: 455: 444: 443: 433: 430: 429: 419: 410: 379: 366: 335: 324: 323: 317: 268:for the triad ( 230: 222:Norman Steenrod 160:: sequences of 158:exact sequences 147:homotopy groups 139: 40:homology theory 34:, particularly 28: 23: 22: 15: 12: 11: 5: 7188: 7186: 7178: 7177: 7167: 7166: 7161: 7160: 7128: 7125: 7123: 7122: 7085: 7080: 7044:Artin, Michael 7036: 7030: 7014:Spanier, Edwin 7010: 6969:Mayer, Walther 6965: 6959: 6939: 6926: 6909: 6895: 6863: 6849: 6831:Hatcher, Allen 6827: 6821: 6797: 6784: 6756: 6750: 6728: 6722: 6706: 6700: 6679: 6677: 6674: 6672: 6671: 6659: 6647: 6635: 6623: 6611: 6599: 6570: 6550: 6538: 6536:, Theorem 15.4 6526: 6514: 6502: 6490: 6478: 6466: 6454: 6442: 6430: 6418: 6406: 6391: 6376: 6364: 6362:, Theorem 15.3 6352: 6340: 6329: 6317: 6313:Dieudonné 1989 6305: 6294: 6282: 6280: 6277: 6276: 6275: 6270: 6263: 6260: 6231: 6228: 6214:, it holds in 6203: 6200: 6181: 6180: 6169: 6166: 6163: 6160: 6157: 6154: 6151: 6146: 6142: 6138: 6135: 6132: 6129: 6124: 6120: 6116: 6113: 6110: 6107: 6102: 6098: 6094: 6091: 6088: 6085: 6080: 6076: 6072: 6069: 6042: 6025: 6012: 5996:-simplices of 5988:and chains in 5971: 5937: 5936: 5924: 5921: 5918: 5915: 5912: 5909: 5906: 5901: 5897: 5889: 5885: 5879: 5876: 5873: 5868: 5864: 5860: 5857: 5854: 5851: 5846: 5842: 5834: 5830: 5824: 5821: 5818: 5815: 5812: 5807: 5803: 5799: 5796: 5769: 5766: 5753: 5733: 5711: 5707: 5686: 5683: 5678: 5673: 5669: 5665: 5662: 5659: 5654: 5649: 5645: 5641: 5638: 5635: 5632: 5629: 5609: 5600:are as above, 5589: 5569: 5549: 5538: 5537: 5526: 5523: 5520: 5517: 5514: 5511: 5508: 5503: 5500: 5497: 5492: 5488: 5479: 5475: 5470: 5465: 5462: 5459: 5454: 5449: 5445: 5438: 5434: 5429: 5426: 5423: 5418: 5413: 5409: 5405: 5402: 5399: 5396: 5391: 5386: 5382: 5375: 5371: 5366: 5363: 5360: 5357: 5354: 5349: 5344: 5340: 5336: 5333: 5282: 5275: 5243: 5239: 5235: 5230: 5226: 5182: 5178: 5155: 5151: 5115: 5114: 5103: 5100: 5097: 5094: 5091: 5086: 5083: 5080: 5076: 5066: 5062: 5057: 5051: 5048: 5045: 5042: 5039: 5034: 5030: 5022: 5018: 5012: 5009: 5006: 5001: 4997: 4993: 4990: 4987: 4984: 4979: 4975: 4967: 4963: 4957: 4954: 4951: 4946: 4942: 4938: 4935: 4898: 4897: 4886: 4883: 4880: 4877: 4874: 4871: 4868: 4863: 4860: 4857: 4853: 4849: 4846: 4843: 4840: 4837: 4834: 4831: 4828: 4823: 4819: 4815: 4812: 4809: 4806: 4803: 4800: 4795: 4791: 4787: 4784: 4781: 4778: 4775: 4772: 4767: 4763: 4759: 4756: 4753: 4750: 4747: 4744: 4739: 4735: 4731: 4728: 4698: 4695: 4694: 4693: 4678: 4675: 4673: 4670: 4668: 4663: 4659: 4655: 4650: 4646: 4642: 4637: 4634: 4631: 4627: 4623: 4621: 4618: 4616: 4611: 4607: 4603: 4598: 4594: 4590: 4588: 4585: 4583: 4578: 4574: 4570: 4565: 4561: 4557: 4554: 4549: 4545: 4541: 4536: 4532: 4528: 4526: 4523: 4521: 4516: 4512: 4508: 4503: 4499: 4495: 4490: 4486: 4482: 4480: 4477: 4475: 4470: 4466: 4462: 4457: 4454: 4451: 4447: 4443: 4441: 4438: 4437: 4432: 4425: 4421: 4417: 4412: 4405: 4401: 4397: 4392: 4385: 4381: 4377: 4372: 4365: 4361: 4357: 4352: 4345: 4341: 4337: 4335: 4332: 4329: 4327: 4324: 4322: 4317: 4313: 4309: 4304: 4300: 4296: 4291: 4288: 4285: 4281: 4277: 4275: 4272: 4270: 4265: 4261: 4257: 4252: 4248: 4244: 4242: 4239: 4237: 4232: 4228: 4224: 4219: 4215: 4211: 4208: 4203: 4199: 4195: 4190: 4186: 4182: 4180: 4177: 4175: 4170: 4166: 4162: 4157: 4153: 4149: 4144: 4140: 4136: 4134: 4131: 4129: 4124: 4120: 4116: 4111: 4108: 4105: 4101: 4097: 4095: 4092: 4091: 4062: 4058: 4048:commutes with 4037: 4032: 4028: 4016: 4015: 3997: 3993: 3989: 3986: 3981: 3977: 3973: 3970: 3967: 3966: 3961: 3957: 3953: 3950: 3945: 3941: 3937: 3934: 3931: 3930: 3914: 3910: 3906: 3901: 3897: 3893: 3888: 3884: 