Knowledge (XXG)

Minigene

Source đź“ť

310:. Proteins encoded by aberrantly spliced pre-mRNAs are functionally different and contribute to the characteristic anomalies exhibited by cancer cells, including their ability to proliferate, invade and undergo angiogenesis, and metastasis. Minigenes help researchers identify genetic mutations in cancer that result in splicing errors and determine the downstream effects those splicing errors have on gene expression. Using knowledge obtained from studies employing minigenes, oncologists have proposed tests designed to detect products of abnormal gene expression for diagnostic purposes. Additionally, the prospect of using minigenes as a 278:. Tau protein isoforms are created by alternative splicing of exons 2, 3 and 10. The regulation of tau splicing is specific to stage of development, physiology and location. Errors in tau splicing can occur in both exons and introns and, depending on the error, result in changes to protein structure or loss of function. Aggregation of these abnormal tau proteins correlates directly with pathogenesis and disease progression. Minigenes have been used by several researchers to help understand the regulatory components responsible for mRNA splicing of the TAU gene. 150:" at 3' sense and anti-sense strands (Step 2). These "sticky-ends" can be easily incorporated into a TOPO Vector by ligation into a commercially available source which has ligase already attached to it at the sight of incorporation (Step 3). The subsequent TOPO Vectors can be transfected into E.coli cells (Step 4). After incubation, total RNA can be extracted from the bacterial colonies and analyzed using 213:. Minigenes have been applied to the study of a diverse array of genetic diseases due to the aforementioned abundance of alternatively spliced genes and the specificity and variation observed in splicing regulation. The following are examples of minigene use in various diseases. While it is not an exhaustive list, it does provide a better understanding of how minigenes are utilized. 76: 167: 121:
final size of the fragment, which is in turn a reflection of the complexity of the minigene itself. The number of foreign DNA elements (exon and introns) inserted into the constitutive exons and introns of a given fragment varies with the type of experiment and the information being sought. A typical experiment might involve
89:
Minigenes were first described as the somatic assembly of DNA segments and consisted of DNA regions known to encode the protein and the flanking regions required to express the protein. The term was first used in a paper in 1977 to describe the cloning of two minigenes that were designed to express a
241:
called isolated growth hormone deficiency (IGHD), a disease that results in growth failure. IGHD type II is an autosomal dominant form caused by a mutation in the intervening sequence (IVS) adjacent to exon 3 of the gene encoding growth hormone 1, the GH-1 gene. This mutated form of IVS3 causes exon
93:
RNA splicing was discovered in the late 1970s through the study of adenoviruses that invade mammals and replicate inside them. Researchers identified RNA molecules that contained sequences from noncontiguous parts of the virus’s genome. This discovery led to the conclusion that regulatory mechanisms
120:
and widespread use of computers, several good programs now exist for the identification of cis-acting control regions that affect the splicing outcomes of a gene and advanced programs can even consider splicing outcomes in various tissue types. Differences in minigenes are usually reflected in the
154:
to quantify ratios of exon inclusion/exclusion (step 5). The minigene can be transfected into different cell types with various splicing factors to test trans-acting elements (Step 6). The expressed genes or the proteins they encode can be analyzed to evaluate splicing components and their effects
186:
and identify potential targets of therapeutic intervention in these diseases, explicating the splicing elements involved is essential. Determining the complete set of components involved in splicing presents many challenges due to the abundance of alternative splicing, which occurs in most human
1047:
Anfossi, M; Vuono, R; Maletta, R; Virdee, K; Mirabelli, M; Colao, R; Puccio, G; Bernardi, L; Frangipane, F; Gallo, M; Geracitano, S; Tomaino, C; Curcio, SA; Zannino, G; Lamenza, F; Duyckaerts, C; Spillantini, MG; Losso, MA; Bruni, AC (2011). "Compound heterozygosity of 2 novel MAPT mutations in
79:
pre-mRNA splice patterns showing constitutive exons and introns and the inserted fragment. Orange lines show alternative splicing outcomes as dictated by the exonic sequences and intronic sequences (yellow and green bands) that influence splicing. These sequences may be splicing enhancers or
1134:
Adler, AS; McCleland, ML; Yee, S; Yaylaoglu, M; Hussain, S; Cosino, E; Quinones, G; Modrusan, Z; Seshagiri, S; Torres, E; Chopra, VS; Haley, B; Zhang, Z; Blackwood, EM; Singh, M; Junttila, M; Stephan, JP; Liu, J; Pau, G; Fearon, ER; Jiang, Z; Firestein, R (May 2014).
