Knowledge (XXG)

Mesoporous silica

Source 📝

122: 230: 25: 295:
the cell membrane. These particles are optically transparent, so the dye can be seen through the silica walls. The dye in the particles does not have the same problem with self-quenching that a dye in solution has. The types of molecules that are grafted to the outside of the MSNs will control what kinds of biomolecules are allowed inside the particles to interact with the dye.
222: 294:
The structure of these particles allows them to be filled with a fluorescent dye that would normally be unable to pass through cell walls. The MSN material is then capped off with a molecule that is compatible with the target cells. When the MSNs are added to a cell culture, they carry the dye across
280:
Ordered mesoporous silica (e.g. SBA-15, TUD-1, HMM-33, and FSM-16) also show potential to boost the in vitro and in vivo dissolution of poorly water-soluble drugs. Many drug-candidates coming from drug discovery suffer from a poor water solubility. An insufficient dissolution of these hydrophobic
1191:
Mellaerts, Randy; Houthoofd, Kristof; Elen, Ken; Chen, Hong; Van Speybroeck, Michiel; Van Humbeeck, Jan; Augustijns, Patrick; Mullens, Jules; Van Den Mooter, Guy; Martens, Johan A. (2010). "Aging behavior of pharmaceutical formulations of itraconazole on SBA-15 ordered mesoporous silica carrier
182:
A compound producing mesoporous silica was patented around 1970. It went almost unnoticed and was reproduced in 1997. Mesoporous silica nanoparticles (MSNs) were independently synthesized in 1990 by researchers in Japan. They were later produced also at Mobil Corporation laboratories and named
285:
which is an antimycoticum known for its poor aqueous solubility. Upon introduction of itraconazole-on-SBA-15 formulation in simulated gastrointestinal fluids, a supersaturated solution is obtained giving rise to enhanced transepithelial intestinal transport. Also the efficient uptake into the
1155:
Mellaerts, Randy; Mols, Raf; Jammaer, Jasper A.G.; Aerts, Caroline A.; Annaert, Pieter; Van Humbeeck, Jan; Van Den Mooter, Guy; Augustijns, Patrick; Martens, Johan A. (2008). "Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica".
1119:
Mellaerts, Randy; Mols, Raf; Kayaert, Pieterjan; Annaert, Pieter; Van Humbeeck, Jan; Van Den Mooter, Guy; Martens, Johan A.; Augustijns, Patrick (2008). "Ordered mesoporous silica induces pH-independent supersaturation of the basic low solubility compound itraconazole resulting in enhanced
1219:
Van Speybroeck, Michiel; Barillaro, Valéry; Thi, Thao Do; Mellaerts, Randy; Martens, Johan; Van Humbeeck, Jan; Vermant, Jan; Annaert, Pieter; et al. (2009). "Ordered mesoporous silica material SBA-15: A broad-spectrum formulation platform for poorly soluble drugs".
256:
However, TEOS is not the most effective precursor for synthesizing such particles; a better precursor is (3-Mercaptopropyl)trimethoxysilane, often abbreviated to MPTMS. Use of this precursor drastically reduces the chance of aggregation and ensures more uniform spheres.
277:, depending on what chemicals are attached to the outside of the spheres. Some types of cancer cells will take up more of the particles than healthy cells will, giving researchers hope that MCM-41 will one day be used to treat certain types of cancer. 286:
systemic circulation of SBA-15 formulated itraconazole has been demonstrated in vivo (rabbits and dogs). This approach based on SBA-15 yields stable formulations and can be used for a wide variety of poorly water-soluble compounds.
241:
with a template made of micellar rods. The result is a collection of nano-sized spheres or rods that are filled with a regular arrangement of pores. The template can then be removed by washing with a solvent adjusted to the proper
716:
Valenti G, Rampazzo R, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, Prodi L, Paolucci F (2016). "Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)32+ Core−Shell Silica Nanoparticles".
602:
Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W. (1992). "A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates".
762:
Mitran, Raul−Augustin; Berger, Daniela; Munteanu, Cornel; Matei, Cristian (2015). "Evaluation of Different Mesoporous Silica Supports for Energy Storage in Shape-Stabilized Phase Change Materials with Dual Thermal Responses".
