Knowledge (XXG)

Mesozoic–Cenozoic radiation

Source 📝

162:, which can almost entirely be attributed to the radiation of mammals. There are multiple things which could have caused this deviation from the equilibrium, one of which is that the before the K-Pg extinction an equilibrium was reached which limited biodiversity. The extinction event reorganized the fundamental ecology, on which diversity is built and maintained. After these reorganized ecosystems stabilized a new, higher, equilibrium was reached, which was maintained during the Cenozoic. Cenozoic biodiversity reached a peak twice as high as the biodiversity peak during the Palaeozoic. 20: 121:, contain a high degree of endemic species, resulting in an overall higher biodiversity than a single landmass of equivalent size. It is therefore argued that, similarly to the Ordovician bio-diversification, the differentiation of biotas along environmental gradients caused by the fragmentation of a supercontinent, was a driving force behind the Mesozoic-Cenozoic radiation. 178:
which causes biodiversity estimates to be skewed towards modern taxa. This bias towards recent taxa is caused by a better availability of more recent fossil records. In mammals it has also been argued that the complexity of teeth, allowing for precise taxonomic identification of fragmentary fossils,
112:
has been related to an increase in both marine and terrestrial biodiversity. The link between the fragmentation of supercontinents and biodiversity was first proposed by Valentine and Moores in 1972. They hypothesized that the isolation of terrestrial environments and the partitioning of oceanic
86:
extinctions, and continues to this date. This spectacular radiation affected both terrestrial and marine flora and fauna, during which the "modern" fauna came to replace much of the Paleozoic fauna. Notably, this radiation event was marked by the rise of angiosperms during the
1079: 874: 605: 107:
The exact causes of this extended increase in biodiversity are still being debated, however, the Mesozoic-Cenozoic radiation has often been related to large-scale paleogeographical changes. The fragmentation of the supercontinent
660:
Cermeño, Pedro; García-Comas, Carmen; Pohl, Alexandre; Williams, Simon; Benton, Michael J.; Chaudhary, Chhaya; Le Gland, Guillaume; Müller, R. Dietmar; Ridgwell, Andy; Vallina, Sergio M. (13 July 2022).
179:
increases their perceived diversity when compared to other clades at the time. The contribution of this effect to the apparent increase in biodiversity is still unclear and heavily debated.
136:, during the mid-Cretaceous. Characteristics of this clade associated with reproduction have served as a key innovation for an entire clade, and led to a burst of evolution known as the 788: 403:
Close, Roger A.; Benson, Roger B. J.; Alroy, John; Behrensmeyer, Anna K.; Benito, Juan; Carrano, Matthew T.; Cleary, Terri J.; Dunne, Emma M.; Mannion, Philip D.; Uhen, Mark D.;
977:
Alroy, J.; Aberhan, M.; Bottjer, D.J.; Foote, M.; Fursich, F.T.; Harries, P.J.; et al. (4 July 2008). "Phanerozoic Trends in the Global Diversity of Marine Invertebrates".
343:
Benson, Roger B.J.; Butler, Richard J.; Alroy, John; Mannion, Philip D.; Carrano, Matthew T.; Lloyd, Graeme T.; Barnosky, Anthony D. (25 January 2016).
151: 92: 67: 833: 28: 35: 137: 512:"Understanding the Great Ordovician Biodiversification Event (GOBE): Influences of paleogeography, paleoclimate, or paleoecology" 408: 1131: 1036: 416: 251:
Owen, A.W.; Crame, J.A. (2002). "Palaeobiogeography and the Ordovician and Mesozoic-Cenozoic biotic radiations".
117:, which led to an increased biodiversity. These smaller landmasses, while individually being less diverse than a 1141: 1136: 211:
Sepkoski, J. John (8 February 2016). "A factor analytic description of the Phanerozoic marine fossil record".
1073:
