Knowledge (XXG)

Membrane technology

Source 📝

750: 1114: 124: 727: 1127: 474:. The component that needs to be transported must first be dissolved in the membrane. The general approach of the solution-diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution-membrane interface. This principle is more important for 320: 738: 36: 328: 693:
Generally, dead-end filtration is used for feasibility studies on a laboratory scale. The dead-end membranes are relatively easy to fabricate which reduces the cost of the separation process. The dead-end membrane separation process is easy to implement and the process is usually cheaper than cross-flow membrane filtration. The dead-end filtration process is usually a
673: 77: 681: 1089:, and membrane contactors. All processes except for pervaporation involve no phase change. All processes except electrodialysis are pressure driven. Microfiltration and ultrafiltration is widely used in food and beverage processing (beer microfiltration, apple juice ultrafiltration), biotechnological applications and 202:
of the membrane are smaller than the diameter of the undesired substance, such as a harmful microorganism. Membrane technology is commonly used in industries such as water treatment, chemical and metal processing, pharmaceuticals, biotechnology, the food industry, as well as the removal of environmental pollutants.
1599:
After casting and synthesis of membrane there is need to characterize the prepared membrane to know more details about membrane parameters, like pore size, functional groups, wettability, surface charge, etc. It is important to know membrane properties so we are able to remove and treat a particulate
717:
Flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead-end geometry modules. Spiral wounds are constructed from similar flat membranes but in the form of a "pocket" containing two membrane sheets separated by a highly porous support plate. Several such pockets
692:
to the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. In dead-end filtration, the direction of the fluid flow is normal to the membrane surface. Both flow geometries offer some advantages and disadvantages.
920:
property and is expected to be fairly constant and independent of the driving force, Δp. R is related to the type of membrane foulant, its concentration in the filtering solution, and the nature of foulant-membrane interactions. Darcy's law allows for calculation of the membrane area for a targeted
201:
encompasses the scientific processes used in the construction and application of membranes. Membranes are used to facilitate the transport or rejection of substances between mediums, and the mechanical separation of gas and liquid streams. In the simplest case, filtration is achieved when the pores
1455:
When choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. In gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the
1291:
The form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. Therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the
1048:
Membrane separation processes have a very important role in the separation industry. Nevertheless, they were not considered technically important until the mid-1970s. Membrane separation processes differ based on separation mechanisms and size of the separated particles. The widely used membrane
722:
modules consist of an assembly of self-supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. The hollow fiber modules can contain up to 10,000 fibers ranging from 200 to 2500 μm in diameter; The main
709:
and particle backflow (concentration polarization). The tangential flow devices are more cost and labor-intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. The most commonly used synthetic membrane devices (modules) are flat
383:
but such separations can be achieved using membrane technology. Depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. Important technical applications include the production of drinking water by
205:
After membrane construction, there is a need to characterize the prepared membrane to know more about its parameters, like pore size, function group, material properties, etc., which are difficult to determine in advance. In this process, instruments such as the
506:). Concentration polarization is, in principle, reversible by cleaning the membrane which results in the initial flux being almost totally restored. Using a tangential flow to the membrane (cross-flow filtration) can also minimize concentration polarization. 1435:
holes) is assumed. Such methods are used for membranes whose pore geometry does not match the ideal, and we get "nominal" pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity.
892: 768:
The selection of synthetic membranes for a targeted separation process is usually based on few requirements. Membranes have to provide enough mass transfer area to process large amounts of feed stream. The selected membrane has to have high
697:-type process, where the filtering solution is loaded (or slowly fed) into the membrane device, which then allows passage of some particles subject to the driving force. The main disadvantage of dead-end filtration is the extensive membrane 1537:
is then subjected to a number of treatments, such as chemical or heat treatments, to improve its properties. One of the challenges in the fabrication of biomass-based membranes is to create a membrane with the desired properties.
1666:, the pores in the membrane are sized such that only particles smaller than the pores can pass through. The pores in the membrane are sized such that only water molecules can pass through, leaving dissolved contaminants behind. 518:. This requires the size of the pores to be smaller than the diameter of the two separate components. Membranes that function according to this principle are used mainly in micro- and ultrafiltration. They are used to separate 1109:
from air, organic vapor removal from air or a nitrogen stream) and sometimes in membrane distillation. The later process helps in the separation of azeotropic compositions reducing the costs of distillation processes.
400:
can be very effective in removing colloids and macromolecules from wastewater. This is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation.
1141:. It describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. The exclusion limit or "cut-off" of the membrane is usually specified in the form of 1311:. These methods are used mainly to measure membranes for ultrafiltration applications. Another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by 1439:
The selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. With high selectivity, isotopes can be enriched
1468:
and natural membrane. synthetic membranes further classified in organic and inorganic membranes. Organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers.
244:. In general, mechanical separation processes for separating gaseous or liquid streams use membrane technology. In recent years, different methods have been used to remove environmental pollutants, like 2421:
Yaqoob, Asim Ali; Serrà, Albert; Bhawani, Showkat Ahmad; Ibrahim, Mohamad Nasir Mohamad; Khan, Anish; Alorfi, Hajer S.; Asiri, Abdullah M.; Hussein, Mahmoud Ali; Khan, Imran; Umar, Khalid (2022-02-21).
1101:, the microelectronics industry, and others. Nanofiltration and reverse osmosis membranes are mainly used for water purification purposes. Dense membranes are utilized for gas separations (removal of CO 270:
to maintain and prevent the harmful chemical release into the environment. Make sure to do prevention & safety processes after that industries are able to release their waste in the environment.
371:
industries. Furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. For example, it is impossible to separate the constituents of
1827:
Clean Air Act : hearings before the Subcommittee on Health and the Environment of the Committee on Energy and Commerce, House of Representatives, Ninety-seventh Congress, first session ...
2048: 760:
The Disc tube module uses a cross-flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs.
1032: 1040:
which is the volumetric flow rate per unit of membrane area. The solute sieving coefficient and hydraulic permeability allow the quick assessment of the synthetic membrane performance.