94:
existed which affected mature RNA and the genes it expresses. Using minigenes as a splice reporting vector to explore the effects of RNA splicing regulation naturally followed and remains the major use of minigenes to date.
141:
Once a suitable genomic fragment is chosen (Step 1), the exons and introns of the fragment can be inserted and amplified, along with the flanking constitutive exons and introns of the original gene, by
129:
which replace the wild-type gene and have been cloned into the same flanking sequences as the original fragment. These types of experiments help to determine the effect of various mutations on
629:
Grodecká, Lucie; Lockerová, Pavla; Ravčuková, Barbora; Buratti, Emanuele; Baralle, Francisco E.; Dušek, Ladislav; Freiberger, Tomáš; Spilianakis, Charalampos Babis (21 February 2014).
246:
within an intron splice enhancer (ISE) embedded in IVS3 was to blame for the skipping of E3. Moreover, it was determined that the function of the ISE is influenced by a nearby
110:
gene, i.e., the length of the fragment must include all upstream and downstream sequences which can affect its splicing. Therefore, most minigene designs begin with a thorough
1299:"Functional analysis of a large set of BRCA2 exon 7 variants highlights the predictive value of hexamer scores in detecting alterations of exonic splicing regulatory elements" 499:
Poonian, MS; McComas, WW; Nussbaum, AL (1977). "Chemical synthesis of two deoxyribododecanucleotides for the attachment of restriction termini to an artificial minigene".
1189:"HnRNP A1/A2 and SF2/ASF Regulate Alternative Splicing of Interferon Regulatory Factor-3 and Affect Immunomodulatory Functions in Human Non-Small Cell Lung Cancer Cells" 247: 286:
Cancer is a complex, heterogeneous disease that can be hereditary or the result of environmental stimuli. Minigenes are used to help oncologists understand the roles
290:
splicing plays in different cancer types. Of particular interest are cancer specific genetic mutations that disrupt normal splicing events, including those affecting
242:
3 to be skipped in the mRNA product. The mRNA (-E3) encodes a truncated form of hGH that then inhibits normal hGH secretion. Minigenes were used to determine that a
739: 191:. Splicing is distinctly conducted from cell type to cell type and across different stages of cellular development. Therefore, it is critical that any 299: 475: 225:. These effects on hormones have been identified as the cause of many endocrine disorders including thyroid-related pathological conditions, 374:
Stoss, O; Stoilov, P; Hartmann, AM; Nayler, O; Stamm, S (Dec 1999). "The in vivo minigene approach to analyze tissue-specific splicing".
56:
vectors) and act as a probe to determine which factors are important in splicing outcomes. They can be constructed to test the way both
1453: 102:
In order to provide a good minigene model, the gene fragment should have all of the necessary elements to ensure it exhibits the same
28:
gene fragment. This is a minigene in its most basic sense. More complex minigenes can be constructed containing multiple exons and
1091:
Rajan, P.; Elliott, DJ; Robson, CN; Leung, HY (Aug 2009). "Alternative splicing and biological heterogeneity in prostate cancer".
998:
Rodriguez-Martin, Teresa; Karen Anthony; Mariano A. Garcia-Blanco; S. Gary Mansfield; Brian H. Anderton; Jean-Marc Gallo (2009).
688:
Barash, Yoseph; Vaquero-Garcia, Jorge; González-Vallinas, Juan; Xiong, Hui; Gao, Weijun; Lee, Leo J.; Frey, Brendan J. (2013).
946:
Kar, Amar; Fushimi, Kazuo; Zhou, Xiaohong; Ray, Payal; Shi, Chen; Chen, Xiaoping; Liu, Zhiren; Chen, She; Wu, Jane Y. (2011).
1483: 1473: 1463: 234: 237:. One specific example of a splicing error causing an endocrine disease that has been studied using minigenes is a type of 1246:
Acedo, Alberto; David J Sanz; Mercedes Durán; Mar Infante; Lucía Pérez-Cabornero; Cristina Miner; Eladio A Velasco (2012).