1286:
Radu, Daniela R; Lai, Chen-Yu; Jeftinija, Ksenija; Rowe, Eric W; Jeftinija, Srdija & Lin, Victor S.-Y. (2004). "A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent".
1011:
Mellaerts, Randy; Aerts, Caroline A.; Humbeeck, Jan Van; Augustijns, Patrick; Den Mooter, Guy Van; Martens, Johan A. (2007). "Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials".
408:
Trewyn, Brian G; Nieweg, Jennifer A; Zhao, Yannan; Lin, Victor S.-Y. (2007). "Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration".
333:
Nandiyanto, Asep Bayu Dani; Kim, Soon-Gil; Iskandar, Ferry; Okuyama, Kikuo (2009). "Synthesis of Silica Nanoparticles with Nanometer-Size Controllable Mesopores and Outer Diameters".
360:
Katiyar, Amit; Yadav, Santosh; Smirniotis, Panagiotis G.; Pinto, Neville G. (July 2006). "Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules".
1255:
Trewyn, Brian G; Supratim, Giri; Slowing, Igor I; Lin, Victor S.-Y. (2007). "Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems".
837:
Nandiyanto, A. B. D.; Iskandar, F. & Okuyama, K. (2008). "Nano-sized Polymer Particle-Facilitated Preparation of Mesoporous Silica Particles Using a Spray Method".
1043:
Heikkila, T; Salonen, J; Tuura, J; Hamdy, M; Mul, G; Kumar, N; Salmi, T; Murzin, D; et al. (2007). "Mesoporous silica material TUD-1 as a drug delivery system".
155:'s terminology, mesoporosity sits between microporous (<2 nm) and macroporous (>50 nm). Mesoporous silica is a relatively recent development in 191: 790:
Ghajeri, Farnaz; Topalian, Zareh; Tasca, Andrea; Jafri, Syed Hassan Mujtaba; Leifer, Klaus; Norberg, Peter; Sjöström, Christer (2018-08-01).
526: 454: 673:; Chmelka, Bradley F.; Stucky, Galen D. (1998). "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores". 956:"Surface PEGylation of Mesoporous Silica Nanorods (MSNR): Effect on loading, release, and delivery of mitoxantrone in hypoxic cancer cells" 632:"Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release" 108: 46: 39: 125: 954:
Wani, Amit; Savithra, Galbokka H. Layan; Abyad, Ayat; Kanvinde, Shrey; Li, Jing; Brock, Stephanie; Oupický, David (2017-05-23).
89: 61: 866:"Effect of 3-mercaptopropyltrimethoxysilane on Surface Finish and Material Removal Rate in Chemical Mechanical Polishing" 68: 1332: 129: 631: 253:, or a spray drying method. Tetraethyl orthosilicate is also used with an additional polymer monomer (as a template). 184: 1078:
Tozuka, Yuichi; Wongmekiat, Arpansiree; Kimura, Kyoko; Moribe, Kunikazu; Yamamura, Shigeo; Yamamoto, Keiji (2005).
195: 164: 75: 35: 1327: 238: 57: 542:
Direnzo, F; Cambon, H; Dutartre, R (1997). "A 28-year-old synthesis of micelle-templated mesoporous silica".
