Knowledge (XXG)

Microvoid coalescence

Source 📝

17: 217: 483:
will result elongated dimples, which are parabolic depressions that coalesce in planes of maximum shear stress. The depressions point back to the crack origin, and shear influenced failure will produce depressions that point in opposite directions on opposing fracture surfaces. Combined tension and
66:
and the matrix. Additionally, microvoids often form at grain boundaries or inclusions within the material. Microvoids grow during plastic flow of the matrix, and microvoids coalesce when adjacent microvoids link together or the material between microvoids experiences
76: 50: 466: 62:
MVC proceeds in three stages: nucleation, growth, and coalescence of microvoids. The nucleation of microvoids can be caused by particle cracking or interfacial failure between
331: 269: 300: 387: 358: 538: 212:{\displaystyle \ln \left({\frac {\bar {R}}{R_{0}}}\right)=\int \limits _{0}^{\epsilon _{q}}A\left({\frac {3\sigma _{m}}{2\sigma _{ys}}}\right)d\epsilon _{v}^{p}} 239: 488:
will also produce the elongated dimple morphology, but the directions of the depressions will be in the same direction on both fracture surfaces.
611: 514: 71:. Microvoid coalescence leads to fracture. Void growth rates can be predicted assuming continuum plasticity using the Rice-Tracey model: 479:
results in equiaxed dimples, which are spherical depressions a few micrometres in diameter that coalesce normal to the loading axis.
564: 394: 660: 20: 655: 606:. Milne, I., Ritchie, R. O., Karihaloo, B. L. (1st ed.). Amsterdam: Elsevier/Pergamon. 2003. pp. 186–192. 635: 16: 63: 68: 309: 244: 629: 532: 475:
MVC can result in three distinct fracture morphologies based on the type of loading at failure.
303: 278: 363: 617: 607: 570: 560: 520: 510: 476: 336: 224: 649: 241:
is a constant typically equal to 0.283 (but dependent upon the stress triaxiality),
480: 272: 53:
MVC fracture surface morphologies for a) tension, b) shear, and c) bending failures
23:
image of microvoid coalescence seen on a ductile fracture surface of 6061-T6 Al
621: 524: 574: 589:
Deformation and Fracture Mechanics of Engineering Materials, Fourth Edition
601: 43: 35: 509:. Wright, Wendelin J. (Seventh ed.). Boston, MA. pp. 236–237. 485: 49: 48: 39: 15: 461:{\displaystyle {\bar {R}}={\frac {R_{1}+R_{2}+R_{3}}{3}}} 397: 366: 339: 312: 281: 247: 227: 79: 460: 381: 352: 325: 294: 263: 233: 211: 591:. John Wiley and Sons, Inc, Hoboken, NJ: 1996. 557:Mechanical properties of engineered materials 8: 333:is the equivalent Von Mises plastic strain, 537:: CS1 maint: location missing publisher ( 446: 433: 420: 413: 399: 398: 396: 368: 367: 365: 344: 338: 317: 311: 286: 280: 252: 246: 226: 203: 198: 175: 160: 150: 135: 130: 125: 106: 92: 90: 78: 507:The science and engineering of materials 497: 627: 530: 38:mechanism observed in the majority of 7: 550: 548: 505:Askeland, Donald R. (January 2015). 559:. Marcel Dekker. pp. 393–394. 389:produced by the stress triaxality: 603:Comprehensive structural integrity 14: 34:) is a high energy microscopic 404: 373: 97: 1: 471:Fracture surface morphologies 326:{\displaystyle \epsilon _{q}} 264:{\displaystyle \sigma _{ys}} 295:{\displaystyle \sigma _{m}} 677: 382:{\displaystyle {\bar {R}}} 360:is the particle size, and 42:and in some engineering 587:Hertzberg, Richard W. 634:: CS1 maint: others ( 555:Soboyejo, W.O (2003). 