Knowledge (XXG)

Microprocessor complex

Source 📝

239: 111: 400:– by some estimates more than 60% of human protein-coding genes are likely to be regulated by miRNA, though the quality of experimental evidence for miRNA-target interactions is often weak. Because processing by microprocessor is a major determinant of miRNA abundance, microprocessor itself is then an important target of regulation. 27: 415:
modulating stability, intracellular localization, and activity levels. Activity against particular substrates may be regulated by additional protein cofactors interacting with the microprocessor complex. The loop region of the pri-miRNA stem-loop is also a recognition element for regulatory proteins,
550:
The involvement of miRNAs in diseases has led scientists to become more interested in the role of additional protein complexes, like microprocessor, that have the ability to influence or modulate the function and expression of miRNAs. Microprocessor complex component, DGCR8, is affected through the
1135:
Okada, Chimari; Yamashita, Eiki; Lee, Soo Jae; Shibata, Satoshi; Katahira, Jun; Nakagawa, Atsushi; Yoneda, Yoshihiro; Tsukihara, Tomitake (2009-11-27). "A High-Resolution Structure of the Pre-microRNA Nuclear Export Machinery".
364:
have been described; these are very small introns which, after splicing, have the appropriate size and stem-loop structure to serve as a pre-miRNA. The processing pathways for microRNA and for exogenously derived
280:(pre-miRNA). Its two subunits have been determined as necessary and sufficient for the mediation of the development of miRNAs from the pri-miRNAs. These molecules of around 70 nucleotides contain a 341:
allows for the increased processing of pri-miRNAs through an induced conformational change of the DGCR8 subunit, and also enhances DGCR8's binding specificity for RNA.
898:
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (November 2004). "The Microprocessor complex mediates the genesis of microRNAs".
637:
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (November 2004). "The Microprocessor complex mediates the genesis of microRNAs".
223: 1443:
Winter J, Jung S, Keller S, Gregory RI, Diederichs S (March 2009). "Many roads to maturity: microRNA biogenesis pathways and their regulation".
1635:"MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi" 481: 428: 424: 408: 342: 688:
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (November 2004). "Processing of primary microRNAs by the Microprocessor complex".
1837:"Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex" 137:
domains (blue and orange); a double-stranded RNA binding domain (yellow); and a connector/platform domain (gray) containing two bound
412: 588:
Partin, Alexander C.; Zhang, Kaiming; Jeong, Byung-Cheon; Herrell, Emily; Li, Shanshan; Chiu, Wah; Nam, Yunsun (May 2020).
211:
of the minimal complex was at one point experimentally difficult to determine, but it has been demonstrated to be a
1914: 357:
away from the junctions, and remains in contact with the pri-miRNAs following cleavage and dissociation of Drosha.
1904: 360:
Although the large majority of miRNAs undergo processing by microprocessor, a small number of exceptions called
1909: 31: 1486:
Jiang X, Prabhakar A, Van der Voorn SM, Ghatpande P, Celona B, Venkataramanan S, et al. (February 2021).
454:
and related enzymes are found only in animals while Dicer relatives are widely distributed, including among
308: 188: 997:"A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting" 219: 192: 523: 459: 366: 285: 115: 96: 1848: 1391:
Bellemer C, Bortolin-Cavaillé ML, Schmidt U, Jensen SM, Kjems J, Bertrand E, Cavaillé J (June 2012).
1347: 1145: 907: 697: 646: 539: 542:. Elaboration of this pathway for miRNA-mediated gene regulation is thought to have evolved later. 378: 218:
In addition to the minimal catalytically active microprocessor components, other cofactors such as
176: 173: 89: 1468: 1422: 1169: 1117: 931: 721: 670: 493: 492:. In plants, the miRNA biogenesis pathway is somewhat different; neither Drosha nor DGCR8 has a 995:
Herbert KM, Sarkar SK, Mills M, Delgado De la Herran HC, Neuman KC, Steitz JA (February 2016).
1899: 1876: 1817: 1766: 1717: 1666: 1615: 1566: 1517: 1460: 1414: 1373: 1316: 1267: 1218: 1161: 1109: 1067: 1026: 977: 923: 877: 827: 769: 713: 662: 619: 564: 468: 420: 256: 180: 143: 52: 850:
Macias S, Cordiner RA, Cáceres JF (August 2013). "Cellular functions of the microprocessor".