Alroy, J.; Marshall, C.R.; Bambach, R.K.; Bezusko, K.; Foote, M.; Fursich, F.T.; et al. (15 May 2001).
931:"Sustained Mesozoic–Cenozoic diversification of marine Metazoa: A consistent signal from the fossil record" 723: 464:
Crame, J.A.; Rosen, B.R. (2002). "Cenozoic palaeogeography and the rise of modern biodiversity patterns".
213: 125: 75: 1146: 930: 114: 43: 988: 883: 732: 614: 473: 260: 1012: 850: 764: 756: 489: 441: 320: 276: 230: 188: 171: 63: 1108: 1055: 1004: 979: 952: 935: 911: 748: 696: 642: 581: 510:
Servais, Thomas; Harper, David A.T.; Munnecke, Axel; Owen, Alan W.; Sheehan, Peter M. (2009).
433: 404: 378: 170:
One effect which has to be taken into account when estimating past biodiversity levels is the
1098: 1088: 1045: 996: 944: 901: 891: 842: 807: 797: 740: 686: 676: 667: 632: 622: 571: 561: 523: 481: 425: 368: 358: 310: 268: 222: 870:"Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm" 721:
Valentine, James W.; Moores, Eldridge M. (1972). "Global Tectonics and the Fossil Record".
552: 19: 1075:"Effects of sampling standardization on estimates of Phanerozoic marine diversification" 992: 887: 736: 618: 477: 264: 812: 783: 637: 600: 576: 373: 344: 118: 906: 869: 409:"Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale" 1125: 1103: 1074: 768: 662: 547: 493: 315: 298: 280: 234: 1016: 445: 324: 113:
water masses, as a result of the breaking up of Pangaea, resulted in an increase in
349: 55: 34: 485: 272: 828: 363: 158:
and, surprisingly, resulted in a massive increase in biodiversity of terrestrial
124:
Part of the dramatic increase in biodiversity during this time was caused by the
133: 59: 24: 1080:
Proceedings of the National Academy of Sciences of the United States of America
875:
Proceedings of the National Academy of Sciences of the United States of America
681: 606:
Proceedings of the National Academy of Sciences of the United States of America
548:"The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity" 1050: 1031: 663:"Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots" 429: 226: 150:
A third factor which played a role in the Mesozoic-Cenozoic radiation was the
141: 88: 71: 956: 752: 700: 1000: 829:"The Co-Radiations of Pollinating Insects and Angiosperms in the Cretaceous" 627: 1112: 1093: 1059: 1008: 915: 896: 802: 646: 585: 566: 437: 382: 74:
radiation. Made known by its identification in marine invertebrates, this
159: 155: 79: 760: 691: 854: 528: 511: 144: 109: 83: 39: 782:
Soltis, Pamela S.; Folk, Ryan A.; Soltis, Douglas E. (27 March 2019).
948: 175: 129: 96: 846: 345:"Near-Stasis in the Long-Term Diversification of Mesozoic Tetrapods" 744: 191:, the third of which corresponds to the Mesozoic–Cenozoic radiation 33: 784:"Darwin review: Angiosperm phylogeny and evolutionary radiations" 599:
Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E. (30 May 2017).
868:
Bambach, R.K.; Knoll, Andrew H.; Sepkoski, J.J. (14 May 2002).
70:, which appeared to exceeded the equilibrium reached after the 601:"Plate tectonic regulation of global marine animal diversity" 1030:
Ivany, Linda C.; Czekanski-Moir, Jesse (25 March 2019).
929:
Bush, Andrew M.; Bambach, Richard K. (1 November 2015).
789:
Proceedings of the Royal Society B: Biological Sciences
299:"Taxonomic diversity gradients through geological time" 140:. These later diversified further and co-radiated with 27:. Note the marked increase in biodiversity after the 16:
Increase in biodiversity since the Permian extinction