462: 383: 354: 327: 296: 265: 235: 213: 142: 54: 24: 661:Materials degradation 463: 384: 355: 353:{\displaystyle R_{o}} 328: 297: 266: 236: 214: 121: 64:precipitate particles 52: 28:Microvoid coalescence 19: 395: 364: 337: 310: 279: 245: 225: 77: 208: 656:Fracture mechanics 458: 379: 350: 323: 292: 261: 231: 209: 194: 55: 25: 613:978-0-08-049073-1 516:978-1-305-07676-1 456: 407: 376: 234:{\displaystyle A} 185: 112: 100: 668: 640: 639: 633: 625: 598: 592: 585: 579: 578: 552: 543: 542: 536: 528: 502: 467: 465: 464: 459: 457: 452: 451: 450: 438: 437: 425: 424: 414: 409: 408: 400: 388: 386: 385: 380: 378: 377: 369: 359: 357: 356: 351: 349: 348: 332: 330: 329: 324: 322: 321: 301: 299: 298: 293: 291: 290: 270: 268: 267: 262: 260: 259: 240: 238: 237: 232: 218: 216: 215: 210: 207: 202: 190: 186: 184: 183: 182: 166: 165: 164: 151: 141: 140: 139: 129: 117: 113: 111: 110: 101: 93: 91: 58:Fracture process 676: 675: 671: 670: 669: 667: 666: 665: 646: 645: 644: 643: 626: 614: 600: 599: 595: 586: 582: 567: 554: 553: 546: 529: 517: 504: 503: 499: 494: 477:Tensile loading 473: 442: 429: 416: 415: 393: 392: 362: 361: 340: 335: 334: 313: 308: 307: 282: 277: 276: 248: 243: 242: 223: 222: 171: 167: 156: 152: 146: 131: 102: 86: 75: 74: 60: 40:metallic alloys 12: 11: 5: 674: 672: 664: 663: 658: 648: 647: 642: 641: 612: 593: 580: 565: 544: 515: 496: 495: 493: 490: 481:Shear stresses 472: 469: 455: 449: 445: 441: 436: 432: 428: 423: 419: 412: 406: 403: 375: 372: 347: 343: 320: 316: 289: 285: 258: 255: 251: 230: 206: 201: 197: 193: 189: 181: 178: 174: 170: 163: 159: 155: 149: 145: 138: 134: 128: 124: 120: 116: 109: 105: 99: 96: 89: 85: 82: 59: 56: 13: 10: 9: 6: 4: 3: 2: 673: 662: 659: 657: 654: 653: 651: 637: 631: 623: 619: 615: 609: 605: 604: 597: 594: 590: 584: 581: 576: 572: 568: 566:0-203-91039-7 562: 558: 551: 549: 545: 540: 534: 526: 522: 518: 512: 508: 501: 498: 491: 489: 487: 482: 478: 470: 468: 453: 447: 443: 439: 434: 430: 426: 421: 417: 410: 401: 390: 370: 345: 341: 318: 314: 305: 287: 283: 274: 256: 253: 249: 228: 219: 204: 199: 195: 191: 187: 179: 176: 172: 168: 161: 157: 153: 147: 143: 136: 132: 126: 122: 118: 114: 107: 103: 94: 87: 83: 80: 72: 70: 65: 57: 51: 47: 45: 41: 37: 33: 29: 22: 18: 602: 596: 588: 583: 556: 506: 500: 474: 391: 273:yield stress 220: 73: 61: 31: 27: 26: 304:mean stress 650:Categories 492:References 630:cite book 622:190802556 533:cite book 525:903959750 405:¯ 374:¯ 315:ϵ 284:σ 250:σ 196:ϵ 173:σ 158:σ 133:ϵ 123:∫ 98:¯ 84:⁡ 575:54091550 44:plastics 36:fracture 486:bending 302:is the 271:is the 69:necking 620:  610:  573:  563:  523:  513:  221:where 636:link 618:OCLC 608:ISBN 571:OCLC 561:ISBN 539:link 521:OCLC 511:ISBN 32:MVC 21:SEM 652:: 632:}} 628:{{ 616:. 569:. 547:^ 535:}} 531:{{ 519:. 306:, 275:, 81:ln 46:. 638:) 624:. 577:. 541:) 527:. 454:3 448:3 444:R 440:+ 435:2 431:R 427:+ 422:1 418:R 411:= 402:R 371:R 346:o 342:R 319:q 288:m 257:s 254:y 229:A 205:p 200:v 192:d 188:) 180:s 177:y 169:2 162:m 154:3 148:( 144:A 137:q 127:0 119:= 115:) 108:0 104:R 95:R 88:( 30:(

Index


SEM
fracture
metallic alloys
plastics

precipitate particles
necking
yield stress
mean stress
Tensile loading
Shear stresses
bending
ISBN
978-1-305-07676-1
OCLC
903959750
cite book
link


ISBN
0-203-91039-7
OCLC
54091550
Comprehensive structural integrity
ISBN
978-0-08-049073-1
OCLC
190802556

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.