Knowledge (XXG)

Metabolon

Source 📝

55:
is an example of a metabolon that facilitates substrate channeling. Another example is the dhurrin synthesis pathway in sorghum, in which the enzymes assemble as a metabolon in lipid membranes. During the functioning of metabolons, the amount of water needed to hydrate the enzymes is reduced and
281:
A – Channeling, B – Specific protein-protein interactions, C – Specific protein – membrane interactions, D – Kinetic effects, E – Multienzyme complexes identified, F – Genetic proofs, G – Operative modeled systems, H – Identified multifunctional proteins, I – Physico-chemical
661:
Robinson, J. B., Jr. & Srere, P. A. (1986) Interactions of sequential metabolic enzymes of the mitochondria: a role in metabolic regulation, pp. 159–171 in Dynamics of Biochemical Systems (ed. Damjanovich, S., Keleti, T. & Trón, L.), Akadémiai Kiadó, Budapest,
527:
Lyubarev A. E., Kurganov B. I. Supramolecular organisation of Tricarboxylic Acids Cycle's enzymes. Proceedings of the All-Union Symposium "Molecular mechanisms and regulation of energy metabolism". Puschino, Russia, 1986. p. 13. (in Russian)
482:
Srere P. A. Is there an organization of Krebs cycle enzymes in the mitochondrial matrix? In: Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria, R. W. Hanson and W.A. Mehlman (Eds.). New York: Academic Press. 1972.
552:
Kurganov B.I., Lyubarev A.E. Enzymes and multienzyme complexes as controllable systems. In: Soviet Scientific Reviews. Section D. Physicochemical Biology Reviews. V. 8 (ed. V.P. Skulachev). Glasgow, Harwood Acad. Publ., 1988, p. 111-147
366:
Zhang, Youjun; Beard, Katherine F. M.; Swart, Corné; Bergmann, Susan; Krahnert, Ina; Nikoloski, Zoran; Graf, Alexander; Ratcliffe, R. George; Sweetlove, Lee J.; Fernie, Alisdair R.; Obata, Toshihiro (16 May 2017).
540:
Kurganov B. I, Lyubarev A. E. Hypothetical structure of the complex of glycolytic enzymes (glycolytic metabolon), formed on the membrane of erythrocytes. Molek. Biologia. 1988. V.22, No.6, p. 1605–1613. (in
728:
Veliky M.M., Starikovich L. S., Klimishin N. I., Chayka Ya. P. Molecular mechanisms in the integration of metabolism. Lviv National University Ed., Lviv, Ukraine. 2007. 229 P. (in ukrainian)
672:
Kastritis, Panagiotis L.; O'Reilly, Francis J.; Bock, Thomas; Li, Yuanyue; Rogon, Matt Z.; Buczak, Katarzyna; Romanov, Natalie; Betts, Matthew J.; Bui, Khanh Huy (2017-07-01).
64:
The concept of structural-metabolic cellular complexes was first conceived in 1970 by A. M. Kuzin of the USSR Academy of Sciences, and adopted in 1972 by Paul A. Srere of the
416:
Laursen, Tomas; Borch, Jonas; Knudsen, Camilla; Bavishi, Krutika; Torta, Federico; Martens, Helle Juel; Silvestro, Daniele; Hatzakis, Nikos S.; Wenk, Markus R. (2016-11-18).
65: 600:
Clarke, F. M.; Stephan, P.; Huxham, G.; Hamilton, D.; Morton, D. J. (1984). "Metabolic dependence of glycolytic enzyme binding in rat and sheep heart".
94:, a complex of a metabolon exists between fatty acid synthase and a MDa carboxylase, and was observed using chemical cross-linking coupled to 733: 80:, Australia also worked on the concept. The name "metabolon" was first proposed in 1985 by Paul Srere during a lecture in Debrecen, Hungary. 417: 76:
enzymes (Embden-Meyerhof-Parnas pathway) by B.I. Kurganov and A.E. Lyubarev. In the mid-1970s, the group of F.M. Clarke at the
565:
Clarke, F. M.; Masters, C. J. (1975). "On the association of glycolytic enzymes with structural proteins of skeletal muscle".
327:"Krebs Cycle Metabolon: Structural Evidence of Substrate Channeling Revealed by Cross-Linking and Mass Spectrometry" 756: 37: 246: 144: 99: 77: 33: 493:
Lyubarev, A. E.; Kurganov, B. I. (1989). "Supramolecular organization of tricarboxylic acid cycle enzymes".
90: 174: 154: 48: 110:
was possible, the metabolon was highly flexible, hindering high-resolution structure determination.
751: 107: 456: 72:. This hypothesis was well accepted in the former USSR and further developed for the complex of 369:"Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle" 729: 711: 693: 617: 582: 510: 473:
Kuzin A. M. Structural – metabolic hypothesis in radiobiology. Moscow: Nauka Ed., 1970.- 50 p.
448: 440: 398: 348: 228: 184: 95: 69: 52: 29: 701: 685: 644: 609: 574: 502: 432: 388: 380: 338: 305: 418:"Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum" 51:
directly into the active site of the next consecutive enzyme of the metabolic pathway. The
295: 134: 47:
The formation of metabolons allows the intermediate product from one enzyme to be passed
706: 673: 613: 393: 368: 745: 648: 578: 506: 674:"Capturing protein communities by structural proteomics in a thermophilic eukaryote" 460: 300: 164: 41: 17: 554: 542: 529: 218: 73: 697: 444: 436: 715: 452: 402: 352: 343: 326: 689: 621: 586: 514: 384: 117: 24:
is a temporary structural-functional complex formed between sequential
25: 106:
is highly flexible, and although a high-resolution structure of
121:
Metabolic pathways in which formation of metabolons occurs
567:
Biochimica et Biophysica Acta (BBA) - General Subjects
36:and by structural elements of the cell, such as 325:Wu, Fei; Minteer, Shelley (2 February 2015). 8: 705: 392: 342: 129:Events supporting metabolon's formation 102:. The Fatty acid synthesis metabolon in 331:Angewandte Chemie International Edition 317: 635:Srere, P. A. (1985). "The metabolon". 7: 614:10.1111/j.1432-1033.1984.tb07963.x 14: 602:European Journal of Biochemistry 84:The case of Fatty Acid Synthesis 637:Trends in Biochemical Sciences 56:enzyme activity is increased. 1: 649:10.1016/0968-0004(85)90266-X 579:10.1016/0304-4165(75)90187-7 507:10.1016/0303-2647(89)90038-5 128: 125: 773: 38:integral membrane proteins 678:Molecular Systems Biology 279: 210:Metabolism of amino acids 120: 34:non-covalent interactions 247:Electron transport chain 100:cryo-electron microscopy 78:University of Queensland 32:, held together both by 437:10.1126/science.aag2347 256:Antibiotic biosynthesis 175:Pyrimidine biosynthesis 91:Chaetomium thermophilum 68:for the enzymes of the 344:10.1002/anie.201409336 690:10.15252/msb.20167412 373:Nature Communications 238:Fatty acids oxidation 165:Glycogen biosynthesis 202:Steroid biosynthesis 155:Protein biosynthesis 40:and proteins of the 385:10.1038/ncomms15212 185:Purine biosynthesis 108:Fatty acid synthase 66:University of Texas 194:Lipid biosynthesis 126:Metabolic pathway 98:and visualized by 757:Protein complexes 734:978-966-613-538-7 431:(6314): 890–893. 287: 286: 283: 229:Citric acid cycle 96:mass spectrometry 70:citric acid cycle 53:citric acid cycle 30:metabolic pathway 764: 736: 726: 720: 719: 709: 669: 663: 659: 653: 652: 632: 626: 625: 597: 591: 590: 562: 556: 550: 544: 538: 532: 525: 519: 518: 490: 484: 480: 474: 471: 465: 464: 422: 413: 407: 406: 396: 363: 357: 356: 346: 337:(6): 1851–1854. 322: 306:Enzyme catalysis 280: 272:cAMP degradation 145:RNA biosynthesis 135:DNA biosynthesis 118: 772: 771: 767: 766: 765: 763: 762: 761: 742: 741: 740: 739: 727: 723: 671: 670: 666: 660: 656: 634: 633: 629: 599: 598: 594: 564: 563: 559: 551: 547: 539: 535: 526: 522: 492: 491: 487: 481: 477: 472: 468: 420: 415: 414: 410: 365: 364: 360: 324: 323: 319: 314: 296:Enzyme kinetics 292: 116: 104:C. thermophilum 86: 62: 12: 11: 5: 770: 768: 760: 759: 754: 744: 743: 738: 737: 721: 664: 654: 643:(3): 109–110. 