2237: 975: 1168:, which is then expressed in a metric unit. In practice the MWCO of the membrane should be at least 20% lower than the molecular weight of the molecule that is to be separated. 781:
and to have high mechanical stability. It also needs to be reproducible and to have low manufacturing costs. The main modeling equation for the dead-end filtration at constant
1942:
Mukherjee, Debarati; Bhattacharya, Priyankari; Jana, Animesh; Bhattacharya, Sandipan; Sarkar, Subhendu; Ghosh, Sourja; Majumdar, Swachchha; Swarnakar, Snehasikta (May 2018).
749: 790: 2666: 2617: 2529: 542:). Here, the liquid to be filtered flows along the front of the membrane and is separated by the pressure difference between the front and back of the membrane into 2533: 987:
are the solute concentrations in feed and permeate respectively. Hydraulic permeability is defined as the inverse of resistance and is represented by the equation:
276:-based Membrane technology is one of the most promising technologies for use as a pollutants removal weapon because it has low cost, more efficiency, & lack of 1295:
The rejection can be determined in various ways and provides an indirect measurement of the pore size. One possibility is the filtration of macromolecules (often
688:
There are two main flow configurations of membrane processes: cross-flow (or tangential flow) and dead-end filtrations. In cross-flow filtration the feed flow is
705:. The fouling is usually induced faster at higher driving forces. Membrane fouling and particle retention in a feed solution also builds up a concentration 1171:
Using track etched mica membranes Beck and Schultz demonstrated that hindered diffusion of molecules in pores can be described by the Rankin equation.
2315:"Incorporation of Biomass-Based Carbon Nanoparticles into Polysulfone Ultrafiltration Membranes for Enhanced Separation and Anti-Fouling Performance" 2059: 98: 85: 1616: 1489:
synthesis is the solution to protected environments which have largely comprehensive performance. Biomass is used in the form of activated carbon
215: 723:
advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process.
538:) on the membrane, and this blockage of the membrane hampers the filtration. This blockage can be reduced by the use of the cross-flow method ( 2642: 2593: 2566: 2492: 2424:"Utilizing Biomass-Based Graphene Oxide–Polyaniline–Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal" 2234: 1897:"Biomass-Based Synthesis of Green and Biodegradable Molecularly Imprinted Membranes for Selective Recognition and Separation of Tetracycline" 1312: 339:
Membrane separation processes operate without heating and therefore use less energy than conventional thermal separation processes such as
49: 2481:
editor., Hilal, Nidal, editor. Ismail, Ahmad Fauzi, editor. Matsuura, Takeshi, 1936- editor. Oatley-Radcliffe, Darren (18 February 2017).
145: 1944:"Synthesis of ceramic ultrafiltration membrane and application in membrane bioreactor process for pesticide remediation from wastewater" 618: 409: 332: 264:
because more than 70% of environmental pollution occurs due to industries. It is their responsibility to follow government rules of the
2794:
Templin T., Johnston D., Singh V., Tumbleson M.E., Belyea R.L. Rausch K.D. Membrane separation of solids from corn processing streams.
2847: 2832: 2817: 1795: 1161:
of a globular molecule that is retained to 90% by the membrane. The cut-off, depending on the method, can by converted to so-called
185: 167: 63: 1529:
of a pure biomass-based membrane is a complex process that involves a number of steps. The first step is to create a slurry of the
311:
material with the help of naturally available material such as biomass-based membrane synthesis can be used to remove pollutants.
1610: 1335: 211: 344: 1137:
The pore sizes of technical membranes are specified differently depending on the manufacturer. One common distinction is by
1113: 1517:
A biomass-based membrane is a membrane made from organic materials such as plant fibers. These membranes are often used in
1663: 1315:(LIBS). A vivid characterization is to measure the rejection of dextran blue or other colored molecules. The retention of 1308: 380: 376: 2863: 1604: 207: 1824:
Environment., United States. Congress. House. Committee on Energy and Commerce. Subcommittee on Health and the (1982).
1533:. This slurry is then cast onto a substrate, such as a glass or metal plate. The cast is then dried, and the resulting 1895:
Xing, Wendong; Wu, Yilin; Lu, Jian; Lin, Xinyu; Yu, Chao; Dong, Zeqing; Yan, Yongsheng; Li, Chunxiang (January 2020).
1526: 1600:
pollutant, which causes pollution in the environment. For characterization following different instruments are used:
138: 132: 2083:
Fleischer, R. L.; Price, P. B.; Walker, R. M. (May 1963). "Method of Forming Fine Holes of Near Atomic Dimensions".
462:
In real membranes, these two transport mechanisms certainly occur side by side, especially during ultra-filtration.
1427:(mercury, liquid-liquid porosimeter and Bubble Point Test) are also used, but a certain form of the pores (such as 702: 499: 2126:
Beck, R. E.; Schultz, J. S. (1970-12-18). "Hindered Diffusion in Microporous Membranes with Known Pore Geometry".
90: 992: 149: 1150: 420: 55: 933: 916:
can be interpreted as a membrane resistance to the solvent (water) permeation. This resistance is a membrane
404:
About half of the market is in medical applications such as artificial kidneys to remove toxic substances by
1090: 737: 288: 1734: 531: 491: 296: 238: 1776:"Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment" 719: 711: 659: 539: 1658:
is any process that improves the quality of water to make it more acceptable for a specific end-use.
359:) can be obtained as useful products. Cold separation using membrane technology is widely used in the 2135: 2092: 1955: 1522: 1408: 1098: 901: 603: 523: 261: 253: 2868: 1746: 1573: 1498: 1428: 1393: 1300: 1130:
The pore distribution of a fictitious ultrafiltration membrane with the nominal pore size and the D
1126: 887:{\displaystyle {\frac {dV_{p}}{dt}}=Q={\frac {\Delta p}{\mu }}\ A\left({\frac {1}{R_{m}+R}}\right)} 770: 639: 634: 432: 277: 234: 2313:
Zheng, Zhiyu; Chen, Jingwen; Wu, Jiamin; Feng, Min; Xu, Lei; Yan, Nina; Xie, Hongde (2021-09-04).
726: 718:
are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling.