206: 204: 505: 503: 23:This image shows the biodiversity during the 8: 541: 539: 338: 336: 334: 459: 457: 455: 398: 396: 394: 392: 292: 290: 246: 244: 1102: 1092: 1049: 905: 895: 811: 801: 690: 680: 636: 626: 575: 565: 527: 372: 362: 314: 68:Great Ordovician Biodiversification Event 95:, which initiated the rapid increase in 54:is the third major extended increase of 46:and an increase in overall biodiversity. 18: 834:Annals of the Missouri Botanical Garden 200: 174:, which describes a phenomenon in the 546:Vavrek, Matthew J. (September 2016). 7: 14: 138:Cretaceous Terrestrial Revolution 316:10.1111/j.1472-4642.2001.00106.x 297:Crame, J. Alistair (July 2001). 827:Grimaldi, David (Spring 1999). 1037:Nature Ecology & Evolution 417:Nature Ecology & Evolution 154:, which marked the end of the 1: 486:10.1144/GSL.SP.2002.194.01.12 303:Diversity & Distributions 273:10.1144/GSL.SP.2002.194.01.01 966:– via GeoScienceWorld. 364:10.1371/journal.pbio.1002359 147:, increasing biodiversity. 52:Mesozoic–Cenozoic Radiation 1163: 682:10.1038/s41586-022-04932-6 466:Geological Society, London 253:Geological Society, London 1051:10.1038/s41559-019-0863-9 430:10.1038/s41559-019-0811-8 227:10.1017/S0094837300003778 468:. Special Publications. 255:. Special Publications. 1001:10.1126/science.1156963 628:10.1073/pnas.1702297114 103:Causes and significance 1094:10.1073/pnas.111144698 897:10.1073/pnas.092150999 803:10.1098/rspb.2019.0099 724:The Journal of Geology 567:10.1098/rsbl.2016.0528 126:evolutionary radiation 76:evolutionary radiation 47: 31: 115:allopatric speciation 44:allopatric speciation 38:The fragmentation of 37: 22: 1132:Evolutionary biology 1032:"Reined-in richness" 407:(18 February 2019). 993:2008Sci...321...97A 888:2002PNAS...99.6854B 737:1972JG.....80..167V 619:2017PNAS..114.5653Z 478:2002GSLSP.194..153C 265:2002GSLSP.194....1O 189:Evolutionary faunas 796:(1899): 20190099. 529:10.1130/GSATG37A.1 405:Butler, Richard J. 172:pull of the recent 166:Pull of the recent 64:Cambrian Explosion 48: 32: 29:Permian extinction 1087:(11): 6261–6266. 882:(10): 6854–6859. 675:(7919): 507–511. 613:(22): 5653–5658. 1154: 1117: 1116: 1106: 1096: 1070: 1064: 1063: 1053: 1027: 1021: 1020: 987:(5885): 97–100. 974: 968: 967: 965: 963: 949:10.1130/G37162.1 926: 920: 919: 909: 899: 865: 859: 858: 824: 818: 817: 815: 805: 779: 773: 772: 718: 712: 711: 709: 707: 694: 684: 657: 651: 650: 640: 630: 596: 590: 589: 579: 569: 543: 534: 533: 531: 507: 498: 497: 461: 450: 449: 413: 400: 387: 386: 376: 366: 340: 329: 328: 318: 294: 285: 284: 248: 239: 238: 208: 1162: 1161: 1157: 1156: 1155: 1153: 1152: 1151: 1142:Cenozoic events 1137:Mesozoic events 1122: 1121: 1120: 1072: 1071: 1067: 1029: 1028: 1024: 976: 975: 971: 961: 959: 943:(11): 979–982. 928: 927: 923: 867: 866: 862: 847:10.2307/2666181 826: 825: 821: 781: 780: 776: 720: 719: 715: 705: 703: 659: 658: 654: 598: 597: 593: 560:(9): 20160528. 553:Biology Letters 545: 544: 537: 509: 508: 501: 463: 462: 453: 411: 402: 401: 390: 357:(1): e1002359. 342: 341: 332: 296: 295: 288: 250: 249: 242: 210: 209: 202: 198: 185: 168: 152:K-Pg extinction 105: 93:K-Pg extinction 17: 12: 11: 5: 1160: 1158: 1150: 1149: 1144: 1139: 1134: 1124: 1123: 1119: 1118: 1065: 1044:(4): 520–521. 1022: 969: 921: 860: 841:(2): 373–406. 819: 774: 745:10.1086/627723 731:(2): 167–184. 713: 652: 591: 535: 499: 472:(1): 153–168. 451: 424:(4): 590–597. 388: 330: 309:(4): 175–189. 286: 240: 199: 197: 194: 193: 192: 184: 181: 167: 164: 119:supercontinent 104: 101: 99:biodiversity. 15: 13: 10: 9: 6: 4: 3: 2: 1159: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1129: 1127: 1114: 1110: 1105: 1100: 1095: 1090: 1086: 1082: 1081: 1076: 1069: 1066: 1061: 1057: 1052: 1047: 1043: 1039: 1038: 1033: 1026: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 981: 973: 970: 958: 954: 950: 946: 942: 938: 937: 932: 925: 922: 917: 913: 908: 903: 898: 893: 889: 885: 881: 877: 876: 871: 864: 861: 856: 852: 848: 844: 840: 836: 835: 830: 823: 820: 814: 809: 804: 799: 795: 791: 790: 785: 778: 775: 770: 766: 762: 758: 754: 750: 746: 742: 738: 734: 730: 726: 725: 717: 714: 702: 698: 693: 688: 683: 678: 674: 670: 669: 664: 656: 653: 648: 644: 639: 634: 629: 624: 620: 616: 612: 608: 607: 602: 595: 592: 587: 583: 578: 573: 568: 563: 