230: 160: 1504: 554: 1550: 1346:
Daniotti, Jose L.; Aldo A. Vilcaes; Vanina Torres Demichelis; Fernando M. Ruggiero; Macarena Rodriguez-Walker (2013).
766:"Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes" 1545: 1530: 156: 49: 948:"RNA Helicase p68 (DDX5) Regulates tau Exon 10 Splicing by Modulating a Stem-Loop Structure at the 5′ Splice Site" 1495: 827: 764:
Lim, Kian; Huat; Ferraris, Luciana; Filloux, Madeleine E.; Raphael, Benjamin J.; Fairbrother, William G. (2011).
238: 143: 61: 221:
RNA splicing errors can have drastic effects on how proteins function, including the hormones secreted by the
1000:"Correction of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing" 1540: 1448:"Alternative pre-mRNA Splicing: Theory and Protocols", by Stefan Stamm, Chris Smith and Reinhard LĂĽhrmann 271: 267: 125:
minigenes which are expected to express genes normally in a comparison run against genetically engineered
116:
analysis of the requirements of the experiment before any "wet" lab work is conducted. With the advent of
57: 1478:"Alternative Splicing and Disease (Progress in Molecular and Subcellular Biology)" by Philippe Jeanteur 420:
Cooper, Thomas A. (December 2005). "Use of minigene systems to dissect alternative splicing elements".
1200: 777: 642: 311: 103: 1137:"An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth" 295: 1248:"Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenes" 1328: 1116: 1073: 1348:"Glycosylation of Glycolipids in Cancer: Basis for Development of Novel Therapeutic Approaches" 1479: 1469: 1459: 1449: 1428: 1379: 1320: 1279: 1228: 1166: 1108: 1065: 1029: 977: 925: 876: 805: 721: 670: 611: 516: 481: 471: 437: 391: 263: 1555: 1418: 1410: 1397:
Aurisicchio, L; Fridman, A; Bagchi, A; Scarselli, E; La Monica, N; Ciliberto, G (Jan 2014).
1369: 1359: 1310: 1269: 1259: 1218: 1208: 1156: 1148: 1100: 1057: 1019: 1011: 967: 959: 915: 907: 866: 795: 785: 711: 701: 660: 650: 601: 593: 580:
Divina, Petr; Kvitkovicova, Andrea; Buratti, Emanuele; Vorechovsky, Igor (14 January 2009).
508: 463: 429: 383: 222: 1458:"Molecular Diagnostics, Second edition", by Ed. by George P. Patrinos and Whilhelm Ansorge 582:"Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping" 1508: 1297:
Di Giacomo, D.; Gaildrat, P; Abuli, A; Abdat, J; Frébourg, T; Tosi, M; Martins, A (2013).
323: 69: 1061: 458:
Desviat, LR; PĂ©rez, B; Ugarte, M (2012). "Minigenes to Confirm Exon Skipping Mutations".
1204: 781: 646: 48:
biochemically assessed experiments. Specifically, minigenes are used as splice reporter
1535: 1423: 1398: 1374: 1347: 1274: 1247: 1223: 1188: 1161: 1136: 1024: 999: 972: 947: 920: 895: 800: 765: 716: 689: 665: 631:"Exon First Nucleotide Mutations in Splicing: Evaluation of In Silico Prediction Tools" 630: 606: 581: 348: 287: 243: 117: 387: 24:
and the control regions necessary for the gene to express itself in the same way as a
1524: 512: 53: 1332: 1120: 871: 854: 250:, revealing that this particular splicing error is caused by a trans-acting factor. 1077: 855:"Splicing variants impact in thyroid normal physiology and pathological conditions" 343: 328: 183: 179: 33: 182:
errors have been estimated to occur in a third of genetic diseases. To understand
1213: 655: 467: 433: 291: 259: 147: 706: 1501: 558: 303: 1364: 1104: 790: 690:"AVISPA: a web tool for the prediction and analysis of alternative splicing" 275: 166: 122: 112: 107: 25: 1432: 1383: 1324: 1283: 1232: 1187:
Guo, Rong; Yong Li; Jinying Ning; Dan Sun; Lianjun Lin; Xinmin Liu (2013).