3880: 3879: 3874: 3870: 3866: 3861: 3857: 3853: 3848: 3844: 3840: 3839: 3816: 3811: 3807: 3803: 3798: 3794: 3790: 3785: 3781: 3777: 3774: 3771: 3768: 3748: 3743: 3739: 3735: 3730: 3726: 3722: 3719: 3714: 3710: 3706: 3701: 3697: 3693: 3688: 3684: 3653: 3649: 3645: 3640: 3636: 3632: 3629: 3613: 3610: 3609: 3608: 3597: 3594: 3591: 3588: 3585: 3582: 3579: 3576: 3573: 3570: 3567: 3562: 3559: 3556: 3552: 3542: 3538: 3533: 3527: 3524: 3521: 3518: 3515: 3510: 3506: 3496: 3492: 3488: 3483: 3479: 3474: 3468: 3465: 3462: 3459: 3456: 3451: 3447: 3443: 3440: 3437: 3434: 3431: 3428: 3423: 3419: 3411: 3406: 3402: 3398: 3393: 3389: 3385: 3381: 3375: 3372: 3369: 3366: 3363: 3360: 3357: 3354: 3351: 3346: 3342: 3338: 3335: 3292: 3289: 3287: 3284: 3256: 3255: 3244: 3241: 3238: 3235: 3230: 3227: 3224: 3217: 3214: 3207: 3204: 3201: 3198: 3195: 3190: 3183: 3180: 3074: 3071: 3070: 3069: 3057: 3051: 3048: 3045: 3035: 3033: 3030: 3029: 3026: 3023: 3020: 3017: 3007: 3004: 3000: 2996: 2992: 2991: 2988: 2984: 2981: 2977: 2973: 2969: 2965: 2959: 2956: 2952: 2948: 2944: 2938: 2934: 2930: 2925: 2921: 2916: 2910: 2903: 2900: 2862: 2861: 2850: 2847: 2844: 2839: 2832: 2829: 2822: 2819: 2816: 2813: 2808: 2801: 2798: 2791: 2788: 2785: 2782: 2779: 2776: 2771: 2764: 2761: 2654:of two spaces 2619: 2616: 2615: 2614: 2601: 2596: 2593: 2590: 2580: 2578: 2575: 2574: 2571: 2568: 2565: 2562: 2552: 2548: 2543: 2538: 2534: 2530: 2529: 2527: 2522: 2519: 2514: 2509: 2504: 2500: 2496: 2490: 2487: 2483: 2479: 2475: 2472: 2469: 2463: 2456: 2453: 2426: 2425: 2414: 2411: 2408: 2405: 2402: 2397: 2390: 2387: 2379: 2375: 2371: 2367: 2355: 2350: 2341: 2337: 2334: 2331: 2328: 2323: 2316: 2313: 2306: 2303: 2238:(in blue) and 2223: 2220: 2200: 2199: 2186: 2181: 2178: 2175: 2172: 2162: 2160: 2157: 2156: 2153: 2150: 2147: 2144: 2134: 2131: 2127: 2126: 2124: 2119: 2115: 2108: 2105: 2101: 2097: 2093: 2088: 2084: 2080: 2073: 2066: 2063: 2032: 2029: 2028: 2017: 2014: 2011: 2008: 2004: 1999: 1996: 1993: 1989: 1985: 1978: 1975: 1972: 1965: 1962: 1947: 1943: 1937: 1930: 1925: 1921: 1917: 1910: 1903: 1900: 1893: 1890: 1887: 1884: 1788: 1782: 1780: 1777: 1764: 1744: 1741: 1738: 1733: 1729: 1705: 1702: 1699: 1694: 1690: 1674: 1673: 1662: 1659: 1654: 1650: 1646: 1641: 1637: 1633: 1625: 1622: 1617: 1613: 1609: 1604: 1600: 1596: 1577: 1576: 1565: 1560: 1556: 1552: 1547: 1543: 1539: 1530: 1526: 1523: 1520: 1517: 1512: 1508: 1504: 1501: 1498: 1495: 1490: 1486: 1482: 1479: 1476: 1473: 1470: 1465: 1461: 1446:path-connected 1433: 1430: 1427: 1411: 1408: 1407: 1406: 1395: 1392: 1389: 1386: 1383: 1378: 1371: 1368: 1355: 1351: 1347: 1342: 1338: 1333: 1327: 1324: 1321: 1316: 1309: 1306: 1299: 1296: 1293: 1290: 1285: 1278: 1275: 1264: 1259: 1255: 1251: 1246: 1242: 1238: 1234: 1228: 1225: 1222: 1219: 1216: 1211: 1204: 1201: 1194: 1191: 1160: 1157: 1129: 1035: 1024: 939: 933: 905: 897: 894: 877: 866:inclusion maps 853: 850: 847: 844: 841: 821: 818: 815: 812: 809: 806: 803: 800: 797: 794: 791: 788: 785: 782: 779: 776: 773: 770: 767: 764: 761: 750: 749: 738: 735: 732: 729: 726: 721: 717: 707: 703: 699: 694: 690: 685: 679: 676: 673: 668: 664: 660: 657: 654: 651: 646: 642: 638: 635: 613: 602: 599: 596: 593: 590: 587: 584: 579: 576: 573: 569: 560: 556: 551: 546: 543: 540: 535: 531: 522: 518: 514: 509: 505: 500: 495: 492: 489: 484: 480: 476: 473: 470: 467: 462: 458: 450: 440: 436: 432: 431: 426: 422: 418: 417: 413: 408: 403: 400: 397: 394: 391: 386: 382: 373: 369: 364: 359: 356: 353: 348: 345: 342: 338: 334: 331: 316: 313: 229: 226: 172:(in this case 164:(in this case 151:linear algebra 145:or the higher 138: 135: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7187: 