2660: 2611: 2510: 2403: 2167: 1924: 1801: 1751: 1465: 1851:"Panel Discussion: Impact of the Resource and Recovery Act on Power Generation and Incineration" 1662:
can be used to remove particulates from water by either size exclusion or charge separation. In
534:
or remove bacteria. During this process, the retained particles or molecules form a pulpy mass (
543: 2843: 2828: 2813: 2738: 2700: 2648: 2638: 2599: 2589: 2562: 2498: 2488: 2463: 2445: 2395: 2354: 2336: 2295: 2277: 2256:"Membrane Distillation: Recent Configurations, Membrane Surface Engineering, and Applications" 2216: 2198: 2159: 2151: 2108: 1971: 1916: 1872: 1831: 1791: 1635: 1629: 1588: 1530: 1441: 1362: 905: 644: 300: 219: 1323:, the so-called "bacteria challenge test", can also provide information about the pore size. 2730: 2692: 2554: 2453: 2435: 2385: 2344: 2326: 2285: 2267: 2206: 2143: 2100: 1963: 1908: 1862: 1783: 1577: 1563: 1555: 1518: 1158: 694: 555: 319: 419:
The importance of membrane technology is growing in the field of environmental protection (
303:
which create harmful environmental pollution. Researchers are trying to find a solution to
2522: 2241: 1655: 1449: 1277: 1239: 1220: 1074: 1070: 1062: 1054: 1050: 628: 613: 588: 578: 573: 424: 405: 397: 393: 385: 360: 348: 257: 2139: 2096: 1959: 1775: 912:
and R are the respective resistances of membrane and growing deposit of the foulants. R
2458: 2423: 2349: 2314: 2290: 2255: 2211: 2186: 1787: 1686: 1675: 1502: 1445: 1258: 1078: 1058: 593: 583: 487: 368: 308: 2696: 2233:
Experience and potential application of nanofiltration - University of Linz (German) (
356: 2857: 2734: 2407: 1928: 1805: 1494: 1316: 1154: 1082: 782: 608: 519: 364: 292: 2171: 1774:
Sonawane, Shriram; Thakur, Parag; Sonawane, Shirish H.; Bhanvase, Bharat A. (2021),
2680: 1867: 1850: 1730: 1702: 1506: 1505:, larger pore size, more and lower surface roughness therefore, the separation and 1490: 1347: 1086: 1066: 551: 340: 2718: 2147: 237:
approaches for the transport of substances between two fractions with the help of
27:
Transport of substances between two fractions with the help of permeable membranes
17: 2187:"Filtration, diffusion, and molecular sieving through porous cellulose membranes" 1943: 1569: 1486: 1424: 1378: 566:
According to the driving force of the operation, it is possible to distinguish:
535: 389: 304: 284: 1967: 1896: 2502: 2390: 2373: 2272: 1912: 1550: 1203: 1094: 689: 515: 502:
and, occurring during the filtration, leads to a reduced trans-membrane flow (
483: 443:
Two basic models can be distinguished for mass transfer through the membrane:
352: 245: 2742: 2704: 2652: 2603: 2548: 2449: 2399: 2340: 2281: 2202: 2155: 2112: 1975: 1920: 1876: 2801:
Ripperger S., Schulz G. Microporous membranes in biotechnical applications.
917: 706: 649: 471: 428: 372: 327: 307:
an eco-friendly membrane which avoids environmental pollution. Synthesis of
249: 2467: 2358: 2299: 2220: 2163: 1835: 1444:
in nuclear engineering or industrial gases like nitrogen can be recovered (
904:
respectively (proportional to same characteristics of the feed flow), μ is
295:
are used in the membrane preparation process. These membrane materials are
76: 2558: 2440: 479: 2372:
Li, Youjing; Li, Fen; Yang, Ying; Ge, Baocai; Meng, Fanzhu (2021-03-09).
2331: 1659: 1534: 1320: 1296: 547: 495: 241: 774: 1718: 1420: 1304: 1174:
Filter membranes are divided into four classes according to pore size:
925: 778: 698: 672: 527: 273: 2482: 2374:"Research and application progress of lignin-based composite membrane" 2104: 2011: 2632: 2583: 1432: 922: 498:
which cannot pass through the membrane. The effect is referred to as
482:
such as those used for reverse osmosis and in fuel cells. During the
680: 1825: 550:(filtrate) on the back. The tangential flow on the front creates a 514:
Transport through pores – in the simplest case – is done
392:
treatment, membrane technology is becoming increasingly important.
2770:, Principles and Applications., New York: Marcel Dekker, Inc,1996. 1482: 1125: 1112: 725: 679: 671: 413: 326: 318: 1721:
Membrane gas separation more effective then commercial membrane.
2254:
Parani, Sundararajan; Oluwafemi, Oluwatobi Samuel (2021-11-26).
1583: 1037: 503: 351:. The separation process is purely physical and both fractions ( 117: 70: 29: 1717:), harmful gasses can be removed to protect the environment. 755:
Separation of air into oxygen and nitrogen through a membrane
252:, and membrane separation. Different pollution occurs in the 427:
techniques, membranes are increasingly used, for example in
1737:
to remove waste products and excess fluids from the blood.
1546:
List of instruments used in membrane synthesis procedures:
1509:
performance of membranes are also improved simultaneously.
222:, and Liquid–Liquid Displacement Porosimetry are utilized. 1097:
production, protein purification), water purification and
470:
In the solution-diffusion model, transport occurs only by
2787:
Van Reis R., Zydney A. Bioprocess membrane technology.