899:"The Practicality of Mesoporous Silica Nanoparticles as Drug Delivery Devices and Progress Toward This Goal" 571:"The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials" 791: 670: 481:
Application No. US 3556725D A filed on 26-Feb-1969; Publication No. US 3556725 A published on 19-Jan-1971
505:; Application No. US 342525 A filed on 04-Feb-1964; Publication No. US 3383172 A published on 14-May-1968 493:
Application No. US 3493341D A filed on 23-Jan-1967; Publication No. US 3493341 A published on 03-Feb-1970
190:
Six years later, silica nanoparticles with much larger (4.6 to 30 nanometer) pores were produced at the
328: 326: 324: 682: 309: 304: 151:
structure, that is, having pores that range from 2 nm to 50 nm in diameter. According to
121: 819: 460: 82: 1304: 1268: 1237: 1173: 1137: 1101: 1060: 1025: 993: 975: 936: 918: 811: 744: 698: 651: 522: 516: 450: 385: 377: 281:
drugs in the gastrointestinal fluids strongly limits the oral bioavailability. One example is
250: 1296: 1260: 1229: 1201: 1165: 1129: 1091: 1052: 1017: 983: 967: 926: 910: 877: 846: 803: 772: 734: 726: 690: 643: 612: 582: 551: 442: 417: 369: 342: 202: 792:"Case study of a green nanoporous material from synthesis to commercialisation: Quartzene®" 229: 1080:"Effect of Pore Size of FSM-16 on the Entrapment of Flurbiprofen in Mesoporous Structures" 179:. Mesoporous ordered silica films have been also obtained with different pore topologies. 176: 686: 988: 955: 931: 265:
The large surface area of the pores allows the particles to be filled with a drug or a
249:
Mesoporous particles can also be synthesized using a simple sol-gel method such as the
156: 555: 1321: 823: 464: 172: 1205: 346: 282: 270: 133: 1133: 1056: 897:
Roggers, Robert; Kanvinde, Shrey; Boonsith, Suthida; Oupický, David (2014-10-01).
694: 373: 882: 865: 807: 274: 24: 1169: 971: 914: 864:
Sivanandini, M.; Dhami, Sukhdeep S.; Pabla, B.S.; Gupta, M.K. (January 2014).
446: 421: 148: 979: 922: 815: 776: 381: 201:
The researchers who invented these types of particles planned to use them as
898: 436: 266: 210: 168: 1308: 1272: 1241: 1177: 1141: 1105: 1064: 1029: 997: 940: 748: 655: 569:
Yanagisawa, Tsuneo; Shimizu, Toshio; Kuroda, Kazuyuki; Kato, Chuzo (1990).
518:
Chemistry of zeolites and related porous materials: synthesis and structure
389: 702: 850: 730: 206: 739: 630:
Trewyn, B. G.; Slowing, I. I.; Giri, S; Chen, H. T.; Lin, V. S. (2007).
616: 587: 570: 1096: 1079: 1300: 1233: 647: 221: 1264: 1021: 273:, the particles will be taken up by certain biological cells through 160: 144: 491:"Porous silica particles containing a crystallized phase and method" 441:. Advances in Sol-Gel Derived Materials and Technologies. Springer. 205:. Today, mesoporous silica nanoparticles have many applications in 194:. The material was named Santa Barbara Amorphous type material, or 228: 220: 167:. Research continues on the particles, which have applications in 152: 120: 502: 490: 478: 669:
Zhao, Dongyuan; Feng, Jianglin; Huo, Qisheng; Melosh, Nicholas;
18: 213:, thermal energy storage, water/gas filtration and imaging. 503:"Process for producing silica in the form of hollow spheres" 438:
Mesoporous ordered silica films. From self-assembly to order
237:
Mesoporous silica nanoparticles are synthesized by reacting