7176: 7173: 7172: 7170: 7163: 7157: 7153: 7149: 7145: 7144: 7136: 7131: 7130: 7126: 7116: 7112: 7108: 7104: 7100: 7096: 7095: 7090: 7086: 7083: 7077: 7073: 7069: 7066:, p. 1, 7065: 7061: 7057: 7053: 7049: 7045: 7041: 7037: 7033: 7031:0-387-94426-5 7027: 7023: 7019: 7015: 7011: 7004: 7000: 6996: 6992: 6988: 6984: 6980: 6976: 6975: 6970: 6966: 6962: 6956: 6952: 6948: 6944: 6940: 6937: 6933: 6929: 6923: 6919: 6915: 6910: 6906: 6902: 6898: 6892: 6888: 6884: 6880: 6876: 6872: 6868: 6864: 6860: 6856: 6852: 6846: 6842: 6838: 6837: 6832: 6828: 6824: 6818: 6814: 6810: 6806: 6802: 6798: 6795: 6791: 6787: 6781: 6777: 6773: 6769: 6765: 6761: 6757: 6753: 6751:0-8176-3388-X 6747: 6743: 6739: 6738: 6733: 6729: 6725: 6723:3-7643-7002-5 6719: 6715: 6711: 6707: 6703: 6697: 6693: 6689: 6685: 6681: 6680: 6675: 6668: 6663: 6660: 6656: 6651: 6648: 6644: 6639: 6636: 6633:, p. 162 6632: 6627: 6624: 6620: 6615: 6612: 6608: 6603: 6600: 6595: 6589: 6581: 6577: 6573: 6567: 6563: 6562: 6554: 6551: 6548:, p. 203 6547: 6542: 6539: 6535: 6530: 6527: 6524:, p. 208 6523: 6518: 6515: 6512:, p. 152 6511: 6506: 6503: 6499: 6494: 6491: 6487: 6482: 6479: 6476:, p. 151 6475: 6470: 6467: 6464:, p. 384 6463: 6458: 6455: 6451: 6446: 6443: 6439: 6434: 6431: 6428:, p. 240 6427: 6422: 6419: 6416:, p. 187 6415: 6410: 6407: 6404:, p. 150 6403: 6398: 6396: 6392: 6389:, p. 149 6388: 6383: 6381: 6377: 6373: 6368: 6365: 6361: 6356: 6353: 6350:, p. 345 6349: 6344: 6341: 6338: 6337:Vietoris 1930 6333: 6330: 6326: 6321: 6318: 6314: 6309: 6306: 6303: 6298: 6295: 6292: 6287: 6284: 6278: 6274: 6273:Zig-zag lemma 6271: 6269: 6266: 6265: 6261: 6259: 6257: 6253: 6249: 6245: 6241: 6237: 6229: 6227: 6225: 6221: 6217: 6213: 6209: 6201: 6199: 6197: 6193: 6189: 6184: 6167: 6158: 6155: 6152: 6144: 6130: 6122: 6114: 6108: 6100: 6086: 6078: 6067: 6060: 6059: 6058: 6057: 6052: 6050: 6045: 6041: 6037: 6033: 6028: 6024: 6020: 6015: 6011: 6007: 6003: 5999: 5995: 5991: 5987: 5983: 5979: 5974: 5970: 5966: 5962: 5958: 5954: 5950: 5946: 5942: 5922: 5913: 5910: 5907: 5899: 5895: 5887: 5883: 5874: 5866: 5862: 5858: 5852: 5844: 5840: 5832: 5828: 5819: 5816: 5813: 5805: 5801: 5794: 5787: 5786: 5785: 5783: 5779: 5775: 5772:Consider the 5767: 5765: 5744:by zero, and 5731: 5709: 5705: 5681: 5676: 5671: 5667: 5663: 5660: 5657: 5652: 5647: 5643: 5633: 5630: 5627: 5607: 5587: 5567: 5547: 5524: 5515: 5512: 5509: 5501: 5498: 5495: 5490: 5486: 5477: 5473: 5468: 5460: 5452: 5447: 5443: 5432: 5424: 5416: 5411: 5407: 5403: 5397: 5389: 5384: 5380: 5373: 5369: 5361: 5358: 5355: 5347: 5342: 5338: 5331: 5324: 5323: 5322: 5319: 5315: 5300: 5294: 5290: 5269: 5265: 5259: 5241: 5237: 5233: 5228: 5224: 5210: 5206: 5198: 5180: 5153: 5149: 5132: 5126: 5122: 5101: 5092: 5084: 5081: 5078: 5074: 5064: 5060: 5055: 5046: 5043: 5040: 5032: 5028: 5016: 5007: 4999: 4995: 4991: 4985: 4977: 4973: 4965: 4961: 4952: 4944: 4940: 4933: 4926: 4925: 4924: 4922: 4918: 4914: 4911: 4907: 4902: 4884: 4875: 4872: 4869: 4861: 4858: 4855: 4851: 4841: 4838: 4835: 4832: 4829: 4821: 4817: 4807: 4804: 4801: 4793: 4789: 4785: 4779: 4776: 4773: 4765: 4761: 4751: 4748: 4745: 4737: 4733: 4726: 4719: 4718: 4717: 4715: 4711: 4708: 4704: 4696: 4676: 4661: 4657: 4653: 4648: 4644: 4635: 4632: 4629: 4625: 4609: 4605: 4596: 4592: 4576: 4572: 4563: 4559: 4555: 4547: 4543: 4534: 4530: 4514: 4510: 4506: 4501: 4497: 4488: 4484: 4468: 4464: 4455: 4452: 4449: 4445: 4439: 4423: 4419: 4403: 4399: 4383: 4379: 4363: 4359: 4343: 4339: 4330: 4315: 4311: 4307: 4302: 4298: 4289: 4286: 4283: 4279: 4263: 4259: 4250: 4246: 4230: 4226: 4217: 4213: 4209: 4201: 4197: 4188: 4184: 4168: 4164: 4160: 