900:
and Q are the volume of the permeate and its volumetric
1769: 1767: 2012:"RCDT Module - Radial Channel Disc Tube (RCDT) Module" 995: 936: 793: 777:) properties for certain particles; it has to resist 2585:
Industrial wastewater treatment, recycling and reuse
1247:bacteria, macromolecules, proteins, larger viruses 1780:Handbook of Nanomaterials for Wastewater Treatment 1026: 969: 886: 1674:Utilization of membranes in gas separation, like 2777:, Kluwer Academic Publishers, Netherlands, 1996. 2553:. Hoboken, NJ, USA: John Wiley & Sons, Inc. 1855:Journal of the Air Pollution Control Association 1501:of corn stalks etc. which improve  surface 267:Air Pollution Control & Prevention Act 1981 2550:Nanostructured Polymer Membranes: Applications 1890: 1888: 1886: 1464:Bio-Membrane is classified in two categories, 1641:Liquid–Liquid Displacement Porosimetry (LLDP) 1542:Equipment and instruments used in the process 625:Operations in an electric potential gradient 8: 2665:: CS1 maint: multiple names: authors list ( 2616:: CS1 maint: multiple names: authors list ( 2547:Visakh, P.M.; Nazarenko, Olga (2016-08-29). 1307:), another is measurement of the cut-off by 764:Membrane performance and governing equations 554:that cracks the filter cake and reduces the 260:etc. As per industry requirement to prevent 1948:Process Safety and Environmental Protection 1027:{\displaystyle L_{p}={\frac {J}{\Delta p}}} 546:(the flowing concentrate) on the front and 64:Learn how and when to remove these messages 2532:) CS1 maint: numeric names: authors list ( 1513:Fabrication of pure biomass based membrane 1452:can be enriched with a suitable membrane. 908:of permeating fluid, A is membrane area, R 2528:CS1 maint: multiple names: authors list ( 2457: 2439: 2389: 2348: 2330: 2289: 2271: 2210: 1866: 1009: 1000: 994: 959: 949: 943: 935: 865: 855: 830: 804: 794: 792: 186:Learn how and when to remove this message 168:Learn how and when to remove this message 1681: 1325: 1176: 970:{\displaystyle S={\frac {C_{p}}{C_{f}}}} 928:coefficient is defined by the equation: 412:for bubble-free supply of oxygen in the 131:This article includes a list of general 101:of all important aspects of the article. 2775:Basic Principles of Membrane Technology 1763: 1617:Fourier Transform Infrared Spectroscopy 733: 216:Fourier Transform Infrared Spectroscopy 2658: 2609: 2518: 2508: 2058:(in German). p. 6. Archived from 2016:Radial Channel Disc Tube (RCDT) Module 1145:(nominal molecular weight cut-off, or 97:Please consider expanding the lead to 1493:, like using cellulose based biomass 656:Operations in a temperature gradient 7: 2763:, New York: Marcel Dekker, Inc,1992. 2049:"2 Principles of Membrane Processes" 2001:, New York: Marcel Dekker, Inc,1992. 1313:laser induced breakdown spectroscopy 1117:Ranges of membrane based separations 921:separation at given conditions. The 2766:Zeman, Leos J., Zydney, Andrew L., 2719:"Virus removal from blood products" 2036:Membrane Formation and Modification 1993: 1991: 1989: 1987: 1985: 668:Membrane shapes and flow geometries 333:extracorporeal membrane oxygenation 323:Ultrafiltration for a swimming pool 2768:Microfiltration and Ultrafitration 1788:10.1016/b978-0-12-821496-1.00009-x 1456:membrane can be retained as well. 1228:larger bacteria, yeast, particles 1015: 833: 710:sheets/plates, spiral wounds, and 137:it lacks sufficient corresponding 25: 2808:Thomas Melin, Robert Rautenbach, 2191:The Journal of General Physiology 45:This article has multiple issues. 2185:Renkin, Eugene M. (1954-11-20). 2085:Review of Scientific Instruments 1611:Transmission electron Microscope 1497:, hazelnut shell, walnut shell, 1419:To determine the pore diameter, 1157:). It is defined as the minimum 748: 736: 600:Concentration driven operations 212:Transmission electron Microscope 122: 75: 34: 2761:Membrane Science and Technology 1999:Membrane Science and Technology 1285:salts, small organic molecules 785:is represented by Darcy's law: 89:may be too short to adequately 53:or discuss these issues on the 2378:Journal of Polymer Engineering 1868:10.1080/00022470.1981.10465270 1782:, Elsevier, pp. 537–553, 1478:The composite biomass membrane 1105:from natural gas, separating N 375:liquids or solutes which form 99:provide an accessible overview 1: 2840:Membranen und Membranprozesse 2697:10.1016/s0958-2118(00)89231-9 2148:10.1126/science.170.3964.1302 1646:Biomass Membrane Applications 1473:Synthesis of Biomass Membrane 1309:gel permeation chromatography 1044:Membrane separation processes 2735:10.1016/0958-2118(91)90133-f 1605:Scanning Electron Microscope 743:Hollow fiber membrane module 730:Spiral wound membrane module 490:forms on the membrane. This 379:crystals by distillation or 208:Scanning Electron Microscope 2812:, Springer, Germany, 2007, 2034:Pinnau, I., Freeman, B.D., 1849:Bates, Dennis (July 1981). 