243: 198:. These particles also have a hexagonal array of pores. 159:. The most common types of mesoporous nanoparticles are 1158:
European Journal of Pharmaceutics and Biopharmaceutics
796:Current Opinion in Green and Sustainable Chemistry 479:"Process for producing low-bulk density silica." 477:Chiola, V.; Ritsko, J. E. and Vanderpool, C. D. 233:TEM image of a mesoporous silica nanoparticle 8: 515:Xu, Ruren; Pang, Wenqin; Yu, Jihong (2007). 1095: 987: 930: 881: 738: 586: 575:Bulletin of the Chemical Society of Japan 109:Learn how and when to remove this message 1289:Journal of the American Chemical Society 605:Journal of the American Chemical Society 403: 401: 399: 320: 192:University of California, Santa Barbara 187:(or Mobil Crystalline Materials, MCM). 1122:International Journal of Pharmaceutics 1084:Chemical & Pharmaceutical Bulletin 1045:International Journal of Pharmaceutics 45:Please improve this article by adding 7: 1194:Microporous and Mesoporous Materials 335:Microporous and Mesoporous Materials 765:The Journal of Physical Chemistry C 521:. Wiley-Interscience. p. 472. 1222:Journal of Pharmaceutical Sciences 132:(SEM) images of mesoporous silica 14: 16:Nano-scale porous silica compound 126:Transmission electron microscopy 23: 1206:10.1016/j.micromeso.2009.10.026 347:10.1016/j.micromeso.2008.12.019 1: 1134:10.1016/j.ijpharm.2008.01.049 1057:10.1016/j.ijpharm.2006.09.019 636:Accounts of Chemical Research 556:10.1016/S0927-6513(97)00028-X 147:that is characterised by its 47:secondary or tertiary sources 1120:transepithelial transport". 695:10.1126/science.279.5350.548 410:Chemical Engineering Journal 374:10.1016/j.chroma.2006.04.055 130:scanning electron microscopy 883:10.1016/j.mspro.2014.07.067 808:10.1016/j.cogsc.2018.07.003 362:Journal of Chromatography A 185:Mobil Composition of Matter 1349: 1170:10.1016/j.ejpb.2007.11.006 972:10.1038/s41598-017-02531-4 870:Procedia Materials Science 435:Innocenzi, Plinio (2022). 225:Vials of mesoporous silica 915:10.1208/s12249-014-0142-7 447:10.1007/978-3-030-89536-5 422:10.1016/j.cej.2007.09.045 777:10.1021/acs.jpcc.5b02608 239:tetraethyl orthosilicate 1257:Chemical Communications 1014:Chemical Communications 234: 226: 137: 34:relies excessively on 671:Fredrickson, Glenn H. 544:Microporous Materials 232: 224: 124: 851:10.1246/cl.2008.1040 731:10.1021/jacs.6b08239 310:Mesoporous silicates 1333:Mesoporous material 1295:(41): 13216–13217. 771:(27): 15177–15184. 725:(49): 15935–15942. 687:1998Sci...279..548Z 617:10.1021/ja00053a020 611:(27): 10834–10843. 588:10.1246/bcsj.63.988 305:Mesoporous material 58:"Mesoporous silica" 1097:10.1248/cpb.53.974 960:Scientific Reports 235: 227: 138: 1301:10.1021/ja046275m 1259:(31): 3236–3245. 1234:10.1002/jps.21638 903:AAPS PharmSciTech 845:(10): 1040–1041. 839:Chemistry Letters 648:10.1021/ar600032u 528:978-0-470-82233-3 456:978-3-030-89535-8 141:Mesoporous silica 119: 118: 111: 93: 1340: 1313: 1312: 1283: 1277: 1276: 1265:10.1039/b701744h 1252: 1246: 1245: 1216: 1210: 1209: 1200:(1–3): 154–161. 1188: 1182: 1181: 1152: 1146: 1145: 1116: 1110: 1109: 1099: 1075: 1069: 1068: 1040: 1034: 1033: 1022:10.1039/b616746b 1008: 1002: 1001: 991: 951: 945: 944: 934: 909:(5): 1163–1171. 