4155: 4151: 4142: 4138: 4122: 4118: 4109: 4106: 4103: 4099: 4093: 4082: 4081: 4080: 4078: 4060: 4056: 4035: 4030: 3995: 3991: 3987: 3979: 3975: 3968: 3959: 3955: 3951: 3943: 3939: 3932: 3912: 3908: 3904: 3899: 3895: 3891: 3886: 3882: 3872: 3868: 3864: 3859: 3855: 3851: 3846: 3842: 3830: 3829: 3828: 3814: 3809: 3805: 3801: 3796: 3792: 3788: 3783: 3775: 3772: 3769: 3741: 3737: 3728: 3724: 3712: 3708: 3699: 3695: 3691: 3686: 3682: 3673: 3669: 3651: 3647: 3638: 3634: 3630: 3627: 3619: 3611: 3595: 3586: 3583: 3580: 3577: 3574: 3571: 3568: 3560: 3557: 3554: 3550: 3540: 3531: 3522: 3519: 3516: 3508: 3504: 3494: 3490: 3486: 3481: 3477: 3472: 3463: 3460: 3457: 3449: 3445: 3441: 3435: 3432: 3429: 3421: 3417: 3404: 3400: 3396: 3391: 3387: 3379: 3370: 3367: 3364: 3361: 3358: 3355: 3352: 3344: 3340: 3333: 3326: 3325: 3324: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3291:Relative form 3290: 3285: 3283: 3281: 3277: 3273: 3269: 3265: 3261: 3242: 3236: 3228: 3225: 3222: 3212: 3205: 3199: 3196: 3188: 3178: 3167: 3166: 3165: 3163: 3159: 3155: 3151: 3147: 3143: 3139: 3135: 3132:is the union 3131: 3127: 3123: 3119: 3115: 3111: 3107: 3104: 3100: 3092: 3088: 3084: 3079: 3072: 3049: 3046: 3043: 3031: 3024: 3021: 3018: 3015: 2998: 2986: 2982: 2971: 2957: 2954: 2950: 2946: 2942: 2936: 2932: 2928: 2923: 2919: 2914: 2908: 2898: 2887: 2886: 2885: 2883: 2879: 2875: 2871: 2867: 2845: 2837: 2827: 2820: 2814: 2806: 2796: 2789: 2783: 2780: 2777: 2769: 2759: 2748: 2747: 2746: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2680: 2676: 2673: 2669: 2665: 2661: 2657: 2653: 2649: 2641: 2637: 2633: 2629: 2624: 2617: 2594: 2591: 2588: 2576: 2569: 2566: 2563: 2560: 2546: 2536: 2525: 2520: 2512: 2502: 2488: 2485: 2481: 2477: 2473: 2470: 2467: 2461: 2451: 2440: 2439: 2438: 2437:, it follows 2436: 2432: 2412: 2403: 2395: 2385: 2369: 2353: 2348: 2329: 2321: 2311: 2301: 2294: 2293: 2292: 2290: 2286: 2282: 2278: 2274: 2270: 2267: 2263: 2260: 2259:Möbius strips 2256: 2252: 2249: 2241: 2237: 2233: 2228: 2221: 2219: 2217: 2213: 2209: 2205: 2179: 2176: 2173: 2170: 2158: 2151: 2148: 2145: 2142: 2122: 2117: 2106: 2103: 2099: 2095: 2091: 2086: 2082: 2078: 2071: 2061: 2050: 2049: 2048: 2047:, it follows 2046: 2042: 2038: 2015: 2009: 2002: 1997: 1994: 1991: 1987: 1983: 1976: 1973: 1970: 1960: 1945: 1935: 1928: 1923: 1919: 1915: 1908: 1898: 1888: 1882: 1875: 1874: 1873: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1812: 1810: 1802: 1798: 1793: 1786: 1783: 1778: 1776: 1762: 1739: 1731: 1727: 1719: 1700: 1692: 1688: 1679: 1660: 1652: 1648: 1644: 1639: 1635: 1623: 1615: 1611: 1607: 1602: 1598: 1582: 1581: 1580: 1558: 1554: 1550: 1545: 1541: 1528: 1518: 1510: 1506: 1502: 1496: 1488: 1484: 1477: 1471: 1463: 1459: 1451: 1450: 1449: 1447: 1431: 1428: 1425: 1417: 1409: 1393: 1384: 1376: 1366: 1353: 1349: 1345: 1340: 1336: 1331: 1322: 1314: 1304: 1297: 1291: 1283: 1273: 1257: 1253: 1249: 1244: 1240: 1232: 1223: 1220: 1217: 1209: 1199: 1189: 1182: 1181: 1180: 1178: 1174: 1170: 1166: 1158: 1156: 1155:are swapped. 1154: 1150: 1146: 1142: 1138: 1132: 1128: 1124: 1120: 1116: 1112: 1109:, since then 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1038: 1034: 1030: 1022: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 974: 970: 966: 962: 958: 954: 950: 946: 942: 927: 923: 919: 915: 911: 902: 895: 893: 891: 875: 867: 851: 845: 842: 839: 819: 813: 810: 807: 804: 801: 795: 792: 789: 786: 783: 780: 777: 771: 768: 765: 762: 759: 736: 727: 719: 715: 705: 701: 697: 692: 688: 683: 674: 666: 662: 658: 652: 644: 640: 633: 614: 600: 591: 588: 585: 577: 574: 571: 567: 558: 549: 541: 533: 529: 520: 516: 512: 507: 503: 