633:membrane electrolysis e.g. 570:Pressure-driven operations 2885: 2691:(89): 14. September 1997. 2582:V., Ranade, Vivek (2014). 1968:10.1016/j.psep.2018.01.010 703:concentration polarization 500:concentration polarization 478:membranes without natural 421:Nano-Mem-Pro IPPC Database 256:like air pollution, waste 2784:, Springer, Germany, 2006 2759:Osada, Y., Nakagawa, T., 2631:L., Kohl, Arthur (1997). 2588:. Butterworth-Heinemann. 2484:Membrane characterization 2391:10.1515/polyeng-2020-0268 2273:10.3390/membranes11120934 1997:Osada, Y., Nakagawa, T., 1913:10.1142/s1793292020500046 1595:Membrane Characterization 1122:Pore size and selectivity 2825:Handbuch Ultrafiltration 1733:is a process of using a 1729:Membrane application in 1266:viruses, 2- valent ions 1151:molecular weight cut off 1036:where J is the permeate 466:Solution-diffusion model 449:solution-diffusion model 2798:. 97(2006): 1536-1545. 1622:Atomic force microscopy 1460:Membrane Classification 1091:pharmaceutical industry 289:polyvinylidene fluoride 152:more precise citations. 2729:(11): 13. March 1991. 1735:semipermeable membrane 1348:Acholeplasma laidlawii 1134: 1118: 1028: 971: 888: 731: 685: 677: 492:concentration gradient 336: 324: 2559:10.1002/9781118831823 2441:10.3390/polym14040845 1274:< 100 Da 1214:> 0.1 μm 1129: 1116: 1029: 972: 889: 729: 683: 675: 660:membrane distillation 635:chloralkaline process 540:cross-flow filtration 330: 322: 2332:10.3390/nano11092303 1523:wastewater treatment 1442:(uranium enrichment) 1409:Lactobacillus brevis 1379:Pseudomonas diminuta 1225:< 2 bar 1099:wastewater treatment 1081:, vapor permeation, 993: 934: 791: 640:electrode ionization 433:osmotic power plants 278:secondary pollutants 262:industrial pollution 2864:Membrane technology 2791:. 297(2007): 16-50. 2723:Membrane Technology 2685:Membrane Technology 2140:1970Sci...170.1302B 2134:(3964): 1302–1305. 2097:1963RScI...34..510F 1960:2018PSEP..116...22M 1747:Particle deposition 1630:streaming potential 1625:Contact angle meter 1574:measuring cylinders 1560:Plane casting glass 1499:agricultural wastes 1394:Serratia marcescens 1301:polyethylene glycol 1271:< 1 nm 676:Cross-flow geometry 562:Membrane operations 231:Membrane technology 199:Membrane technology 2782:Sterile Filtration 2780:Jornitz, Maik W., 2681:"Acid gas removal" 2521:has generic name ( 2240:2013-04-05 at the 1752:Synthetic membrane 1525:applications. The 1466:synthetic membrane 1217:> 5000 kDa 1197:> 10  1135: 1119: 1049:processes include 1024: 967: 884: 732: 686: 678: 645:electro filtration 510:Hydrodynamic model 456:hydrodynamic model 423:). Even in modern 337: 325: 18:Membrane processes 2838:Eberhard Staude, 2805:. 1(1986): 43-49. 2644:978-0-08-050720-0 2595:978-0-444-63403-0 2568:978-1-118-83182-3 2494:978-0-444-63791-8 2105:10.1063/1.1718419 1636:X-ray Diffraction 1589:Mortar and pestle 1531:organic materials 1448:). Ideally, even 1417: 1416: 1363:Bacillus subtilis 1329:Nominal pore size 1289: 1288: 1139:nominal pore size 1022: 965: 906:dynamic viscosity 878: 847: 843: 819: 684:Dead-end geometry 381:recrystallization 315:Membrane Overview 301:non-biodegradable 220:X-ray Diffraction 196: 195: 188: 178: 177: 170: 116: 115: 68: 16:(Redirected from 2876: 2810:Membranverfahren 2747: 2746: 2715: 2709: 2708: 2677: 2671: 2670: 2664: 2656: 2634:Gas purification 2628: 2622: 2621: 2615: 2607: 2579: 2573: 2572: 2544: 2538: 2537: 2526: 2520: 2516: 2514: 2506: 2478: 2472: 2471: 2461: 2443: 2418: 2412: 2411: 2393: 2369: 2363: 2362: 2352: 2334: 2310: 2304: 2303: 2293: 2275: 2251: 2245: 2231: 2225: 2224: 2214: 2182: 2176: 2175: 2123: 2117: 2116: 2080: 2074: 2073: 2071: 2070: 2064: 2056:TU Berlin script 2053: 2045: 2039: 2032: 2026: 2025: 2023: 2022: 2008: 2002: 1995: 1980: 1979: 1939: 1933: 1932: 1892: 1881: 1880: 1870: 1846: 1840: 1839: 1821: 1815: 1814: 1813: 1812: 1771: 1716: 1715: 1714: 1700: 1699: 1698: 1684: 1628:Zeta potential ( 1564:Magnetic Stirrer 1519:water filtration 1431:or concatenated 1423:methods such as 1326: 1177: 1159:molecular weight 1153:, with units in 1033: 1031: 1030: 1025: 1023: 1021: 1010: 1005: 1004: 976: 974: 973: 968: 966: 964: 963: 954: 953: 944: 893: 891: 890: 885: 883: 879: 877: 870: 869: 856: 845: 844: 839: 831: 820: 818: 810: 809: 808: 795: 752: 740: 331:Venous-arterial 191: 184: 173: 166: 162: 159: 153: 148:this article by 139:inline citations 126: 125: 118: 111: 108: 102: 79: 71: 60: 38: 37: 30: 21: 2884: 2883: 2879: 2878: 2877: 2875: 2874: 2873: 2854: 2853: 2823:Munir Cheryan, 2756: 2751: 2750: 2717: 2716: 2712: 2679: 2678: 2674: 2657: 2645: 2630: 2629: 2625: 2608: 2596: 2581: 2580: 2576: 2569: 2546: 2545: 2541: 2527: 2517: 