416:
which may up- or down-regulate microprocessor processing of the specific miRNAs they target.
315:
overhang of 2-3 nucleotides, which serves as a recognition element for the transport protein
1866: 1856: 1807: 1797: 1756: 1748: 1707: 1697: 1656: 1646: 1605: 1597: 1556: 1548: 1507: 1499: 1452: 1404: 1363: 1355: 1306: 1298: 1257: 1249: 1208: 1200: 1153: 1101: 1057: 1016: 1008: 967: 915: 867: 859: 817: 809: 759: 705: 654: 609: 601: 519: 496:
in plant cells, where the first step in miRNA processing is usually executed by a different
374: 328: 165: 134: 77: 39: 373:
processing and are largely identical downstream. Broadly defined, both pathways constitute
296:. In the latter case, there is evidence that the microprocessor complex interacts with the 103:. Microprocessor is also the smaller of the two multi-protein complexes that contain human 813: 393: 346: 312: 230:. Some miRNAs are processed by microprocessor only in the presence of specific cofactors. 69: 1852: 1351: 1149: 911: 701: 650: 1871: 1836: 1812: 1785: 1761: 1736: 1712: 1685: 1661: 1634: 1610: 1585: 1561: 1536: 1512: 1487: 1393:"Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes" 1368: 1335: 1311: 1286: 1285:
Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (September 2008).
1262: 1237: 1213: 1188: 1021: 996: 822: 797: 614: 589: 289: 277: 212: 184: 20: 1893: 1472: 1173: 1121: 560: 552: 273: 208: 1835:
Fénelon K, Mukai J, Xu B, Hsu PK, Drew LJ, Karayiorgou M, et al. (March 2011).
1786:"Microprocessor of microRNAs: regulation and potential for therapeutic intervention" 1426: 935: 725: 674: 515: 500: 497: 301: 269: 238: 100: 81: 1686:"Vive la différence: biogenesis and evolution of microRNAs in plants and animals" 764: 747: 605: 297: 126: 110: 1841:
Proceedings of the National Academy of Sciences of the United States of America
1359: 1062: 1045: 972: 955: 590:"Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA" 1752: 1503: 1044:
Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC, Hohng S, et al. (June 2015).
473: 354: 316: 251: 123: 1737:"On the origin and functions of RNA-mediated silencing: from protists to man" 1702: 1651: 1633:
Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD (December 2012).
1861: 1802: 1157: 954:
Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN, Woo JS (January 2016).
527: 455: 320: 281: 1880: 1821: 1770: 1721: 1670: 1619: 1570: 1521: 1464: 1418: 1377: 1320: 1271: 1238:"Functional association of the Microprocessor complex with the spliceosome" 1222: 1204: 1165: 1113: 1071: 1030: 1012: 981: 927: 881: 831: 773: 717: 666: 623: 19:
This article is about the protein complex. For the computer processor, see
1552: 1336:"Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs" 1253: 485: 463: 423:
through association with a pri-miRNA-like hairpin structure found in the
361: 247: 73: 47: 1456: 919: 863: 709: 658: 1409: 1392: 556: 446:
shares striking structural similarity with the downstream ribonuclease
243: 1601: 1488:"Control of ribosomal protein synthesis by the Microprocessor complex" 1334:
Partin AC, Ngo TD, Herrell E, Jeong BC, Hon G, Nam Y (November 2017).
1302: 872: 260: 147: 95:(also known as Pasha in non-human animals), and cleaves primary miRNA 56: 563:. This deletion causes irregular processing of miRNAs which leads to 531: 489: 477: 451: 443: 404: 397: 382: 350: 324: 293: 227: 161: 119: 104: 85: 46:(dark and light blue) interacting with and ready to cleave a primary 35: 1105: 179:. (DGCR8 is the name used in mammalian genetics, abbreviated from " 748:"Posttranscriptional regulation of microRNA biogenesis in animals" 535: 508: 447: 385:
and activating transcription of ribosomal protein encoding genes.
370: 338: 332: 237: 169: 130: 109: 92: 43: 25: 1287:"Primary microRNA transcripts are processed co-transcriptionally" 1092:
Ha M, Kim VN (August 2014). "Regulation of microRNA biogenesis".