498: 490: 482: 478: 474: 468: 460: 456: 448: 438: 434: 424: 420: 411: 406: 398: 395: 392: 384: 380: 371: 362: 354: 346: 343: 340: 336: 329: 322: 321: 320: 314: 312: 310: 306: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 227: 225: 223: 219: 215: 210: 206: 205:Betti numbers 202: 197: 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 154: 152: 148: 144: 136: 134: 132: 128: 123: 119: 115: 111: 107: 103: 99: 95: 90: 88: 84: 80: 77: 73: 69: 65: 64:Walther Mayer 61: 57: 53: 49: 45: 41: 37: 33: 19: 7162: 7147: 7141: 7098: 7092: 7055: 7017: 6978: 6972: 6946: 6913: 6874: 6835: 6808: 6763: 6736: 6713: 6687: 6667:Verdier 1972 6662: 6650: 6638: 6631:Hatcher 2002 6626: 6614: 6607:Hatcher 2002 6602: 6560: 6553: 6546:Hatcher 2002 6541: 6529: 6517: 6510:Hatcher 2002 6505: 6498:Hatcher 2002 6493: 6486:Hatcher 2002 6481: 6474:Hatcher 2002 6469: 6462:Hatcher 2002 6457: 6450:Hatcher 2002 6445: 6438:Hatcher 2002 6433: 6421: 6414:Spanier 1966 6409: 6402:Hatcher 2002 6387:Hatcher 2002 6367: 6355: 6343: 6332: 6327:, p. 41 6320: 6315:, p. 39 6308: 6297: 6286: 6244:degeneration 6233: 6205: 6185: 6182: 6053: 6048: 6043: 6039: 6035: 6031: 6026: 6022: 6018: 6013: 6009: 6005: 6001: 5997: 5993: 5989: 5985: 5981: 5977: 5972: 5968: 5964: 5960: 5956: 5952: 5948: 5944: 5940: 5938: 5771: 5764:is the sum. 5539: 5320: 5313: 5298: 5292: 5288: 5267: 5263: 5208: 5204: 5124: 5120: 5116: 4912: 4910:real numbers 4905: 4903: 4899: 4709: 4700: 4017: 3615: 3320: 3316: 3312: 3308: 3304: 3300: 3294: 3275: 3271: 3267: 3263: 3259: 3257: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3129: 3125: 3117: 3113: 3109: 3105: 3098: 3096: 3090: 3086: 3082: 2877: 2873: 2869: 2865: 2863: 2743:contractible 2738: 2734: 2730: 2726: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2659: 2655: 2647: 2645: 2639: 2635: 2631: 2627: 2434: 2427: 2284: 2280: 2276: 2272: 2265: 2261: 2254: 2250: 2248:Klein bottle 2245: 2239: 2235: 2222:Klein bottle 2215: 2211: 2201: 2030: 1861: 1857: 1854:contractible 1849: 1846:homeomorphic 1841: 1837: 1829: 1825: 1821: 1817: 1813: 1808: 1805: 1800: 1796: 1784: 1675: 1578: 1413: 1172: 1168: 1162: 1152: 1148: 1144: 1140: 1136: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1036: 1032: 1028: 1020: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 964: 960: 952: 948: 944: 937: 931: 925: 921: 917: 913: 909: 896:Boundary map 888:denotes the 751: 318: 308: 304: 302:intersection 297: 293: 289: 285: 277: 273: 269: 261: 257: 253: 245: 241: 233: 231: 213: 198: 194:CW complexes 155: 140: 100:, including 91: 87:intersection 43: 29: 7120:(in German) 7008:(in German) 6981:(1): 1–42, 6871:Teicher, M. 6684:Bott, Raoul 6669:(SGA 4.V.3) 6522:Massey 1984 6426:Massey 1984 5197:closed form 3672:pushforward 3122:complements 3108:of a space 3073:Suspensions 2741:, which is 1678:abelianized 1418:. Whenever 32:mathematics 7101:: 159–62, 6710:Corry, Leo 6676:References 6655:Dimca 2004 6348:Corry 2004 6325:Mayer 1929 6302:Mayer 1929 6194:using the 5768:Derivation 5212:, express 5131:open cover 3668:continuous 3612:Naturality 3103:suspension 2882:from above 2689:. Letting 2618:Wedge sums 955:which, by 300:, and the 94:cohomology 83:direct sum 7156:0002-9920 7115:121151421 7003:120803366 6995:0026-9255 6905:223099225 6588:cite book 6224:cobordism 6218:(such as 6165:→ 6156:∩ 6141:Ω 6137:→ 6119:Ω 6115:⊕ 6097:Ω 6093:→ 6075:Ω 6071:→ 5920:→ 5888:β 5859:⊕ 5833:α 5817:∩ 5798:→ 5752:Σ 5682:ω 5672:∗ 5664:− 5658:ω 5648:∗ 5637:↦ 5634:ω 5628:δ 5608:δ 5525:⋯ 5522:→ 5513:∩ 5478:∗ 5437:Σ 5404:⊕ 5374:δ 5359:∩ 5335:→ 5332:⋯ 5286:agree on 5238:ω 5234:− 5225:ω 5181:∗ 5177:∂ 5154:∗ 5102:⋯ 5099:→ 5065:∗ 5044:∩ 5021:Δ 