2507: 2495: 2480: 2479: 2475: 2420: 2419: 2415: 2371: 2370: 2366: 2312: 2311: 2307: 2253: 2252: 2248: 2242:Wayback Machine 2232: 2228: 2184: 2183: 2179: 2125: 2124: 2120: 2082: 2081: 2077: 2068: 2066: 2062: 2051: 2047: 2046: 2042: 2033: 2029: 2020: 2018: 2010: 2009: 2005: 1996: 1983: 1941: 1940: 1936: 1894: 1893: 1884: 1848: 1847: 1843: 1823: 1822: 1818: 1810: 1808: 1798: 1773: 1772: 1765: 1760: 1743: 1727: 1713: 1710: 1709: 1708: 1706: 1697: 1694: 1693: 1692: 1690: 1687:Nitrogen oxides 1683: 1679: 1672: 1656:Water treatment 1653: 1651:Water treatment 1648: 1597: 1556:Casting Machine 1544: 1515: 1480: 1475: 1462: 1278:reverse osmosis 1240:ultrafiltration 1236:5-5000 kDa 1221:microfiltration 1166: 1133: 1124: 1108: 1104: 1075:electrodialysis 1063:reverse osmosis 1055:ultrafiltration 1051:microfiltration 1046: 1014: 996: 991: 990: 986: 982: 955: 945: 932: 931: 915: 911: 899: 861: 860: 851: 832: 811: 800: 796: 789: 788: 766: 756: 753: 744: 741: 670: 629:electrodialysis 619:artificial lung 614:forward osmosis 589:reverse osmosis 579:ultrafiltration 574:microfiltration 564: 512: 468: 441: 425:energy recovery 410:artificial lung 398:microfiltration 386:reverse osmosis 361:food technology 349:crystallization 317: 258:water pollution 228: 192: 181: 180: 179: 174: 163: 157: 154: 144:Please help to 143: 127: 123: 112: 106: 103: 96: 84:This article's 80: 39: 35: 28: 23: 22: 15: 12: 11: 5: 2882: 2880: 2872: 2871: 2866: 2856: 2855: 2852: 2851: 2836: 2827:, Behr, 1990, 2821: 2806: 2803:Bioprocess Eng 2799: 2792: 2785: 2778: 2771: 2764: 2755: 2752: 2749: 2748: 2710: 2672: 2643: 2623: 2594: 2574: 2567: 2539: 2493: 2473: 2413: 2384:(4): 245–258. 2364: 2305: 2246: 2226: 2197:(2): 225–243. 2177: 2118: 2091:(5): 510–512. 2075: 2040: 2027: 2003: 1981: 1934: 1907:(1): 2050004. 1882: 1861:(7): 747–751. 1841: 1816: 1796: 1762: 1761: 1759: 1756: 1755: 1754: 1749: 1742: 1739: 1726: 1723: 1711: 1703:Sulphur oxides 1695: 1676:carbon dioxide 1671: 1670:Gas separation 1668: 1664:size exclusion 1652: 1649: 1647: 1644: 1643: 1642: 1639: 1633: 1626: 1623: 1620: 1614: 1608: 1596: 1593: 1592: 1591: 1586: 1581: 1566: 1561: 1558: 1553: 1543: 1540: 1514: 1511: 1503:hydrophilicity 1479: 1476: 1474: 1471: 1461: 1458: 1446:gas separation 1415: 1414: 1412: 1405: 1401: 1400: 1397: 1390: 1386: 1385: 1382: 1375: 1371: 1370: 1367: 1359: 1355: 1354: 1351: 1344: 1340: 1339: 1333: 1332:micro-organism 1330: 1287: 1286: 1283: 1282:10-80 bar 1280: 1275: 1272: 1268: 1267: 1264: 1261: 1259:nanofiltration 1256: 1255:0.1-5 kDa 1253: 1249: 1248: 1245: 1242: 1237: 1234: 1230: 1229: 1226: 1223: 1218: 1215: 1211: 1210: 1208: 1206: 1200: 1198: 1194: 1193: 1190: 1187: 1184: 1183:Molecular mass 1181: 1164: 1131: 1123: 1120: 1106: 1102: 1079:gas separation 1059:nanofiltration 1045: 1042: 1020: 1017: 1013: 1008: 1003: 999: 984: 980: 962: 958: 952: 948: 942: 939: 913: 909: 897: 882: 876: 873: 868: 864: 859: 854: 850: 842: 838: 835: 829: 826: 823: 817: 814: 807: 803: 799: 765: 762: 758: 757: 754: 747: 745: 742: 735: 669: 666: 665: 664: 663: 662: 654: 653: 652: 647: 642: 637: 631: 623: 622: 621: 616: 611: 606: 598: 597: 596: 594:gas separation 591: 586: 584:nanofiltration 581: 576: 563: 560: 520:macromolecules 511: 508: 494:is created by 488:boundary layer 467: 464: 460: 459: 452: 440: 437: 369:pharmaceutical 316: 313: 239:semi-permeable 227: 224: 194: 193: 176: 175: 158:September 2011 130: 128: 121: 114: 113: 93:the key points 83: 81: 74: 69: 43: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2881: 2870: 2867: 2865: 2862: 2861: 2859: 2849: 2848:3-527-28041-3 2845: 2842:, VCH, 1992, 2841: 2837: 2834: 2833:3-925673-87-3 2830: 2826: 2822: 2819: 2818:3-540-00071-2 2815: 2811: 2807: 2804: 2800: 2797: 2793: 2790: 2786: 2783: 2779: 2776: 2772: 2769: 2765: 2762: 2758: 2757: 2753: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2714: 2711: 2706: 2702: 2698: 2694: 2690: 2686: 2682: 2676: 2673: 2668: 2662: 2654: 2650: 2646: 2640: 2636: 2635: 2627: 2624: 2619: 2613: 2605: 2601: 2597: 2591: 2587: 2586: 2578: 2575: 2570: 2564: 2560: 2556: 2552: 2551: 2543: 2540: 2535: 2531: 2524: 2512: 2504: 2500: 2496: 2490: 2486: 2485: 2477: 2474: 2469: 2465: 2460: 2455: 2451: 2447: 2442: 2437: 2433: 2429: 2425: 2417: 2414: 2409: 2405: 2401: 2397: 2392: 2387: 2383: 2379: 2375: 2368: 2365: 2360: 2356: 2351: 2346: 2342: 2338: 2333: 2328: 2324: 2320: 2319:Nanomaterials 2316: 2309: 2306: 2301: 2297: 2292: 2287: 2283: 2279: 2274: 2269: 2265: 2261: 2257: 2250: 2247: 2243: 2239: 2236: 2230: 2227: 2222: 2218: 2213: 2208: 2204: 2200: 2196: 2192: 2188: 2181: 2178: 2173: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2122: 2119: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2086: 2079: 2076: 2065:on 2014-04-16 2061: 2057: 2050: 2044: 2041: 2037: 