80:(RNAi) in animal cells. The complex is minimally composed of the 504: 484:
homologs, as well as recognizable miRNAs, and is the only known
432: 138: 160:
The microprocessor complex consists minimally of two proteins:
26: 435:
and is unlikely to itself function as miRNA in its own right.
327:-dependent manner and are further processed, typically by the 1535:
Friedman RC, Farh KK, Burge CB, Bartel DP (January 2009).
307:
Microprocessor cleavage of pri-miRNAs typically occurs co-
1537:"Most mammalian mRNAs are conserved targets of microRNAs" 226:
may be present in the complex to mediate the activity of
431:
expression. The structure in this case is located in an
345:
recognizes the junctions between hairpin structures and
34:
structure of the microprocessor complex, showing human
1586:"Validated MicroRNA Target Databases: An Evaluation" 458:. Both components of the microprocessor complex are 1584:Lee YJ, Kim V, Muth DC, Witwer KW (November 2015). 242:The human exportin-5 protein (red) in complex with 1189:"Post-transcriptional control of miRNA biogenesis" 450:, suggesting an evolutionary relationship, though 319:. Pre-miRNAs are exported from the nucleus to the 300:and that the pri-miRNA processing occurs prior to 16:Protein involved in processing RNA in animal cells 377:. Microprocessor is also found to be involved in 1046:"Functional Anatomy of the Human Microprocessor" 1784:Beezhold KJ, Castranova V, Chen F (June 2010). 183:critical region 8"; the homologous protein in 583: 581: 8: 254:overhang recognition element (orange). From 1735:Cerutti H, Casas-Mollano JA (August 2006). 419:Microprocessor itself is auto-regulated by 72:involved in the early stages of processing 798:"Molecular mechanisms of RNA interference" 133:molecules (green). Drosha consists of two 1870: 1860: 1811: 1801: 1760: 1711: 1701: 1660: 1650: 1609: 1560: 1511: 1438: 1436: 1408: 1367: 1310: 1291:Nature Structural & Molecular Biology 1261: 1236:Kataoka N, Fujita M, Ohno M (June 2009). 1212: 1187:Michlewski G, Cáceres JF (January 2019). 1061: 1020: 971: 871: 821: 763: 613: 845: 843: 841: 791: 789: 787: 785: 783: 224:heterogeneous nuclear ribonucleoproteins 1684:Axtell MJ, Westholm JO, Lai EC (2011). 741: 739: 737: 735: 577: 488:with no detectable genomic evidence of 1094:Nature Reviews. Molecular Cell Biology 949: 947: 945: 311:and leaves a characteristic RNase III 215:of two DGCR8 proteins and one Drosha. 1087: 1085: 1083: 1081: 814:10.1146/annurev-biophys-083012-130404 272:, the microprocessor complex cleaves 7: 893: 891: 518:analysis that the key components of 396:by miRNA is widespread across many 14: 427:mRNA, which when cleaved reduces 852:Biochemical Society Transactions 413:post-translational modifications 284:or hairpin structure. Pri-miRNA 514:It has been suggested based on 381:specifically in the removal of 1242:Molecular and Cellular Biology 746:Siomi H, Siomi MC (May 2010). 526:were present in the ancestral 1: 796:Wilson RC, Doudna JA (2013). 