894: 888: 887: 885: 861: 855: 854: 834: 828: 827: 787: 781: 780: 759: 753: 752: 742: 719:J. Am. Chem. Soc 713: 707: 706: 681:(5350): 548–52. 666: 660: 659: 627: 621: 620: 599: 593: 592: 590: 566: 560: 559: 550:(4–6): 283–286. 539: 533: 532: 512: 506: 500: 494: 488: 482: 475: 469: 468: 432: 426: 425: 405: 394: 393: 357: 351: 350: 330: 203:molecular sieves 114: 107: 103: 100: 94: 92: 51: 27: 19: 1348: 1347: 1343: 1342: 1341: 1339: 1338: 1337: 1328:Silicon dioxide 1318: 1317: 1316: 1285: 1284: 1280: 1254: 1253: 1249: 1218: 1217: 1213: 1190: 1189: 1185: 1154: 1153: 1149: 1128:(1–2): 169–79. 1118: 1117: 1113: 1077: 1076: 1072: 1042: 1041: 1037: 1010: 1009: 1005: 953: 952: 948: 896: 895: 891: 863: 862: 858: 836: 835: 831: 789: 788: 784: 761: 760: 756: 715: 714: 710: 668: 667: 663: 629: 628: 624: 601: 600: 596: 568: 567: 563: 541: 540: 536: 529: 514: 513: 509: 501: 497: 489: 485: 476: 472: 457: 434: 433: 429: 407: 406: 397: 359: 358: 354: 332: 331: 322: 318: 301: 292: 263: 219: 128:(TEM, top) and 115: 104: 98: 95: 52: 50: 44: 40:primary sources 28: 17: 12: 11: 5: 1346: 1344: 1336: 1335: 1330: 1320: 1319: 1315: 1314: 1278: 1247: 1228:(8): 2648–58. 1211: 1183: 1147: 1111: 1090:(8): 974–977. 1070: 1035: 1016:(13): 1375–7. 1003: 946: 889: 856: 829: 782: 754: 708: 661: 642:(9): 846–853. 622: 594: 581:(4): 988–992. 561: 534: 527: 507: 495: 483: 470: 455: 427: 395: 368:(1–2): 13–20. 352: 341:(3): 447–453. 319: 317: 314: 313: 312: 307: 300: 297: 291: 288: 262: 259: 251:Stöber process 218: 215: 157:nanotechnology 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1345: 1334: 1331: 1329: 1326: 1325: 1323: 1310: 1306: 1302: 1298: 1294: 1290: 1282: 1279: 1274: 1270: 1266: 1262: 1258: 1251: 1248: 1243: 1239: 1235: 1231: 1227: 1223: 1215: 1212: 1207: 1203: 1199: 1195: 1187: 1184: 1179: 1175: 1171: 1167: 1164:(1): 223–30. 1163: 1159: 1151: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1115: 1112: 1107: 1103: 1098: 1093: 1089: 1085: 1081: 1074: 1071: 1066: 1062: 1058: 1054: 1050: 1046: 1039: 1036: 1031: 1027: 1023: 1019: 1015: 1007: 1004: 999: 995: 990: 985: 981: 977: 973: 969: 965: 961: 957: 950: 947: 942: 938: 933: 928: 924: 920: 916: 912: 908: 904: 900: 893: 890: 884: 879: 875: 871: 867: 860: 857: 852: 848: 844: 840: 833: 830: 825: 821: 817: 813: 809: 805: 801: 797: 793: 786: 783: 778: 774: 770: 766: 758: 755: 750: 746: 741: 736: 732: 728: 724: 720: 712: 709: 704: 700: 696: 692: 688: 684: 680: 676: 672: 665: 662: 657: 653: 649: 645: 641: 637: 633: 626: 623: 618: 614: 610: 606: 598: 595: 589: 584: 580: 576: 572: 565: 562: 557: 553: 549: 545: 538: 535: 530: 524: 520: 519: 511: 508: 504: 499: 496: 492: 487: 484: 480: 474: 471: 466: 462: 458: 452: 448: 444: 440: 439: 431: 428: 423: 419: 415: 411: 404: 402: 400: 396: 391: 387: 383: 379: 375: 371: 367: 363: 356: 353: 348: 344: 340: 336: 329: 327: 325: 321: 315: 311: 308: 306: 303: 302: 298: 296: 289: 287: 284: 278: 276: 272: 268: 261:Drug delivery 260: 258: 254: 252: 247: 245: 240: 231: 223: 216: 214: 212: 208: 204: 199: 197: 193: 188: 186: 180: 178: 174: 173:drug delivery 170: 166: 162: 158: 154: 150: 146: 143:is a form of 142: 135: 134:nanoparticles 131: 127: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 42: 41: 37: 32:This article 30: 26: 21: 20: 1292: 1288: 1281: 1256: 1250: 1225: 1221: 1214: 1197: 1193: 1186: 1161: 1157: 1150: 1125: 1121: 1114: 1087: 1083: 1073: 1051:(1): 133–8. 