1170: 1152: 1112: 1069: 1033: 981: 929: 880: 809: 725: 674: 615: 485: 441: 395: 911: 831: 597: 1015: 963: 520: 193: 130: 65: 44: 80:
silencers, polypyrimidine tract binding protein sites or other elements.
1414: 1315: 1298: 226: 38: 29: 338: 209:-regulatory elements and other regulators of pre-mature RNA splicing 197:
or bioinformatic assumptions about splicing regulation are confirmed
151: 126: 1264: 75: 534:
Clancy, S (2008). "RNA splicing: introns, exons and spliceosome".
307: 165: 74: 333: 21: 32:. Minigenes provide a valuable tool for researchers evaluating 187:
genes, and the specificity in which splicing is carried out
1399:"A novel minigene scaffold for therapeutic cancer vaccines" 1514: 993: 991: 146:. The primers for PCR can be chosen so that they leave " 1517:. Large database for retrieving information on genes. 1496:
Stefan Stamm's web page at the University of Kentucky
462:. Methods Mol. Biol. Vol. 867. pp. 37–47. 1511:. A Good site for theoretical analysis of splicing. 300:heterogeneous nuclear ribonucleoparticules (hnRNP) 896:"Genetics of isolated growth hormone deficiency" 1182: 1180: 770:Proceedings of the National Academy of Sciences 941: 939: 8: 170:A typical cycle for constructing a minigene. 20:is a minimal gene fragment that includes an 1502:Christopher Burge's Lab at M.I.T. website 1422: 1373: 1363: 1314: 1273: 1263: 1222: 1212: 1160: 1023: 971: 919: 870: 799: 789: 715: 705: 664: 654: 605: 453: 451: 821: 819: 415: 413: 411: 409: 407: 405: 376:Brain Research. Brain Research Protocols 1468:"DNA Vaccines" edited by Hildegun Ertl 369: 367: 365: 363: 359: 853:Rosaria de Miranda, Elizabete (2009). 1498:. Good overview of minigene research. 7: 1062:10.1016/j.neurobiolaging.2010.12.013 201:. Minigenes are used to elucidate 155:via a variety of methods including 740:"Steps in producing a TOPO Vector" 586:European Journal of Human Genetics 304:serine/arginine-rich (SR) proteins 14: 308:small ribonucleoproteins (snRNP) 872:10.1590/S0004-27302009000600003 235:congenital adrenal hyperplasia 1: 900:J Clin Res Pediatr Endocrinol 388:10.1016/s1385-299x(99)00043-4 231:hyperinsulinemic hypoglycemia 161:size-exclusion chromatography 1214:10.1371/journal.pone.0062729 656:10.1371/journal.pone.0089570 513:10.1016/0378-1119(77)90040-3 859:Arq Bras Endocrinol Metabol 468:10.1007/978-1-61779-767-5_3 434:10.1016/j.ymeth.2005.07.015 1572: 1048:frontotemporal dementia". 707:10.1186/gb-2013-14-10-r114 274:diseases as well as other 264:neurodegenerative diseases 254:Neurodegenerative diseases 72:) affect gene expression. 239:growth hormone deficiency 104:alternative splicing (AS) 62:trans-regulatory elements 1365:10.3389/fonc.2013.00306 1105:10.1038/nrurol.2009.125 791:10.1073/pnas.1101135108 248:transposable AC element 58:cis-regulatory elements 1252:Breast Cancer Research 1153:10.1101/gad.237206.113 205:-regulatory elements, 171: 81: 1056:(4): 757.e1–757.e11. 912:10.4274/jcrpe.v2i2.52 598:10.1038/ejhg.2008.257 169: 78: 964:10.1128/MCB.01149-10 555:"Burge Lab Software" 553:Burge, Christopher. 