411:are subject to regulation by 42:, green) and two subunits of 765:10.1016/j.molcel.2010.03.013 606:10.1016/j.molcel.2020.02.016 122:protein in complex with the 956:"Structure of Human DROSHA" 802:Annual Review of Biophysics 462:among the vast majority of 288:can be derived either from 1931: 1360:10.1038/s41467-017-01713-y 1063:10.1016/j.cell.2015.05.010 973:10.1016/j.cell.2015.12.019 18: 1753:10.1007/s00294-006-0078-x 1590:Drug Development Research 1504:10.1126/scisignal.abd2639 369:converge at the point of 349:RNA and serves to orient 1703:10.1186/gb-2011-12-4-221 1652:10.1186/1471-2164-13-714 32:cryo-electron microscopy 1862:10.1073/pnas.1101219108 1803:10.1186/1476-4598-9-134 1397:Journal of Cell Science 1158:10.1126/science.1178705 1205:10.1261/rna.068692.118 1013:10.1261/rna.054684.115 265: 220:DEAD box RNA helicases 152: 66:microprocessor complex 61: 1553:10.1101/gr.082701.108 1340:Nature Communications 559:, a small portion of 546:Clinical significance 540:transposable elements 367:small interfering RNA 250:(green), showing two- 241: 113: 29: 1254:10.1128/MCB.00360-09 466:with known genomes. 379:ribosomal biogenesis 353:to cleave around 11 141:ion (spheres). From 99:to pre-miRNA in the 1853:2011PNAS..108.4447F 1457:10.1038/ncb0309-228 1445:Nature Cell Biology 1352:2017NatCo...8.1737P 1150:2009Sci...326.1275O 1144:(5957): 1275–1279. 920:10.1038/nature03120 912:2004Natur.432..235G 864:10.1042/BST20130011 710:10.1038/nature03049 702:2004Natur.432..231D 659:10.1038/nature03120 651:2004Natur.432..235G 522:based on exogenous 246:(yellow) and a pre- 174:double-stranded RNA 90:RNA-binding protein 1410:10.1242/jcs.100354 1403:(Pt 11): 2709–20. 534:mechanism against 266: 153: 62: 1915:Protein complexes 1602:10.1002/ddr.21278 1498:(671): eabd2639. 1492:Science Signaling 1303:10.1038/nsmb.1475 600:(3): 411–422.e4. 565:DiGeorge Syndrome 469:Mnemiopsis leidyi 421:negative feedback 309:transcriptionally 276:(pri-miRNA) into 181:DiGeorge syndrome 116:crystal structure 88:and the dimeric 1922: 1905:RNA interference 1885: 1884: 1874: 1864: 1832: 1826: 1825: 1815: 1805: 1790:Molecular Cancer 1781: 1775: 1774: 1764: 1741:Current Genetics 1732: 1726: 1725: 1715: 1705: 1681: 1675: 1674: 1664: 1654: 1630: 1624: 1623: 1613: 1581: 1575: 1574: 1564: 1532: 1526: 1525: 1515: 1483: 1477: 1476: 1440: 1431: 1430: 1412: 1388: 1382: 1381: 1371: 1331: 1325: 1324: 1314: 1282: 1276: 1275: 1265: 1233: 1227: 1226: 1216: 1184: 1178: 1177: 1132: 1126: 1125: 1089: 1076: 1075: 1065: 1041: 1035: 1034: 1024: 992: 986: 985: 975: 951: 940: 939: 906:(7014): 235–40. 895: 886: 885: 875: 847: 836: 835: 825: 793: 778: 777: 767: 743: 730: 729: 685: 679: 678: 645:(7014): 235–40. 634: 628: 627: 617: 585: 520:RNA interference 329:endoribonuclease 263: 166:ribonuclease III 150: 135:ribonuclease III 78:RNA interference 59: 40:ribonuclease III 1930: 1929: 1925: 1924: 1923: 1921: 1920: 1919: 1910:Gene expression 1890: 1889: 1888: 1847:(11): 4447–52. 1834: 1833: 1829: 1783: 1782: 1778: 1734: 1733: 1729: 1683: 1682: 1678: 1632: 1631: 1627: 1583: 1582: 1578: 1541:Genome Research 1534: 1533: 1529: 1485: 1484: 1480: 1442: 1441: 1434: 1390: 1389: 1385: 1333: 1332: 1328: 1284: 1283: 1279: 1248:(12): 3243–54. 