4992:⊕ 4966:ρ 4937:→ 4934:⋯ 4885:⋯ 4882:→ 4848:→ 4833:∩ 4814:→ 4786:⊕ 4758:→ 4730:→ 4727:⋯ 4677:⋯ 4672:⟶ 4654:∩ 4633:− 4620:⟶ 4587:⟶ 4556:⊕ 4525:⟶ 4507:∩ 4479:⟶ 4440:⋯ 4424:∗ 4404:∗ 4384:∗ 4364:∗ 4344:∗ 4331:⋯ 4326:⟶ 4308:∩ 4287:− 4274:⟶ 4241:⟶ 4210:⊕ 4179:⟶ 4161:∩ 4133:⟶ 4094:⋯ 4061:∗ 4031:∗ 4027:∂ 3988:⊂ 3952:⊂ 3905:∪ 3865:∪ 3810:∗ 3802:∘ 3797:∗ 3784:∗ 3773:∘ 3721:→ 3687:∗ 3644:→ 3596:⋯ 3593:→ 3584:∩ 3572:∩ 3558:− 3541:∗ 3537:∂ 3495:∗ 3487:− 3482:∗ 3442:⊕ 3405:∗ 3392:∗ 3368:∩ 3356:∩ 3337:→ 3334:⋯ 3226:− 3216:~ 3206:≅ 3182:~ 3047:≠ 2999:⊕ 2972:⊕ 2951:δ 2947:≅ 2929:∨ 2902:~ 2831:~ 2821:⊕ 2800:~ 2790:≅ 2781:∨ 2763:~ 2664:basepoint 2652:wedge sum 2592:≠ 2537:⊕ 2503:⊕ 2482:δ 2478:≅ 2455:~ 2431:injective 2410:→ 2389:~ 2378:→ 2370:⊕ 2354:α 2336:→ 2315:~ 2305:→ 2242:(in red). 2174:≠ 2100:δ 2096:≅ 2065:~ 2045:base case 2016:⋯ 2013:⟶ 2007:⟶ 1995:− 1974:− 1964:~ 1946:∗ 1942:∂ 1902:~ 1892:⟶ 1886:⟶ 1883:⋯ 1728:π 1653:∗ 1640:∗ 1624:≅ 1616:∗ 1608:− 1603:∗ 1559:∗ 1551:− 1546:∗ 1503:⊕ 1478:≅ 1429:∩ 1391:→ 1370:~ 1354:∗ 1346:− 1341:∗ 1308:~ 1298:⊕ 1277:~ 1258:∗ 1245:∗ 1221:∩ 1203:~ 1193:→ 1190:⋯ 1177:non-empty 1121:for some 1085:− ∂ 876:⊕ 849:↪ 817:↪ 799:↪ 793:∩ 775:↪ 769:∩ 734:→ 706:∗ 698:− 693:∗ 659:⊕ 637:→ 634:⋯ 601:⋯ 598:→ 589:∩ 575:− 559:∗ 555:∂ 521:∗ 513:− 508:∗ 475:⊕ 439:∗ 425:∗ 396:∩ 372:∗ 368:∂ 333:→ 330:⋯ 250:interiors 170:morphisms 72:subspaces 48:algebraic 7169:Category 7054:(eds.), 7016:(1966), 6945:(1984), 6833:(2002), 6807:(1952), 6762:(2004), 6734:(1989), 6712:(2004), 6262:See also 5939:where α( 5884:→ 5829:→ 5469:→ 5433:→ 5370:→ 5056:→ 5017:→ 4962:→ 4431:↓ 4411:↓ 4391:↓ 4371:↓ 4351:↓ 4077:commutes 3532:→ 3473:→ 3380:→ 3297:relative 3280:as above 3039:if  3011:if  2584:if  2556:if  2349:→ 2166:if  2138:if  2041:0-sphere 1936:→ 1332:→ 1233:→ 1093:− 1039:−1 1023:. Then ∂ 999:. Since 963:-chains 684:→ 550:→ 499:→ 407:→ 363:→ 129:for the 122:topology 118:relative 60:Austrian 6936:2225848 6873:(ed.), 6859:1867354 6794:2050072 6580:7597142 6246:of the 3618:natural 3140:, with 3120:be the 3101:is the 2650:be the 2039:of the 1866:trivial 1811:-sphere 1787:-sphere 1025:∗ 951:-cycle 934:∗ 906:∗ 280:) is a 162:objects 114:reduced 76:natural 7154:  7150:(20), 7113:  7078:  7028:  7001:  6993:  6957:  6934:  6924:  6903:  6893:  6857:  6847:  6819:  6792:  6782:  6748:  6720:  6698:  6621:, §I.2 6578:  6568:  5967:, and 5697:where 5540:where 5256:via a 5129:is an 5117:where 3112:, let 2362:  2344:  1836:to a ( 1820:, let 832:, and 252:cover 201:Vienna 182:kernel 168:) and 166:groups 46:is an 42:, the 7138:(PDF) 7111:S2CID 6999:S2CID 6374:, §15 6279:Notes 6256:topoi 5951:), β( 5943:) = ( 5316:() = 5303:form 4707:group 3666:is a 2666:is a 2269:glued 2214:> 1755:when 1175:have 1101:and ∂ 991:) = ∂ 752:Here 236:be a 209:torus 192:, or 178:image 7152:ISSN 7076:ISBN 7026:ISBN 6991:ISSN 6955:ISBN 6922:ISBN 6901:OCLC 6891:ISBN 6845:ISBN 6817:ISBN 6780:ISBN 6746:ISBN 6718:ISBN 6696:ISBN 6594:link 6576:OCLC 6566:ISBN 6222:and 6190:for 5959:) = 5776:the 5279:and 5135:X, ρ 4714:dual 3315:and 3144:and 3116:and 2876:and 2725:and 2701:and 2681:and 2658:and 2646:Let 2634:and 2287:are 2264:and 1864:are 1860:and 1824:and 1171:and 1163:For 1151:and 1143:and 1089:= ∂( 1007:= −∂ 983:= ∂( 975:and 967:and 924:and 868:and 864:are 260:and 240:and 232:Let 220:and 116:and 104:and 96:and 66:and 38:and 7103:doi 7068:doi 6983:doi 6772:doi 6226:). 6004:or 5947:, − 5307:on 5301:+ 1 5202:in 5133:of 4923:is 4712:is 3924:and 3124:in 3097:If 2670:of 1848:to 1591:Ker 1534:Ker 1444:is 1125:in 1117:= ∂ 1077:+ ∂ 1073:= ∂ 1069:= ∂ 1065:+ ∂ 1031:in 995:+ ∂ 216:by 54:of 30:In 7171:: 7148:49 7146:, 7140:, 7118:. 