Knowledge (XXG)

Minichromosome

Source đź“ť

17: 155:
and thus negatively affect the host cell. Additionally, with traditional gene insertion methods, scientists have had less ability to control where the newly inserted genes are located on the host cell chromosomes, which makes it difficult to predict inheritance of multiple genes from generation to generation. Minichromosome technology allows for the stacking of genes side-by-side on the same chromosome thus reducing likelihood of segregation of novel traits.
178:
The use of minichromosomes as a means for generating more desirable crop traits is actively being explored. Major advantages include the ability to introduce genetic information which is highly compatible with the host genome. This eliminates the risk of disrupting various important processes such as
154:
Unlike traditional methods of genetic engineering, minichromosomes can be used to transfer and express multiple sets of genes onto one engineered chromosome package. Traditional methods which involve the insertion of novel genes into existing sequences may result in the disruption of endogenous genes
145:
by selective transformation of telomeric sequences into a host genome. This insertion causes the generation of more telomeric sequences and eventual truncation. The newly synthesized truncated chromosome can then be altered through the insertion of new genes for desired traits. The top-down approach
163:
In 2006, scientists demonstrated the successful use of telomere truncation in maize plants to produce minichromosomes that could be utilized as a platform for inserting genes into the plant genome. In plants, the telomere sequence is conserved, which implies that this strategy can be utilized to
146:
is generally considered as the more plausible means of generating extra-numerary chromosomes for the use of genetic engineering of plants. In particular it is useful because their stability during cell division has been demonstrated. The limitation of this approach is that it is labor-intensive.
116:
into a host which is capable of assembling the components (typically yeast or mammalian cells) into a functional chromosome. This approach has been attempted for the introduction of minichromosomes into
179:
cell division and gene expression. With continued development, the future for use of minichromosomes may make a huge impact on the productivity of major crops.
72:(centromere, telomeres, and replication sequences), molecular biologists aim to construct a chromosomal platform which can be utilized to insert or present new 392:
Carlson, Shawn R.; Rudgers, Gary W.; Zieler, Helge; Mach, Jennifer M.; Luo, Song; Grunden, Eric; Krol, Cheryl; Copenhaver, Gregory P.; Preuss, Daphne (2007).
559: 262: 20:
Through the insertion of multiple genes and telomeres, a shortened minichromosome is produced, which can then be inserted into a host cell
187:
Minichromosomes have also been successfully inserted into yeast and animal cells. These minichromosomes were constructed using the
68:. By minimizing the amount of unnecessary genetic information on the chromosome and including the basic components necessary for 104:
The minimum constituent parts of a chromosome (centromere, telomeres, and DNA replication sequences) are assembled by using
200: 16: 113: 121:
for the possibility of genetic engineering, but success has been limited and questionable. In general, the
563: 598: 456: 53: 125:
approach is more difficult than the top-down method due to species incompatibility issues and the