1235: 1234: 1230: 1186: 1185: 1181: 1134: 1133: 1129: 1106:10.1038/nrm3838 1091: 1090: 1079: 1043: 1042: 1038: 994: 993: 989: 953: 952: 943: 897: 896: 889: 849: 848: 839: 795: 794: 781: 745: 744: 733: 696:(7014): 231–5. 687: 686: 682: 636: 635: 631: 587: 586: 579: 575: 548: 530:, likely as an 507:, a homolog of 441: 394:Gene regulation 391: 347:single-stranded 313:single-stranded 278:precursor miRNA 268:Located in the 255: 236: 185:model organisms 177:binding protein 158: 142: 70:protein complex 51: 24: 17: 12: 11: 5: 1928: 1926: 1918: 1917: 1912: 1907: 1902: 1892: 1891: 1887: 1886: 1827: 1776: 1727: 1690:Genome Biology 1676: 1625: 1576: 1527: 1478: 1432: 1383: 1326: 1277: 1228: 1179: 1127: 1077: 1056:(6): 1374–87. 1036: 987: 966:(1–2): 81–90. 941: 887: 837: 779: 752:Molecular Cell 731: 680: 629: 594:Molecular Cell 576: 574: 571: 553:micro-deletion 547: 544: 440: 437: 390: 387: 292:genes or from 290:non-coding RNA 235: 232: 157: 154: 21:Microprocessor 15: 13: 10: 9: 6: 4: 3: 2: 1927: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1897: 1895: 1882: 1878: 1873: 1868: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1819: 1814: 1809: 1804: 1799: 1795: 1791: 1787: 1780: 1777: 1772: 1768: 1763: 1758: 1754: 1750: 1746: 1742: 1738: 1731: 1728: 1723: 1719: 1714: 1709: 1704: 1699: 1695: 1691: 1687: 1680: 1677: 1672: 1668: 1663: 1658: 1653: 1648: 1644: 1640: 1636: 1629: 1626: 1621: 1617: 1612: 1607: 1603: 1599: 1596:(7): 389–96. 1595: 1591: 1587: 1580: 1577: 1572: 1568: 1563: 1558: 1554: 1550: 1547:(1): 92–105. 1546: 1542: 1538: 1531: 1528: 1523: 1519: 1514: 1509: 1505: 1501: 1497: 1493: 1489: 1482: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1451:(3): 228–34. 1450: 1446: 1439: 1437: 1433: 1428: 1424: 1420: 1416: 1411: 1406: 1402: 1398: 1394: 1387: 1384: 1379: 1375: 1370: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1330: 1327: 1322: 1318: 1313: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1278: 1273: 1269: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1232: 1229: 1224: 1220: 1215: 1210: 1206: 1202: 1198: 1194: 1190: 1183: 1180: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1131: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1100:(8): 509–24. 1099: 1095: 1088: 1086: 1084: 1082: 1078: 1073: 1069: 1064: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1028: 1023: 1018: 1014: 1010: 1007:(2): 175–83. 1006: 1002: 998: 991: 988: 983: 979: 974: 969: 965: 961: 957: 950: 948: 946: 942: 937: 933: 929: 925: 921: 917: 913: 909: 905: 901: 894: 892: 888: 883: 879: 874: 869: 865: 861: 858:(4): 838–43. 857: 853: 846: 844: 842: 838: 833: 829: 824: 819: 815: 811: 807: 803: 799: 792: 790: 788: 786: 784: 780: 775: 771: 766: 761: 758:(3): 323–32. 