627: 592: 557: 545: 533: 520: 485: 475: 466: 408: 358: 316: 315: 313: 310: 309: 308: 303: 298: 291: 288: 285: 284: 277: 276: 273: 269: 268: 265: 261: 260: 257: 253: 252: 249: 243: 242: 239: 235: 234: 233:B, C, D, E, G 231: 225: 224: 223:A, B, C, D, I 221: 215: 214: 211: 207: 206: 203: 199: 198: 195: 191: 190: 187: 181: 180: 177: 171: 170: 167: 161: 160: 159:A, B, C, D, E 157: 151: 150: 149:A, B, C, E, F 147: 141: 140: 139:A, B, C, E, F 137: 131: 130: 127: 123: 122: 115: 112: 85: 82: 61: 58: 13: 10: 9: 6: 4: 3: 2: 769: 758: 755: 753: 750: 749: 747: 735: 731: 725: 722: 717: 713: 708: 703: 699: 695: 691: 687: 683: 679: 675: 668: 665: 658: 655: 650: 646: 642: 638: 631: 628: 623: 619: 615: 611: 607: 603: 596: 593: 588: 584: 580: 576: 572: 568: 561: 558: 555: 549: 546: 543: 537: 534: 530: 524: 521: 516: 512: 508: 504: 501:(2): 91–102. 500: 496: 489: 486: 479: 476: 470: 467: 462: 458: 454: 450: 446: 442: 438: 434: 430: 426: 419: 412: 409: 404: 400: 395: 390: 386: 382: 378: 374: 370: 362: 359: 354: 350: 345: 340: 336: 332: 328: 321: 318: 311: 307: 304: 302: 299: 297: 294: 293: 289: 278: 274: 271: 270: 266: 263: 262: 258: 255: 254: 250: 248: 245: 244: 240: 237: 236: 232: 230: 227: 226: 222: 220: 217: 216: 212: 209: 208: 204: 201: 200: 196: 193: 192: 188: 186: 183: 182: 178: 176: 173: 172: 168: 166: 163: 162: 158: 156: 153: 152: 148: 146: 143: 142: 138: 136: 133: 132: 124: 119: 113: 111: 109: 105: 101: 97: 93: 92: 83: 81: 79: 75: 71: 67: 59: 57: 54: 50: 49:(channelling) 45: 43: 39: 35: 31: 27: 23: 19: 724: 681: 677: 667: 657: 640: 636: 630: 608:(3): 643–9. 605: 601: 595: 573:(1): 37–46. 570: 566: 560: 548: 536: 523: 498: 494: 488: 478: 469: 428: 424: 411: 376: 372: 361: 334: 330: 320: 301:Enzyme assay 103: 89: 87: 63: 46: 42:cytoskeleton 21: 18:biochemistry 15: 241:A, B, C, D 213:A, B, D, H 197:A, B, C, H 179:A, C, D, F 752:Metabolism 746:Categories 684:(7): 936. 495:Biosystems 312:References 264:Urea cycle 219:Glycolysis 74:glycolytic 698:1744-4292 445:0036-8075 379:: 15212. 22:metabolon 716:28743795 541:Russian) 483:p.79-91. 461:19187608 453:27856908 403:28508886 353:25537779 290:See also 275:A, D, E 205:A, C, E 114:Examples 707:5527848 662:Hungary 622:6692839 587:1111588 515:2720141 425:Science 394:5440813 282:proofs. 60:History 26:enzymes 732:  714:  704:  696:  620:  585:  513:  459:  451:  443:  401:  391:  351:  457:S2CID 421:(PDF) 267:B, D 259:A, E 251:C, I 189:A, E 169:C, E 28:of a 730:ISBN 712:PMID 694:ISSN 618:PMID 583:PMID 511:PMID 449:PMID 441:ISSN 399:PMID 349:PMID 20:, a 702:PMC 686:doi 645:doi 610:doi 606:138 575:doi 571:381 503:doi 433:doi 429:354 389:PMC 381:doi 339:doi 88:In 16:In 748:: 710:. 700:. 692:. 682:13 680:. 676:. 641:10 639:. 616:. 604:. 581:. 569:. 509:. 499:22 497:. 455:. 447:. 439:. 427:. 423:. 397:. 387:. 375:. 371:. 347:. 335:54 333:. 329:. 44:. 718:. 688:: 651:. 647:: 624:. 612:: 589:. 577:: 531:. 517:. 505:: 463:. 435:: 405:. 383:: 377:8 355:. 341::

Index

biochemistry
enzymes
metabolic pathway
non-covalent interactions
integral membrane proteins
cytoskeleton
(channelling)
citric acid cycle
University of Texas
citric acid cycle
glycolytic
University of Queensland
Chaetomium thermophilum
mass spectrometry
cryo-electron microscopy
Fatty acid synthase
DNA biosynthesis
RNA biosynthesis
Protein biosynthesis
Glycogen biosynthesis
Pyrimidine biosynthesis
Purine biosynthesis
Glycolysis
Citric acid cycle
Electron transport chain
Enzyme kinetics
Enzyme assay
Enzyme catalysis
"Krebs Cycle Metabolon: Structural Evidence of Substrate Channeling Revealed by Cross-Linking and Mass Spectrometry"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.