523: 266: 45: 691: 667: 626: 541: 484: 425: 371: 105: 88:
Producing minichromosomes by genetic engineering techniques involves two primary methods, the
49: 350:"Plant artificial chromosome technology and its potential application in genetic engineering" 657: 616: 606: 531: 515: 474: 464: 415: 405: 361: 244: 205: 126: 69: 646:"Gene stacking in transgenic plants - the challenge for 21st century plant biotechnology" 602: 460: 621: 586: 536: 503: 479: 444: 420: 393: 298: 77: 52:. Minichromosomes may be created by natural processes as chromosomal aberrations or by 48:
but little additional genetic material. They replicate autonomously in the cell during
685: 662: 645: 210: 410: 394:"Meiotic Transmission of an in Vitro–Assembled Autonomous Maize Minichromosome" 248: 142: 37: 33: 324: 611: 469: 29: 671: 630: 545: 519: 488: 429: 375: 141:-mediated chromosomal truncation (TMCT). This process is the generation of 239:
Xu, Chunhui; Yu, Weichang (2009). "Engineered minichromosomes in plants".
164:
successfully construct additional minichromosomes in other plant species.
90: 138: 41: 560:"Researchers to study minichromosomes in maize with $ 1.9 million grant" 527: 502:
Houben, Andreas; Dawe, R. Kelly; Jiang, Jiming; Schubert, Ingo (2008).
325:"Minichromosomes: The Next Generation Technology for Plant Engineering" 366: 349: 167:
In 2007, scientists reported success in assembling minichromosomes
445:"Construction and behavior of engineered minichromosomes in maize" 118: 15: 299:"Minichromosomes: The second generation genetic engineering tool" 297:
Goyal, Aakash; Bhowmik, Pankaj Kumar; Basu, Saikat Kumar (2009).
73: 443:
Yu, W.; Han, F.; Gao, Z.; Vega, J. M.; Birchler, J. A. (2007).
65: 112:. Next, the desired contents of the minichromosome must be 64:
Minichromosomes can be either linear or circular pieces of
108:
techniques to construct the desired chromosomal contents
504:"Engineered Plant Minichromosomes: A Bottom-Up Success?" 348:
Yu, Weichang; Yau, Yuan-Yeu; Birchler, James A. (2016).
585:
Yu, W.; Lamb, J. C.; Han, F.; Birchler, J. A. (2006).
387: 385: 587:"Telomere-mediated chromosomal truncation in maize" 292: 290: 288: 286: 284: 591:Proceedings of the National Academy of Sciences 449:Proceedings of the National Academy of Sciences 343: 341: 323:Yu, Weichang; Birchler, James (August 2007). 8: 234: 232: 230: 228: 226: 661: 620: 610: 535: 478: 468: 419: 409: 365: 222: 94:(bottom-up) and the top-down approach. 137:This method utilizes the mechanism of 7: 201:Minichromosome maintenance proteins 14: 263:"Attach Genes To Minichromosomes" 663:10.1111/j.1467-7652.2004.00113.x 129:nature of centromeric regions. 1: 32:-like structure resembling a 411:10.1371/journal.pgen.0030179 650:Plant Biotechnology Journal 354:Plant Biotechnology Journal 211:Y chromosome, §Degeneration 150:Role in genetic engineering 708: 249:10.1036/1097-8542.YB090068 243:. McGraw-Hill Education. 644:Halpin, Claire (2005). 612:10.1073/pnas.0605750103 470:10.1073/pnas.0700932104 520:10.1105/tpc.107.056622 21: 508:The Plant Cell Online 19: 603:2006PNAS..10317331Y 461:2007PNAS..104.8924Y 306:Plant Omics Journal 54:genetic engineering 46:replication origins 36:and consisting of 22: 367:10.1111/pbi.12466 106:molecular cloning 50:cellular division 699: 676: 675: 665: 641: 635: 634: 624: 614: 582: 576: 575: 573: 571: 562:. Archived from 556: 550: 549: 539: 499: 493: 492: 482: 472: 440: 434: 433: 423: 413: 389: 380: 379: 369: 345: 336: 335: 333: 331: 320: 314: 313: 303: 294: 279: 278: 276: 274: 269:on June 10, 2010 265:. Archived from 259: 253: 252: 236: 707: 706: 702: 701: 700: 698: 697: 696: 682: 681: 680: 679: 643: 642: 638: 597:(46): 17331–6. 