757: 753: 749: 742: 740: 738: 736: 732: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 684: 681: 676: 672: 668: 664: 660: 656: 652: 648: 644: 640: 633: 630: 625: 621: 616: 611: 607: 603: 599: 595: 591: 584: 582: 578: 572: 570: 569: 566: 562: 561:chromosome 22 558: 554: 545: 543: 541: 537: 533: 529: 525: 521: 517: 512: 510: 506: 502: 499: 495: 491: 487: 483: 479: 476:, lacks both 475: 471: 470: 465: 461: 457: 453: 449: 445: 438: 436: 434: 430: 426: 422: 417: 414: 410: 406: 401: 399: 395: 388: 386: 384: 380: 376: 372: 368: 363: 358: 356: 352: 348: 344: 340: 336: 334: 330: 326: 322: 318: 314: 310: 305: 303: 299: 295: 291: 287: 283: 279: 275: 274:primary miRNA 271: 262: 258: 253: 249: 245: 240: 233: 231: 229: 225: 221: 216: 214: 210: 209:stoichiometry 206: 202: 198: 194: 190: 186: 182: 178: 175: 171: 167: 163: 155: 149: 145: 140: 136: 132: 128: 125: 121: 118:of the human 117: 112: 108: 106: 102: 98: 94: 91: 87: 83: 79: 75: 71: 67: 58: 54: 49: 45: 41: 37: 33: 28: 22: 1844: 1840: 1830: 1793: 1789: 1779: 1747:(2): 81–99. 1744: 1740: 1730: 1693: 1689: 1679: 1642: 1639:BMC Genomics 1638: 1628: 1593: 1589: 1579: 1544: 1540: 1530: 1495: 1491: 1481: 1448: 1444: 1400: 1396: 1386: 1343: 1339: 1329: 1297:(9): 902–9. 1294: 1290: 1280: 1245: 1241: 1231: 1196: 1192: 1182: 1141: 1137: 1130: 1097: 1093: 1053: 1049: 1039: 1004: 1000: 990: 963: 959: 903: 899: 855: 851: 805: 801: 755: 751: 693: 689: 683: 642: 638: 632: 597: 593: 567: 549: 516:phylogenetic 513: 501:ribonuclease 467: 442: 418: 402: 392: 359: 337: 306: 270:cell nucleus 267: 217: 213:heterotrimer 204: 203:rtner of Dro 200: 196: 168:enzyme; and 159: 101:cell nucleus 82:ribonuclease 76:(miRNA) and 65: 63: 1346:(1): 1737. 1199:(1): 1–16. 355:nucleotides 298:spliceosome 156:Composition 1894:Categories 1796:(1): 134. 1696:(4): 221. 873:1842/25877 808:: 217–39. 573:References 524:substrates 474:ctenophore 456:protozoans 389:Regulation 317:exportin-5 286:substrates 252:nucleotide 195:is called 124:C-terminal 97:substrates 1473:205286318 1174:206522317 1122:205495632 528:eukaryote 464:metazoans 460:conserved 439:Evolution 321:cytoplasm 282:stem-loop 38:protein ( 1900:MicroRNA 1881:21368174 1822:20515486 1771:16691418 1722:21554756 1671:23256903 1620:26286669 1571:18955434 1522:33622983 1465:19255566 1427:19121670 1419:22393237 1378:29170488 1321:19172742 1272:19349299 1223:30333195 1166:19965479 1114:25027649 1072:26027739 1031:26683315 982:26748718 928:15531877 882:23863141 832:23654304 774:20471939 718:15531879 667:15531877 624:32220646 486:metazoan 362:mirtrons 302:splicing 264:​. 248:microRNA 234:Function 187:such as 151:​. 74:microRNA 60:​. 48:microRNA 1872:3060227 1849:Bibcode 1813:2887798 1762:2583075 1713:3218855 1662:3563456 1645:: 714. 1611:4777876 1562:2612969 1513:8012103 1369:5700927 1348:Bibcode 1312:6952270 1263:2698730 1214:6298569 1146:Bibcode 1138:Science 1022:4712668 936:4389261 908:Bibcode 823:5895182 726:4425505 698:Bibcode 675:4389261 647:Bibcode 615:7214211 557:22q11.2 536:viruses 498:nuclear 494:homolog 398:genomes 383:R-loops 331:enzyme 294:introns 244:Ran-GTP 207:.) The 129:of two 127:helices 84:enzyme 50:. From 1879:  1869:  1820:  1810:  1769:  1759:  1720:  1710:  1669:  1659:  1618:  1608:  1569:  1559:  1520:  1510:  1471:  1463:  1425:  1417:  1376:  1366:  1319:  1309:  1270:  1260:  1221:  1211:  1172:  1164:  1120:  1112:  1070:  1029:  1019:  980:  934:  926:  900:Nature 880:  830:  820:  