7109:, 7099:37 7097:, 7074:, 7058:, 7050:; 7046:; 7024:, 7020:, 7006:. 6997:, 6989:, 6979:36 6977:, 6953:, 6949:, 6932:MR 6930:, 6920:, 6899:, 6855:MR 6853:, 6843:, 6839:, 6815:, 6811:, 6803:; 6790:MR 6788:, 6778:, 6770:, 6744:, 6742:39 6694:, 6590:}} 6586:{{ 6574:. 6394:^ 6379:^ 6258:. 6198:. 6034:+ 5980:+ 5963:+ 5955:, 5784:) 5318:. 5281:dω 5274:dω 5266:, 5123:, 3319:⊂ 3311:⊂ 3303:⊂ 3295:A 3282:. 3164:, 3106:SY 3050:2. 2737:∪ 2733:= 2729:∩ 2721:= 2717:∪ 2709:∪ 2705:= 2697:∪ 2693:= 2685:⊆ 2677:⊆ 2595:1. 2275:, 1816:= 1799:= 1628:Im 1394:0. 1133:+1 1113:- 1111:x′ 1107:x′ 1103:u′ 1091:v′ 1087:u′ 1079:v′ 1075:u′ 1059:v′ 1057:+ 1055:u′ 1053:= 987:+ 916:+ 912:= 892:. 737:0. 296:, 292:, 276:, 272:, 244:, 188:, 7159:. 7105:: 7070:: 7035:. 6985:: 6964:. 6908:. 6885:/ 6881:/ 6862:. 6826:. 6774:: 6755:. 6727:. 6705:. 6596:) 6582:. 6168:0 6162:) 6159:V 6153:U 6150:( 6145:n 6134:) 6131:V 6128:( 6123:n 6112:) 6109:U 6106:( 6101:n 6090:) 6087:X 6084:( 6079:n 6068:0 6049:X 6047:( 6044:n 6040:H 6036:B 6032:A 6030:( 6027:n 6023:H 6019:X 6017:( 6014:n 6010:H 6006:B 6002:A 5998:X 5994:n 5990:B 5986:A 5982:B 5978:A 5976:( 5973:n 5969:C 5965:y 5961:x 5957:y 5953:x 5949:x 5945:x 5941:x 5935:, 5923:0 5917:) 5914:B 5911:+ 5908:A 5905:( 5900:n 5896:C 5878:) 5875:B 5872:( 5867:n 5863:C 5856:) 5853:A 5850:( 5845:n 5841:C 5823:) 5820:B 5814:A 5811:( 5806:n 5802:C 5795:0 5732:U 5710:U 5706:i 5685:) 5677:V 5668:i 5661:, 5653:U 5644:i 5640:( 5631:: 5588:X 5580:, 5568:V 5560:, 5548:U 5519:) 5516:V 5510:U 5507:( 5502:1 5499:+ 5496:n 5491:c 5487:H 5474:d 5464:) 5461:X 5458:( 5453:n 5448:c 5444:H 5428:) 5425:V 5422:( 5417:n 5412:c 5408:H 5401:) 5398:U 5395:( 5390:n 5385:c 5381:H 5365:) 5362:V 5356:U 5353:( 5348:n 5343:c 5339:H 5314:d 5309:X 5305:σ 5299:n 5293:V 5291:∩ 5289:U 5283:V 5276:U 5270:} 5268:V 5264:U 5262:{ 5242:V 5229:U 5214:ω 5209:V 5207:∩ 5205:U 5200:ω 5150:d 5139:Δ 5127:} 5125:V 5121:U 5119:{ 5096:) 5093:X 5090:( 5085:1 5082:+ 5079:n 5075:H 5061:d 5050:) 5047:V 5041:U 5038:( 5033:n 5029:H 5011:) 5008:V 5005:( 5000:n 4996:H 4989:) 4986:U 4983:( 4978:n 4974:H 4956:) 4953:X 4950:( 4945:n 4941:H 4913:R 4906:G 4879:) 4876:G 4873:; 4870:X 4867:( 4862:1 4859:+ 4856:n 4852:H 4845:) 4842:G 4839:; 4836:B 4830:A 4827:( 4822:n 4818:H 4811:) 4808:G 4805:; 4802:B 4799:( 4794:n 4790:H 4783:) 4780:G 4777:; 4774:A 4771:( 4766:n 4762:H 4755:) 4752:G 4749:; 4746:X 4743:( 4738:n 4734:H 4710:G 4667:) 4662:2 4658:B 4649:2 4645:A 4641:( 4636:1 4630:n 4626:H 4615:) 4610:2 4606:X 4602:( 4597:n 4593:H 4582:) 4577:2 4573:B 4569:( 4564:n 4560:H 4553:) 4548:2 4544:A 4540:( 4535:n 4531:H 4520:) 4515:2 4511:B 4502:2 4498:A 4494:( 4489:n 4485:H 4474:) 4469:2 4465:X 4461:( 4456:1 4453:+ 4450:n 4446:H 4420:f 4400:f 4380:f 4360:f 4340:f 4321:) 4316:1 4312:B 4303:1 4299:A 4295:( 4290:1 4284:n 4280:H 4269:) 4264:1 4260:X 4256:( 4251:n 4247:H 4236:) 4231:1 4227:B 4223:( 4218:n 4214:H 4207:) 4202:1 4198:A 4194:( 4189:n 4185:H 4174:) 4169:1 4165:B 4156:1 4152:A 4148:( 4143:n 4139:H 4128:) 4123:1 4119:X 4115:( 4110:1 4107:+ 4104:n 4100:H 4057:f 4036:, 4014:, 3996:2 3992:B 3985:) 3980:1 3976:B 3972:( 3969:f 3960:2 3956:A 3949:) 3944:1 3940:A 3936:( 3933:f 3913:2 3909:B 3900:2 3896:A 3892:= 3887:2 3883:X 3873:1 3869:B 3860:1 3856:A 3852:= 3847:1 3843:X 3815:. 3806:h 3793:g 3789:= 3780:) 3776:h 3770:g 3767:( 3747:) 3742:2 3738:X 3734:( 3729:k 3725:H 3718:) 3713:1 3709:X 3705:( 3700:k 3696:H 3692:: 3683:f 3652:2 3648:X 3639:1 3635:X 3631:: 3628:f 3590:) 3587:D 3581:C 3578:, 3575:B 3569:A 3566:( 3561:1 3555:n 3551:H 3526:) 3523:Y 3520:, 3517:X 3514:( 3509:n 3505:H 3491:l 3478:k 3467:) 3464:D 3461:, 3458:B 3455:( 3450:n 3446:H 3439:) 3436:C 3433:, 3430:A 3427:( 3422:n 3418:H 3410:) 3401:j 3397:, 3388:i 3384:( 3374:) 3371:D 3365:C 3362:, 3359:B 3353:A 3350:( 3345:n 3341:H 3321:B 3317:D 3313:A 3309:C 3305:X 3301:Y 3276:k 3272:k 3268:k 3264:Y 3260:X 3243:. 