584: 583: 579: 569: 567: 566:on June 5, 2010 558: 557: 553: 501: 500: 496: 442: 441: 437: 404:(10): 1965–74. 391: 390: 383: 347: 346: 339: 329: 327: 322: 321: 317: 301: 296: 295: 282: 272: 270: 261: 260: 256: 238: 237: 224: 219: 206:Microchromosome 197: 185: 183:Other organisms 161: 152: 135: 127:heterochromatic 102: 86: 70:DNA replication 62: 12: 11: 5: 705: 703: 695: 694: 684: 683: 678: 677: 636: 577: 551: 494: 455:(21): 8924–9. 435: 381: 360:(5): 1175–82. 337: 315: 280: 254: 221: 220: 218: 215: 214: 213: 208: 203: 196: 193: 184: 181: 160: 157: 151: 148: 134: 131: 101: 96: 85: 82: 61: 58: 26:minichromosome 13: 10: 9: 6: 4: 3: 2: 704: 693: 690: 689: 687: 673: 669: 664: 659: 656:(2): 141–55. 655: 651: 647: 640: 637: 632: 628: 623: 618: 613: 608: 604: 600: 596: 592: 588: 581: 578: 565: 561: 555: 552: 547: 543: 538: 533: 529: 525: 521: 517: 513: 509: 505: 498: 495: 490: 486: 481: 476: 471: 466: 462: 458: 454: 450: 446: 439: 436: 431: 427: 422: 417: 412: 407: 403: 399: 398:PLOS Genetics 395: 388: 386: 382: 377: 373: 368: 363: 359: 355: 351: 344: 342: 338: 326: 319: 316: 311: 307: 300: 293: 291: 289: 287: 285: 281: 268: 264: 258: 255: 250: 246: 242: 241:AccessScience 235: 233: 231: 229: 227: 223: 216: 212: 209: 207: 204: 202: 199: 198: 194: 192: 190: 182: 180: 176: 174: 170: 165: 158: 156: 149: 147: 144: 140: 132: 130: 128: 124: 120: 115: 111: 107: 100: 97: 95: 93: 92: 83: 81: 79: 75: 71: 67: 59: 57: 55: 51: 47: 43: 39: 35: 31: 27: 18: 653: 649: 639: 594: 590: 580: 568:. Retrieved 564:the original 554: 511: 507: 497: 452: 448: 438: 401: 397: 357: 353: 328:. Retrieved 318: 309: 305: 271:. Retrieved 267:the original 257: 240: 188: 186: 177: 172: 168: 166: 162: 153: 136: 122: 109: 103: 98: 89: 87: 63: 25: 23: 514:(1): 8–10. 114:transformed 38:centromeres 28:is a small 217:References 191:approach. 171:using the 143:truncation 84:Production 34:chromosome 312:(1): 1–8. 78:host cell 60:Structure 42:telomeres 30:chromatin 692:Genetics 686:Category 672:17173615 631:17085598 570:15 April 546:18223035 528:25224208 489:17502617 430:17953486 376:26369910 330:11 April 273:12 April 195:See also 175:method. 169:in vitro 139:telomere 133:Top-down 110:in vitro 622:1859930 599:Bibcode 537:2254918 480:1885604 457:Bibcode 421:2041994 189:de novo 173:de novo 123:de novo 99:De novo 91:de novo 76:into a 670:  629:  619:  544:  534:  526:  487:  477:  428:  418:  374:  159:Plants 524:JSTOR 302:(PDF) 119:maize 74:genes 668:PMID 627:PMID 572:2012 542:PMID 485:PMID 426:PMID 372:PMID 332:2012 275:2012 44:and 658:doi 617:PMC 607:doi 595:103 532:PMC 516:doi 475:PMC 465:doi 453:104 416:PMC 406:doi 362:doi 245:doi 66:DNA 688:: 666:. 652:. 648:. 625:. 615:. 605:. 593:. 589:. 540:. 530:. 522:. 512:20 510:. 506:. 483:. 473:. 463:. 451:. 447:. 424:. 414:. 400:. 396:. 384:^ 370:. 358:14 356:. 352:. 340:^ 308:. 304:. 283:^ 225:^ 80:. 56:. 40:, 24:A 674:. 660:: 654:3 633:. 609:: 601:: 574:. 548:. 518:: 491:. 467:: 459:: 432:. 408:: 402:3 378:. 364:: 334:. 310:2 277:. 251:. 247::

Index


chromatin
chromosome
centromeres
telomeres
replication origins
cellular division
genetic engineering
DNA
DNA replication
genes
host cell
de novo
molecular cloning
transformed
maize
heterochromatic
telomere
truncation
Minichromosome maintenance proteins
Microchromosome
Y chromosome, §Degeneration





doi
10.1036/1097-8542.YB090068
"Attach Genes To Minichromosomes"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