2031: 2028: 2017: 2013: 2007: 2004: 2000: 1994: 1992: 1990: 1988: 1986: 1982: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1938: 1935: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1891: 1889: 1887: 1883: 1878: 1874: 1869: 1864: 1860: 1856: 1852: 1845: 1842: 1837: 1833: 1829: 1828: 1820: 1817: 1807: 1803: 1799: 1797:9780128214961 1793: 1789: 1785: 1781: 1777: 1770: 1768: 1764: 1757: 1753: 1750: 1748: 1745: 1744: 1740: 1738: 1736: 1732: 1724: 1722: 1720: 1704: 1688: 1677: 1669: 1667: 1665: 1661: 1657: 1650: 1645: 1640: 1637: 1634: 1631: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1606: 1603: 1602: 1601: 1594: 1590: 1587: 1585: 1582: 1579: 1575: 1571: 1567: 1565: 1562: 1559: 1557: 1554: 1552: 1549: 1548: 1547: 1541: 1539: 1536: 1532: 1528: 1524: 1520: 1512: 1510: 1508: 1504: 1500: 1496: 1495:coconut shell 1492: 1491:nanoparticles 1488: 1484: 1477: 1472: 1470: 1467: 1459: 1457: 1453: 1451: 1447: 1443: 1437: 1434: 1430: 1426: 1422: 1413: 1411: 1410: 1406: 1403: 1402: 1398: 1396: 1395: 1391: 1388: 1387: 1383: 1381: 1380: 1376: 1373: 1372: 1368: 1366: 1364: 1360: 1357: 1356: 1352: 1350: 1349: 1345: 1342: 1341: 1337: 1334: 1331: 1328: 1327: 1324: 1322: 1318: 1317:bacteriophage 1314: 1310: 1306: 1302: 1298: 1293: 1284: 1281: 1279: 1276: 1273: 1270: 1269: 1265: 1263:3-20 bar 1262: 1260: 1257: 1254: 1251: 1250: 1246: 1244:1-10 bar 1243: 1241: 1238: 1235: 1233:100-2 nm 1232: 1231: 1227: 1224: 1222: 1219: 1216: 1213: 1212: 1209: 1207: 1205: 1201: 1199: 1196: 1195: 1191: 1188: 1185: 1182: 1179: 1178: 1175: 1172: 1169: 1167: 1160: 1156: 1152: 1148: 1144: 1140: 1128: 1121: 1115: 1111: 1100: 1096: 1092: 1088: 1084: 1083:pervaporation 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1043: 1041: 1039: 1034: 1018: 1011: 1006: 1001: 997: 988: 977: 960: 956: 950: 946: 940: 937: 929: 927: 924: 919: 907: 903: 894: 880: 874: 871: 866: 862: 857: 852: 848: 840: 836: 827: 824: 821: 815: 812: 805: 801: 797: 786: 784: 783:pressure drop 780: 776: 772: 763: 761: 751: 746: 739: 734: 728: 724: 721: 715: 713: 712:hollow fibers 708: 704: 700: 696: 691: 682: 674: 667: 661: 658: 657: 655: 651: 648: 646: 643: 641: 638: 636: 632: 630: 627: 626: 624: 620: 617: 615: 612: 610: 609:pervaporation 607: 605: 602: 601: 599: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 571: 569: 568: 567: 561: 559: 557: 553: 549: 545: 541: 537: 533: 529: 525: 521: 517: 509: 507: 505: 501: 497: 493: 489: 485: 481: 477: 473: 465: 463: 457: 453: 450: 446: 445: 444: 439:Mass transfer 438: 436: 434: 430: 426: 422: 417: 415: 411: 407: 402: 399: 395: 391: 387: 382: 378: 374: 370: 366: 365:biotechnology 362: 358: 354: 350: 346: 342: 334: 329: 321: 314: 312: 310: 309:biodegradable 306: 302: 298: 297:non-renewable 294: 293:polypropylene 290: 286: 281: 279: 275: 271: 269: 268: 263: 259: 255: 251: 247: 243: 240: 236: 232: 225: 223: 221: 217: 213: 209: 203: 200: 190: 187: 172: 169: 161: 151: 147: 141: 140: 134: 129: 120: 119: 110: 100: 94: 92: 87: 82: 78: 73: 72: 67: 65: 58: 57: 52: 51: 46: 41: 32: 31: 19: 2839: 2824: 2809: 2802: 2795: 2788: 2781: 2774: 2767: 2760: 2726: 2722: 2713: 2688: 2684: 2675: 2637:. Gulf Pub. 2633: 2626: 2584: 2577: 2549: 2542: 2487:. Elsevier. 2483: 2476: 2431: 2427: 2416: 2381: 2377: 2367: 2322: 2318: 2308: 2263: 2259: 2249: 2229: 2194: 2190: 2180: 2131: 2127: 2121: 2088: 2084: 2078: 2067:. Retrieved 2060:the original 2055: 2043: 2038:, ACS, 1999. 2035: 2030: 2019:. Retrieved 2015: 2006: 1998: 1951: 1947: 1937: 1904: 1900: 1858: 1854: 1844: 1830:U.S. G.P.O. 1826: 1819: 1809:, retrieved 1779: 1731:hemodialysis 1728: 1725:Hemodialysis 1673: 1654: 1598: 1568:Glass ware: 1545: 1516: 1507:anti-fouling 1487:Bio-membrane 1485:membrane or 1481: 1463: 1454: 1438: 1418: 1407: 1404:0.65 μm 1392: 1389:0.45 μm 1377: 1361: 1346: 1338:root number 1294: 1290: 1173: 1170: 1162: 1146: 1142: 1138: 1136: 1087:distillation 1067:electrolysis 1047: 1035: 989: 978: 930: 895: 787: 767: 759: 720:Hollow fiber 716: 687: 565: 552:shear stress 516:convectively 513: 475: 469: 461: 455: 448: 442: 418: 406:hemodialysis 403: 341:distillation 338: 282: 272: 266: 265: 230: 229: 226:Introduction 204: 198: 197: 182: 164: 155: 136: 107:October 2022 104: 88: 86:lead section 61: 54: 48: 47:Please help 44: 2796:Biores Tech 2773:Mulder M., 2519:|last= 2325:(9): 2303. 2266:(12): 934. 1527:fabrication 1429:cylindrical 1425:porosimeter 1374:0.5 μm 1358:0.3 μm 1343:0.1 μm 1252:2-1 nm 1192:Removal of 1085:, membrane 771:selectivity 536:filter cake 390:waste water 345:sublimation 285:polysulfone 254:environment 235:engineering 233:covers all 150:introducing 2869:Filtration 2858:Categories 2754:References 2503:1296133285 2434:(4): 845. 2069:2013-09-06 2021:2016-05-11 1811:2022-11-01 1551:Centrifuge 1292:membrane. 