559: 555: 554: 549: 542: 540: 536: 530: 525: 521: 517: 513: 506: 504: 500: 495: 491: 487: 483: 479: 475: 471: 467: 460: 458: 456: 452: 447: 443: 439: 435: 431: 427: 423: 419: 418: 410: 406: 399: 397: 395: 393: 389: 384: 380: 375: 370: 365: 360: 356: 352: 351: 346: 339: 337: 335: 331: 326: 322: 317: 312: 308: 304: 300: 293: 291: 287: 282: 278: 274: 270: 266: 262: 258: 254: 247: 245: 241: 236: 232: 228: 224: 220: 216: 215: 207: 205: 201: 195: 190: 187: 186: 182: 180: 177: 176:fossil record 173: 165: 163: 161: 157: 153: 148: 146: 143: 139: 135: 131: 127: 122: 120: 116: 111: 102: 100: 98: 94: 90: 85: 81: 78:began in the 77: 73: 69: 65: 61: 57: 53: 45: 41: 36: 30: 26: 21: 1147:Biogeography 1084: 1078: 1068: 1041: 1035: 1025: 984: 978: 972: 962:21 September 960:. Retrieved 940: 934: 924: 879: 873: 863: 838: 832: 822: 793: 787: 777: 728: 722: 716: 704:. Retrieved 692:10261/279302 672: 666: 655: 610: 604: 594: 557: 551: 519: 515: 469: 465: 421: 415: 354: 350:PLOS Biology 348: 306: 302: 256: 252: 221:(1): 36–53. 218: 214:Paleobiology 212: 169: 149: 123: 106: 82:, after the 62:, after the 56:biodiversity 51: 49: 42:resulted in 259:(1): 1–11. 142:pollinating 134:angiosperms 132:plants, or 60:Phanerozoic 25:Phanerozoic 1126:Categories 196:References 91:, and the 89:Cretaceous 72:Ordovician 957:0091-7613 769:129364140 753:0022-1376 706:1 October 701:1476-4687 516:GSA Today 494:128674404 281:130743665 235:133114885 160:tetrapods 156:dinosaurs 130:flowering 97:mammalian 1113:11353852 1060:30911149 1017:35793274 1009:18599780 916:12011444 761:30059313 647:28507147 586:27651536 522:(4): 4. 446:66884562 438:30778186 383:26807777 325:86824779 183:See also 80:Mesozoic 66:and the 989:Bibcode 980:Science 936:Geology 884:Bibcode 855:2666181 813:6452062 733:Bibcode 638:5465924 615:Bibcode 577:5046932 474:Bibcode 374:4726655 261:Bibcode 145:insects 110:Pangaea 84:Permian 58:in the 1111:  1101:  1058:  1015:  1007:  955:  914:  907:124493 904:  853:  810:  767:  759:  751:  699:  668:Nature 645:  635:  584:  574:  492:  444:  436:  381:  371:  323:  279:  233:  40:Pangea 1104:33456 1013:S2CID 851:JSTOR 765:S2CID 757:JSTOR 490:S2CID 442:S2CID 412:(PDF) 321:S2CID 277:S2CID 231:S2CID 1109:PMID 1056:PMID 1005:PMID 964:2024 953:ISSN 912:PMID 749:ISSN 708:2023 697:ISSN 643:PMID 582:PMID 434:PMID 379:PMID 87:mid- 50:The 1099:PMC 1089:doi 1046:doi 997:doi 985:321 945:doi 902:PMC 892:doi 843:doi 808:PMC 798:doi 794:286 741:doi 687:hdl 677:doi 673:607 633:PMC 623:doi 611:114 572:PMC 562:doi 524:doi 482:doi 470:194 426:doi 369:PMC 359:doi 311:doi 269:doi 257:194 223:doi 128:of 1128:: 1107:. 1097:. 1085:98 1083:. 1077:. 1054:. 1040:. 1034:. 1011:. 1003:. 995:. 983:. 951:. 941:43 939:. 933:. 910:. 900:. 890:. 880:99 878:. 872:. 849:. 839:86 837:. 831:. 806:. 792:. 786:. 763:. 755:. 747:. 739:. 729:80 727:. 695:. 685:. 671:. 665:. 641:. 631:. 621:. 609:. 603:. 580:. 570:. 558:12 556:. 550:. 538:^ 520:19 518:. 514:. 502:^ 488:. 480:. 454:^ 440:. 432:. 420:. 414:. 391:^ 377:. 367:. 355:14 353:. 347:. 333:^ 319:. 305:. 301:. 289:^ 275:. 267:. 243:^ 229:. 217:. 203:^ 1115:. 1091:: 1062:. 1048:: 1042:3 1019:. 999:: 991:: 947:: 918:. 894:: 886:: 857:. 845:: 816:. 800:: 771:. 743:: 735:: 710:. 689:: 679:: 649:. 625:: 617:: 588:. 564:: 532:. 526:: 496:. 484:: 476:: 448:. 428:: 422:3 385:. 361:: 327:. 313:: 307:7 283:. 271:: 263:: 237:. 225:: 219:7

Index


Phanerozoic
Permian extinction

Pangea
allopatric speciation
biodiversity
Phanerozoic
Cambrian Explosion
Great Ordovician Biodiversification Event
Ordovician
evolutionary radiation
Mesozoic
Permian
Cretaceous
K-Pg extinction
mammalian
Pangaea
allopatric speciation
supercontinent
evolutionary radiation
flowering
angiosperms
Cretaceous Terrestrial Revolution
pollinating
insects
K-Pg extinction
dinosaurs
tetrapods
pull of the recent

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.