312:cancer immunotherapy 296:RNA-binding proteins 1515:UCSC Genome Browser 1205:2013PLoSO...862729G 894:Mullis, PE (2010). 782:2011PNAS..10811093H 647:2014PLoSO...989570G 314:is being explored. 262:is associated with 1551:Molecular genetics 1507:2019-03-30 at the 1415:10.4161/onci.27529 1316:10.1002/humu.22428 1016:10.1093/hmg/ddp264 834:on 9 December 2013 217:Endocrine diseases 172: 127:allelic variations 82: 60:(RNA effects) and 1546:Synthetic biology 1531:Molecular biology 1010:(17): 3266–3273. 477:978-1-61779-766-8 1563: 1437: 1436: 1426: 1394: 1388: 1387: 1377: 1367: 1343: 1337: 1336: 1318: 1294: 1288: 1287: 1277: 1267: 1243: 1237: 1236: 1226: 1216: 1184: 1175: 1174: 1164: 1131: 1125: 1124: 1088: 1082: 1081: 1044: 1038: 1037: 1027: 995: 986: 985: 975: 958:(9): 1812–1821. 943: 934: 933: 923: 891: 885: 884: 874: 850: 844: 843: 841: 839: 830:. Archived from 828:"Stamms-lab.net" 823: 814: 813: 803: 793: 761: 755: 754: 752: 750: 736: 730: 729: 719: 709: 685: 679: 678: 668: 658: 626: 620: 619: 609: 577: 571: 570: 568: 566: 561:on 30 March 2019 557:. Archived from 550: 544: 543: 536:Nature Education 531: 525: 524: 496: 490: 489: 455: 446: 445: 417: 400: 399: 371: 258:Accumulation of 223:endocrine system 106:patterns as the 70:splicing factors 1571: 1570: 1566: 1565: 1564: 1562: 1561: 1560: 1521: 1520: 1509:Wayback Machine 1492: 1445: 1443:Further reading 1440: 1396: 1395: 1391: 1345: 1344: 1340: 1309:(11): 1547–57. 1296: 1295: 1291: 1265:10.1186/bcr3202 1245: 1244: 1240: 1186: 1185: 1178: 1147:(10): 1068–84. 1133: 1132: 1128: 1090: 1089: 1085: 1050:Neurobiol Aging 1046: 1045: 1041: 997: 996: 989: 952:Mol. Cell. Biol 945: 944: 937: 893: 892: 888: 852: 851: 847: 837: 835: 826:Stamm, Stefan. 825: 824: 817: 776:(27): 11093–6. 763: 762: 758: 748: 746: 738: 737: 733: 687: 686: 682: 628: 627: 623: 579: 578: 574: 564: 562: 552: 551: 547: 533: 532: 528: 507:(5–6): 357–72. 498: 497: 493: 478: 457: 456: 449: 419: 418: 403: 373: 372: 361: 357: 324:Recombinant DNA 320: 294:components and 284: 256: 219: 177: 139: 100: 87: 12: 11: 5: 1569: 1567: 1559: 1558: 1553: 1548: 1543: 1538: 1533: 1523: 1522: 1519: 1518: 1512: 1499: 1491: 1490:External links 1488: 1487: 1486: 1476: 1466: 1456: 1454:978-3527326068 1444: 1441: 1439: 1438: 1403:Oncoimmunology 1389: 1338: 1289: 1238: 1176: 1126: 1099:(8): 454–460. 1083: 1039: 987: 935: 886: 865:(6): 709–714. 845: 815: 756: 731: 694:Genome Biology 680: 621: 592:(6): 759–765. 572: 545: 526: 491: 476: 447: 428:(4): 331–340. 401: 358: 356: 353: 352: 351: 349:Cloning vector 346: 341: 336: 331: 326: 319: 316: 283: 280: 255: 252: 244:point mutation 218: 215: 176: 173: 138: 135: 118:Bioinformatics 99: 96: 86: 83: 36:patterns both 13: 10: 9: 6: 4: 3: 2: 1568: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1541:Biotechnology 1539: 1537: 1534: 1532: 1529: 1528: 1526: 1516: 1513: 1510: 1506: 1503: 1500: 1497: 1494: 1493: 1489: 1485: 1481: 1477: 1475: 1471: 1467: 1465: 1461: 1457: 1455: 1451: 1447: 1446: 1442: 1434: 1430: 1425: 1420: 1416: 1412: 1409:(1): e27529. 