3240:) 3237:Y 3234:( 3229:1 3223:n 3213:H 3203:) 3200:Y 3197:S 3194:( 3189:n 3179:H 3162:n 3158:Y 3154:B 3152:∩ 3150:A 3146:B 3142:A 3138:B 3136:∪ 3134:A 3130:X 3126:X 3118:B 3114:A 3110:Y 3099:X 3093:. 3091:X 3087:Y 3083:X 3044:n 3032:0 3025:, 3022:2 3019:= 3016:n 3003:Z 2995:Z 2987:{ 2983:= 2980:) 2976:Z 2968:Z 2964:( 2958:n 2955:2 2943:) 2937:2 2933:S 2924:2 2920:S 2915:( 2909:n 2899:H 2878:L 2874:K 2870:X 2866:n 2849:) 2846:L 2843:( 2838:n 2828:H 2818:) 2815:K 2812:( 2807:n 2797:H 2787:) 2784:L 2778:K 2775:( 2770:n 2760:H 2739:V 2735:U 2731:B 2727:A 2723:X 2719:B 2715:A 2711:L 2707:U 2703:B 2699:V 2695:K 2691:A 2687:L 2683:V 2679:K 2675:U 2660:L 2656:K 2648:X 2642:. 2640:X 2636:L 2632:K 2628:X 2589:n 2577:0 2570:, 2567:1 2564:= 2561:n 2547:2 2542:Z 2533:Z 2526:{ 2521:= 2518:) 2513:2 2508:Z 2499:Z 2495:( 2489:n 2486:1 2474:) 2471:X 2468:( 2462:n 2452:H 2435:Z 2413:0 2407:) 2404:X 2401:( 2396:1 2386:H 2374:Z 2366:Z 2340:Z 2333:) 2330:X 2327:( 2322:2 2312:H 2302:0 2285:B 2283:∩ 2281:A 2277:B 2273:A 2266:B 2262:A 2255:X 2251:X 2240:B 2236:A 2216:k 2212:n 2180:, 2177:k 2171:n 2159:0 2152:, 2149:k 2146:= 2143:n 2130:Z 2123:{ 2118:= 2114:Z 2107:n 2104:k 2092:) 2087:k 2083:S 2079:( 2072:n 2062:H 2033:* 2010:0 2003:) 1998:1 1992:k 1988:S 1984:( 1977:1 1971:n 1961:H 1929:) 1924:k 1920:S 1916:( 1909:n 1899:H 1889:0 1862:B 1858:A 1850:k 1842:k 1838:k 1830:X 1826:B 1822:A 1818:S 1814:X 1809:k 1801:S 1797:X 1785:k 1763:X 1743:) 1740:X 1737:( 1732:1 1704:) 1701:X 1698:( 1693:1 1689:H 1661:. 1658:) 1649:j 1645:, 1636:i 1632:( 1621:) 1612:l 1599:k 1595:( 1564:) 1555:l 1542:k 1538:( 1529:/ 1525:) 1522:) 1519:B 1516:( 1511:1 1507:H 1500:) 1497:A 1494:( 1489:1 1485:H 1481:( 1475:) 1472:X 1469:( 1464:1 1460:H 1432:B 1426:A 1388:) 1385:X 1382:( 1377:0 1367:H 1350:l 1337:k 1326:) 1323:B 1320:( 1315:0 1305:H 1295:) 1292:A 1289:( 1284:0 1274:H 1263:) 1254:j 1250:, 1241:i 1237:( 1227:) 1224:B 1218:A 1215:( 1210:0 1200:H 1173:B 1169:A 1153:B 1149:A 1145:B 1141:A 1137:X 1135:( 1131:n 1127:H 1123:φ 1119:φ 1115:x 1099:u 1095:v 1083:u 1071:x 1067:v 1063:u 1051:x 1047:B 1045:∩ 1043:A 1041:( 1037:n 1033:H 1029:u 1021:B 1019:∩ 1017:A 1013:n 1009:v 1005:u 1001:x 997:v 993:u 989:v 985:u 981:x 977:B 973:A 969:v 965:u 961:n 953:x 949:n 945:X 943:( 940:n 938:H 928:. 926:B 922:A 918:v 914:u 910:x 852:X 846:B 843:: 840:l 820:X 814:A 811:: 808:k 805:, 802:B 796:B 790:A 787:: 784:j 781:, 778:A 772:B 766:A 763:: 760:i 731:) 728:X 725:( 720:0 716:H 702:l 689:k 678:) 675:B 672:( 667:0 663:H 656:) 653:A 650:( 645:0 641:H 595:) 592:B 586:A 583:( 578:1 572:n 568:H 545:) 542:X 539:( 534:n 530:H 517:l 504:k 494:) 491:B 488:( 483:n 479:H 472:) 469:A 466:( 461:n 457:H 449:) 435:j 421:i 412:( 402:) 399:B 393:A 390:( 385:n 381:H 358:) 355:X 352:( 347:1 344:+ 341:n 337:H 309:B 307:∩ 305:A 298:B 294:A 290:X 286:Z 278:B 274:A 270:X 262:B 258:A 254:X 246:B 242:A 234:X 20:)

Index

Mayer-Vietoris sequence
mathematics
algebraic topology
homology theory
algebraic
algebraic invariants
topological spaces
Austrian
Walther Mayer
Leopold Vietoris
subspaces
natural
long exact sequence
direct sum
intersection
cohomology
homology theories
simplicial homology
singular cohomology
Eilenberg–Steenrod axioms
reduced
relative
topology
Seifert–van Kampen theorem
fundamental group
fundamental group
homotopy groups
linear algebra
exact sequences
objects

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.