1202:"Classic" 1189:Filtration 1095:antibiotic 690:tangential 532:dispersion 486:process a 484:filtration 429:fuel cells 377:isomorphic 373:azeotropic 305:synthesize 283:Typically 246:adsorption 133:references 50:improve it 2789:J Mem Sci 2743:0958-2118 2705:0958-2118 2661:cite book 2653:154316990 2612:cite book 2604:884647664 2511:cite book 2450:2073-4360 2408:232144492 2400:2191-0340 2341:2079-4991 2282:2077-0375 2260:Membranes 2203:0022-1295 2156:0036-8075 2113:0034-6748 1976:0957-5820 1954:: 22–33. 1929:214180993 1921:1793-2920 1877:0002-2470 1806:236721397 1701:),   1660:Membranes 1433:spherical 1180:Pore size 1016:Δ 918:intrinsic 902:flow rate 841:μ 834:Δ 775:rejection 707:gradients 650:fuel cell 544:retentate 524:solutions 496:molecules 472:diffusion 357:retentate 250:oxidation 242:membranes 91:summarize 56:talk page 2468:35215758 2428:Polymers 2359:34578619 2300:34940435 2238:Archived 2221:13211998 2172:43124555 2164:17829429 1741:See also 1535:membrane 1450:racemics 1421:physical 1321:bacteria 1071:dialysis 604:dialysis 548:permeate 528:colloids 353:permeate 2459:8963014 2350:8469414 2291:8708938 2212:2147404 2136:Bibcode 2128:Science 2093:Bibcode 1956:Bibcode 1836:8547707 1719:Biomass 1570:Beakers 1305:albumin 1297:dextran 1186:Process 979:where C 926:sieving 896:where V 779:fouling 699:fouling 556:fouling 530:from a 431:and in 408:and as 274:Biomass 146:improve 2846:  2831:  2816:  2741:  2703:  2651:  2641:  2602:  2592:  2565:  2501:  2491:  2466:  2456:  2448:  2406:  2398:  2357:  2347:  2339:  2298:  2288:  2280:  2219:  2209:  2201:  2170:  2162:  2154:  2111:  1974:  1927:  1919:  1875:  1834:  1804:  1794:  1619:(FTIR) 1399:14756 1384:19146 1365:spores 1353:23206 1204:filter 1155:Dalton 923:solute 846:  335:scheme 291:, and 214:, the 210:, the 135:, but 2404:S2CID 2168:S2CID 2063:(PDF) 2052:(PDF) 1925:S2CID 1802:S2CID 1758:Notes 1638:(XRD) 1613:(TEM) 1607:(SEM) 1578:flask 1483:Green 983:and C 695:batch 522:from 480:pores 476:dense 414:blood 394:Ultra 388:. In 2844:ISBN 2829:ISBN 2814:ISBN 2739:ISSN 2727:1991 2701:ISSN 2689:1997 2667:link 2649:OCLC 2639:ISBN 2618:link 2600:OCLC 2590:ISBN 2563:ISBN 2534:link 2530:link 2523:help 2499:OCLC 2489:ISBN 2464:PMID 2446:ISSN 2396:ISSN 2355:PMID 2337:ISSN 2296:PMID 2278:ISSN 2217:PMID 2199:ISSN 2160:PMID 2152:ISSN 2109:ISSN 1972:ISSN 1917:ISSN 1901:Nano 1873:ISSN 1832:OCLC 1792:ISBN 1584:Oven 1580:etc. 1521:and 1336:ATCC 1319:and 1147:MWCO 1143:NMWC 1038:flux 701:and 504:flux 454:the 447:the 367:and 355:and 299:and 2731:doi 2693:doi 2555:doi 2454:PMC 2436:doi 2386:doi 2345:PMC 2327:doi 2286:PMC 2268:doi 2235:PDF 2207:PMC 2144:doi 2132:170 2101:doi 1964:doi 1952:116 1909:doi 1863:doi 1784:doi 1685:), 1369:82 1303:or 451:and 347:or 2860:: 2737:. 2725:. 2721:. 2699:. 2687:. 2683:. 2663:}} 2659:{{ 2647:. 2614:}} 2610:{{ 2598:. 2561:. 2515:: 2513:}} 2509:{{ 2497:. 2462:. 2452:. 2444:. 2432:14 2430:. 2426:. 2402:. 2394:. 2382:41 2380:. 2376:. 2353:. 2343:. 2335:. 2323:11 2321:. 2317:. 2294:. 2284:. 2276:. 2264:11 2262:. 2258:. 2215:. 2205:. 2195:38 2193:. 2189:. 2166:. 2158:. 2150:. 2142:. 2130:. 2107:. 2099:. 2089:34 2087:. 2054:. 2014:. 1984:^ 1970:. 1962:. 1950:. 1946:. 1923:. 1915:. 1905:15 1903:. 1899:. 1885:^ 1871:. 1859:31 1857:. 1853:. 1800:, 1790:, 1778:, 1766:^ 1707:SO 1691:NO 1680:CO 1576:, 1572:, 1299:, 1165:90 1149:, 1132:90 1077:, 1073:, 1069:, 1065:, 1061:, 1057:, 1053:, 714:. 558:. 526:, 435:. 416:. 363:, 343:, 287:, 280:. 248:, 218:, 59:. 2850:. 2835:. 2820:. 2745:. 2733:: 2707:. 2695:: 2669:) 2655:. 2620:) 2606:. 2571:. 2557:: 2536:) 2525:) 2505:. 2470:. 2438:: 2410:. 2388:: 2361:. 2329:: 2302:. 2270:: 2244:) 2223:. 2174:. 2146:: 2138:: 2115:. 2103:: 2095:: 2072:. 2024:. 1978:. 1966:: 1958:: 1931:. 1911:: 1879:. 1865:: 1838:. 1786:: 1712:x 1705:( 1696:x 1689:( 1682:2 1678:( 1632:) 1163:D 1107:2 1103:2 1093:( 1019:p 1012:J 1007:= 1002:p 998:L 985:p 981:f 961:f 957:C 951:p 947:C 941:= 938:S 914:m 910:m 898:p 881:) 875:R 872:+ 867:m 863:R 858:1 853:( 849:A 837:p 828:= 825:Q 822:= 816:t 813:d 806:p 802:V 798:d 773:( 458:. 396:/ 189:) 183:( 171:) 165:( 160:) 156:( 142:. 109:) 105:( 95:. 66:) 62:( 20:)

Index

Membrane processes
improve it
talk page
Learn how and when to remove these messages

lead section
summarize
provide an accessible overview
references
inline citations
improve
introducing
Learn how and when to remove this message
Learn how and when to remove this message
Scanning Electron Microscope
Transmission electron Microscope
Fourier Transform Infrared Spectroscopy
X-ray Diffraction
engineering
semi-permeable
membranes
adsorption
oxidation
environment
water pollution
industrial pollution
Biomass
secondary pollutants
polysulfone
polyvinylidene fluoride

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.