1048: 1044: 1038: 1013: 1006: 963: 959: 949: 906: 902: 892: 873: 869: 859: 842: 838: 832: 799: 795: 785: 768: 764: 757: 740:11585/583548 722: 718: 711: 678: 674: 664: 639: 635: 625: 608: 604: 597: 578: 574: 564: 547: 543: 537: 517: 510: 498: 486: 473: 437: 430: 416:(1): 23–29. 413: 409: 365: 361: 355: 338: 334: 293: 283:itraconazole 279: 271:Trojan Horse 264: 255: 248: 236: 200: 189: 181: 140: 139: 105: 96: 86: 79: 72: 65: 53: 33: 1192:material". 966:(1): 2274. 876:: 528–537. 802:: 101–109. 275:endocytosis 1322:Categories 316:References 290:Biosensors 211:biosensors 149:mesoporous 99:March 2020 69:newspapers 36:references 980:2045-2322 923:1530-9932 824:139146490 816:2452-2236 465:245147740 382:0021-9673 269:. Like a 267:cytotoxin 217:Synthesis 169:catalysis 1309:15479063 1273:17668088 1242:19072861 1178:18164930 1142:18325700 1106:16079530 1065:17046183 1030:17377687 998:28536462 941:24871552 749:27960352 656:17645305 390:16716334 299:See also 207:medicine 989:5442097 932:4179667 703:9438845 683:Bibcode 675:Science 177:imaging 83:scholar 1307:  1271:  1240:  1176:  1140:  1104:  1063:  1028:  996:  986:  978:  939:  929:  921:  822:  814:  747:  701:  654:  525:  463:  453:  388:  380:  196:SBA-15 165:SBA-15 161:MCM-41 145:silica 85:  78:  71:  64:  56:  820:S2CID 461:S2CID 153:IUPAC 90:JSTOR 76:books 1305:PMID 1269:PMID 1238:PMID 1174:PMID 1138:PMID 1102:PMID 1061:PMID 1026:PMID 994:PMID 976:ISSN 937:PMID 919:ISSN 812:ISSN 745:PMID 699:PMID 652:PMID 523:ISBN 451:ISBN 386:PMID 378:ISSN 366:1122 175:and 163:and 62:news 1297:doi 1293:126 1261:doi 1230:doi 1202:doi 1198:130 1166:doi 1130:doi 1126:357 1092:doi 1053:doi 1049:331 1018:doi 984:PMC 968:doi 927:PMC 911:doi 878:doi 847:doi 804:doi 773:doi 769:119 735:hdl 727:doi 723:138 691:doi 679:279 644:doi 613:doi 609:114 583:doi 552:doi 443:doi 418:doi 414:137 370:doi 343:doi 339:120 38:to 1324:: 1303:. 1291:. 1267:. 1236:. 1226:98 1224:. 1196:. 1172:. 1162:69 1160:. 1136:. 1124:. 1100:. 1088:53 1086:. 1082:. 1059:. 1047:. 1024:. 992:. 982:. 974:. 962:. 958:. 935:. 925:. 917:. 907:15 905:. 901:. 872:. 868:. 843:37 841:. 818:. 810:. 800:12 798:. 794:. 767:. 743:. 733:. 721:. 697:. 689:. 677:. 650:. 640:40 638:. 634:. 607:. 579:63 577:. 573:. 548:10 546:. 459:. 449:. 412:. 398:^ 384:. 376:. 364:. 337:. 323:^ 246:. 244:pH 209:, 171:, 49:. 1311:. 1299:: 1275:. 1263:: 1244:. 1232:: 1208:. 1204:: 1180:. 1168:: 1144:. 1132:: 1108:. 1094:: 1067:. 1055:: 1032:. 1020:: 1000:. 970:: 964:7 943:. 913:: 886:. 880:: 874:6 853:. 849:: 826:. 806:: 779:. 775:: 751:. 737:: 729:: 705:. 693:: 685:: 658:. 646:: 619:. 615:: 591:. 585:: 558:. 554:: 531:. 467:. 445:: 424:. 420:: 392:. 372:: 349:. 345:: 136:. 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 43:.

Index


references
primary sources
secondary or tertiary sources
"Mesoporous silica"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

Transmission electron microscopy
scanning electron microscopy
nanoparticles
silica
mesoporous
IUPAC
nanotechnology
MCM-41
SBA-15
catalysis
drug delivery
imaging
Mobil Composition of Matter
University of California, Santa Barbara
SBA-15
molecular sieves
medicine
biosensors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.