772:  724:  716:  690:Nature 673:  665:  639:Nature 622:  612:  532:immune 490:Drosha 478:Drosha 452:Drosha 444:Drosha 405:Drosha 351:Drosha 325:RanGTP 228:Drosha 199:, for 162:Drosha 120:Drosha 105:Drosha 86:Drosha 36:Drosha 1469:S2CID 1423:S2CID 1170:S2CID 1118:S2CID 932:S2CID 722:S2CID 671:S2CID 509:Dicer 482:DGCR8 448:Dicer 429:DGCR8 425:DGCR8 409:DGCR8 403:Both 371:Dicer 343:DGCR8 339:Hemin 333:Dicer 323:in a 197:Pasha 193:worms 189:flies 170:DGCR8 131:DGCR8 93:DGCR8 68:is a 44:DGCR8 1877:PMID 1818:PMID 1767:PMID 1718:PMID 1667:PMID 1616:PMID 1567:PMID 1518:PMID 1461:PMID 1415:PMID 1374:PMID 1317:PMID 1268:PMID 1219:PMID 1162:PMID 1110:PMID 1068:PMID 1050:Cell 1027:PMID 978:PMID 960:Cell 924:PMID 878:PMID 828:PMID 770:PMID 714:PMID 663:PMID 620:PMID 538:and 505:DCL1 480:and 472:, a 433:exon 407:and 375:RNAi 261:3A6P 222:and 191:and 172:, a 164:, a 148:5B16 139:zinc 64:The 57:6V5B 1867:PMC 1857:doi 1845:108 1808:PMC 1798:doi 1757:PMC 1749:doi 1708:PMC 1698:doi 1657:PMC 1647:doi 1606:PMC 1598:doi 1557:PMC 1549:doi 1508:PMC 1500:doi 1453:doi 1405:doi 1401:125 1364:PMC 1356:doi 1307:PMC 1299:doi 1258:PMC 1250:doi 1209:PMC 1201:doi 1193:RNA 1154:doi 1142:326 1102:doi 1058:doi 1054:161 1017:PMC 1009:doi 1001:RNA 968:doi 964:164 916:doi 904:432 868:hdl 860:doi 818:PMC 810:doi 760:doi 706:doi 694:432 655:doi 643:432 610:PMC 602:doi 555:of 257:PDB 205:sha 144:PDB 53:PDB 1896:: 1875:. 1865:. 1855:. 1843:. 1839:. 1816:. 1806:. 1792:. 1788:. 1765:. 1755:. 1745:50 1743:. 1739:. 1716:. 1706:. 1694:12 1692:. 1688:. 1665:. 1655:. 1643:13 1641:. 1637:. 1614:. 1604:. 1594:76 1592:. 1588:. 1565:. 1555:. 1545:19 1543:. 1539:. 1516:. 1506:. 1496:14 1494:. 1490:. 1467:. 1459:. 1449:11 1447:. 1435:^ 1421:. 1413:. 1399:. 1395:. 1372:. 1362:. 1354:. 1342:. 1338:. 1315:. 1305:. 1295:15 1293:. 1289:. 1266:. 1256:. 1246:29 1244:. 1240:. 1217:. 1207:. 1197:25 1195:. 1191:. 1168:. 1160:. 1152:. 1140:. 1116:. 1108:. 1098:15 1096:. 1080:^ 1066:. 1052:. 1048:. 1025:. 1015:. 1005:22 1003:. 999:. 976:. 962:. 958:. 944:^ 930:. 922:. 914:. 902:. 890:^ 876:. 866:. 856:41 854:. 840:^ 826:. 816:. 806:42 804:. 800:. 782:^ 768:. 756:38 754:. 750:. 734:^ 720:. 712:. 704:. 692:. 669:. 661:. 653:. 641:. 618:. 608:. 598:78 596:. 592:. 580:^ 511:. 503:, 335:. 304:. 259:: 201:Pa 146:: 114:A 107:. 55:: 30:A 1883:. 1859:: 1851:: 1824:. 1800:: 1794:9 1773:. 1751:: 1724:. 1700:: 1673:. 1649:: 1622:. 1600:: 1573:. 1551:: 1524:. 1502:: 1475:. 1455:: 1429:. 1407:: 1380:. 1358:: 1350:: 1344:8 1323:. 1301:: 1274:. 1252:: 1225:. 1203:: 1176:. 1156:: 1148:: 1124:. 1104:: 1074:. 1060:: 1033:. 1011:: 984:. 970:: 938:. 918:: 910:: 884:. 870:: 862:: 834:. 812:: 776:. 762:: 728:. 708:: 700:: 677:. 657:: 649:: 626:. 604:: 568:. 23:.

Index

Microprocessor

cryo-electron microscopy
Drosha
ribonuclease III
DGCR8
microRNA
PDB
6V5B
protein complex
microRNA
RNA interference
ribonuclease
Drosha
RNA-binding protein
DGCR8
substrates
cell nucleus
Drosha

crystal structure
Drosha
C-terminal
helices
DGCR8
ribonuclease III
zinc
PDB
5B16
Drosha

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.