1408: 1404: 1400: 1393: 1390: 1385: 1381: 1376: 1371: 1366: 1361: 1357: 1353: 1349: 1342: 1339: 1334: 1330: 1326: 1322: 1317: 1312: 1308: 1304: 1300: 1293: 1290: 1285: 1281: 1276: 1271: 1266: 1261: 1257: 1253: 1249: 1242: 1239: 1234: 1230: 1225: 1220: 1215: 1210: 1206: 1202: 1199:(4): e62729. 1198: 1194: 1190: 1183: 1181: 1177: 1172: 1168: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1130: 1127: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1087: 1084: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1043: 1040: 1035: 1031: 1026: 1021: 1017: 1013: 1009: 1005: 1004:Hum Mol Genet 1001: 994: 992: 988: 983: 979: 974: 969: 965: 961: 957: 953: 949: 942: 940: 936: 931: 927: 922: 917: 913: 909: 905: 901: 897: 890: 887: 882: 878: 873: 868: 864: 860: 856: 849: 846: 833: 829: 822: 820: 816: 811: 807: 802: 797: 792: 787: 783: 779: 775: 771: 767: 760: 757: 745: 744:Life sciences 741: 735: 732: 727: 723: 718: 713: 708: 703: 699: 695: 691: 684: 681: 676: 672: 667: 662: 657: 652: 648: 644: 641:(2): e89570. 640: 636: 632: 625: 622: 617: 613: 608: 603: 599: 595: 591: 587: 583: 576: 573: 560: 556: 549: 546: 541: 537: 530: 527: 522: 518: 514: 510: 506: 502: 495: 492: 487: 483: 479: 473: 469: 465: 461: 460:Exon Skipping 454: 452: 448: 443: 439: 435: 431: 427: 423: 416: 414: 412: 410: 408: 406: 402: 397: 393: 389: 385: 382:(3): 383–94. 381: 377: 370: 368: 366: 364: 360: 354: 350: 347: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 321: 317: 315: 313: 309: 305: 301: 297: 293: 289: 281: 279: 277: 273: 269: 265: 261: 253: 251: 249: 245: 240: 236: 232: 228: 224: 216: 214: 212: 208: 204: 200: 196: 195: 190: 185: 181: 174: 168: 164: 162: 158: 157:hybridization 153: 149: 145: 136: 134: 132: 128: 124: 119: 115: 114: 109: 105: 97: 95: 91: 84: 77: 73: 71: 67: 63: 59: 55: 54:exon-trapping 52:(also called 51: 47: 46: 41: 40: 35: 31: 27: 23: 19: 1406: 1402: 1392: 1355: 1351: 1341: 1306: 1302: 1292: 1255: 1251: 1241: 1196: 1192: 1144: 1140: 1129: 1096: 1093:Nat Rev Urol 1092: 1086: 1053: 1049: 1042: 1007: 1003: 955: 951: 906:(2): 52–62. 903: 899: 889: 862: 858: 848: 836:. Retrieved 832:the original 773: 769: 759: 747:. Retrieved 743: 734: 700:(10): R114. 697: 693: 683: 638: 634: 624: 589: 585: 575: 563:. Retrieved 559:the original 548: 539: 535: 529: 504: 500: 494: 459: 425: 421: 379: 375: 344:Transfection 329:RNA Splicing 285: 257: 220: 210: 206: 202: 198: 192: 188: 184:pathogenesis 180:RNA splicing 178: 140: 137:Construction 111: 101: 92: 88: 64:(associated 43: 37: 17: 15: 1352:Front Oncol 292:spliceosome 276:tauopathies 272:Parkinson's 268:Alzheimer's 260:tau protein 148:sticky ends 1525:Categories 1484:3540344489 1474:1461349257 1464:0123745373 1303:Hum. Mutat 1258:(3): R87. 355:References 266:including 133:splicing. 1141:Genes Dev 123:wild type 113:in silico 108:wild type 90:peptide. 30:intron(s) 26:wild type 1505:Archived 1433:24790791 1384:24392350 1333:22874730 1325:23983145 1284:22632462 1233:23658645 1193:PLOS ONE 1171:24788092 1121:30664940 1113:19657379 1070:21295377 1034:19498037 982:21343338 930:21274339 881:19893912 838:26 March 810:21685335 726:24156756 675:24586880 635:PLOS ONE 616:19142208 486:22454053 442:16314262 396:10592349 318:See also 298:such as 288:pre-mRNA 194:in vitro 131:pre-mRNA 66:proteins 45:in vitro 34:splicing 18:minigene 1556:Cloning 1424:4002591 1375:3867695 1358:: 306. 1275:3446350 1224:3639176 1201:Bibcode 1162:4035536 1078:5176440 1025:2722988 973:3133221 921:3014602 801:3131313 778:Bibcode 717:4014802 666:3931810 643:Bibcode 607:2947103 422:Methods 227:rickets 211:in vivo 199:in vivo 189:in vivo 85:History 50:vectors 39:in vivo 1482:  1472:  1462:  1452:  1431:  1421:  1382:  1372:  1331:  1323:  1282:  1272:  1231:  1221:  1169:  1159:  1119:  1111:  1076:  1068:  1032:  1022:  980:  970:  928:  918:  879:  808:  798:  724:  714:  673:  663:  614:  604:  521:590743 519:  484:  474:  440:  394:  339:Intron 282:Cancer 152:RT-PCR 1536:Genes 1329:S2CID 1117:S2CID 1074:S2CID 749:7 May 565:7 May 542:(31). 207:trans 98:Types 1480:ISBN 1470:ISBN 1460:ISBN 1450:ISBN 1429:PMID 1380:PMID 1321:PMID 1280:PMID 1229:PMID 1167:PMID 1109:PMID 1066:PMID 1030:PMID 978:PMID 926:PMID 877:PMID 840:2014 806:PMID 751:2014 722:PMID 671:PMID 612:PMID 567:2014 517:PMID 501:Gene 482:PMID 472:ISBN 438:PMID 392:PMID 334:Exon 306:and 270:and 233:and 175:Uses 42:and 22:exon 1419:PMC 1411:doi 1370:PMC 1360:doi 1311:doi 1270:PMC 1260:doi 1219:PMC 1209:doi 1157:PMC 1149:doi 1101:doi 1058:doi 1020:PMC 1012:doi 968:PMC 960:doi 916:PMC 908:doi 867:doi 796:PMC 786:doi 774:108 712:PMC 702:doi 661:PMC 651:doi 602:PMC 594:doi 509:doi 464:doi 430:doi 384:doi 203:cis 159:or 144:PCR 1527:: 1427:. 1417:. 1405:. 1401:. 1378:. 1368:. 1354:. 1350:. 1327:. 1319:. 1307:34 1305:. 1301:. 1278:. 1268:. 1256:14 1254:. 1250:. 1227:. 1217:. 1207:. 1195:. 1191:. 1179:^ 1165:. 1155:. 1145:28 1143:. 1139:. 1115:. 1107:. 1095:. 1072:. 1064:. 1054:32 1052:. 1028:. 1018:. 1008:18 1006:. 1002:. 990:^ 976:. 966:. 956:31 954:. 950:. 938:^ 924:. 914:. 902:. 898:. 875:. 863:53 861:. 857:. 818:^ 804:. 794:. 784:. 772:. 768:. 742:. 720:. 710:. 698:14 696:. 692:. 669:. 659:. 649:. 637:. 633:. 610:. 600:. 590:17 588:. 584:. 538:. 515:. 503:. 480:. 470:. 450:^ 436:. 426:37 424:. 404:^ 390:. 378:. 362:^ 302:, 229:, 163:. 16:A 1435:. 1413:: 1407:3 1386:. 1362:: 1356:3 1335:. 1313:: 1286:. 1262:: 1235:. 1211:: 1203:: 1197:8 1173:. 1151:: 1123:. 1103:: 1097:6 1080:. 1060:: 1036:. 1014:: 984:. 962:: 932:. 910:: 904:2 883:. 869:: 842:. 812:. 788:: 780:: 753:. 728:. 704:: 677:. 653:: 645:: 639:9 618:. 596:: 569:. 540:1 523:. 511:: 505:1 488:. 466:: 444:. 432:: 398:. 386:: 380:4 68:/

Index

exon
wild type
intron(s)
splicing
in vivo
in vitro
vectors
exon-trapping
cis-regulatory elements
trans-regulatory elements
proteins
splicing factors
Modified splice diagram for minigene splicing
alternative splicing (AS)
wild type
in silico
Bioinformatics
wild type
allelic variations
pre-mRNA
PCR
sticky ends
RT-PCR
hybridization
size-exclusion chromatography

RNA splicing
pathogenesis
in vitro
endocrine system

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