Knowledge

Minkowski–Hlawka theorem

Source 📝

152:. In principle one can find explicit examples: for example, even just picking a few "random" lattices will work with high probability. The problem is that testing these lattices to see if they are solutions requires finding their shortest vectors, and the number of cases to check grows very fast with the dimension, so this could take a very long time. 148:) → 1. The proof of this theorem is indirect and does not give an explicit example, however, and there is still no known simple and explicit way to construct lattices with packing densities exceeding this bound for arbitrary 131: 331: 241:
is a star-shaped centrally symmetric body (such as a ball) containing less than 2 primitive lattice vectors then it contains no nonzero lattice vectors.
283: 76: 403: 398: 408: 378: 137: 370: 354: 263: 279: 250: 156: 346: 302: 272: 176: 366: 314: 362: 310: 67: 55: 51: 39: 17: 392: 374: 164: 63: 214:, where the average is taken over all lattices with a fundamental domain of volume 267: 172: 43: 31: 62:, such that the corresponding best packing of hyperspheres with centres at the 237:
The Minkowski–Hlawka theorem follows easily from this, using the fact that if
190:
proved the following generalization of the Minkowski–Hlawka theorem. If
358: 306: 350: 218:, and similarly the average number of primitive lattice vectors in 126:{\displaystyle \Delta \geq {\frac {\zeta (n)}{2^{n-1}}},} 202:) then the average number of nonzero lattice vectors in 27:
Existence theorem on the lattice packing of hyperspheres
79: 293:Hlawka, Edmund (1943), "Zur Geometrie der Zahlen", 271: 125: 332:"A mean value theorem in geometry of numbers" 8: 278:(3rd ed.). New York: Springer-Verlag. 160: 106: 86: 78: 155:This result was stated without proof by 187: 171:). The result is related to a linear 168: 163:, pages 265–276) and proved by 7: 274:Sphere Packings, Lattices and Groups 80: 50:> 1. It states that there is a 25: 325:, vol. 1, Leipzig: Teubner 98: 92: 1: 330:Siegel, Carl Ludwig (1945), 425: 144:→ ∞, ζ( 36:Minkowski–Hlawka theorem 18:Minkowski-Hlawka theorem 323:Gesammelte Abhandlungen 198:with Jordan volume vol( 182: 127: 157:Hermann Minkowski 138:Riemann zeta function 128: 404:Theorems in geometry 194:is a bounded set in 77: 399:Geometry of numbers 38:is a result on the 321:Minkowski (1911), 307:10.1007/BF01174201 123: 70:Δ satisfying 409:Hermann Minkowski 251:Kepler conjecture 165:Edmund Hlawka 118: 16:(Redirected from 416: 385: 383: 377:, archived from 336: 326: 317: 289: 277: 268:Neil J.A. Sloane 183:Siegel's theorem 177:Hermite constant 136:with ζ the 132: 130: 129: 124: 119: 117: 116: 101: 87: 21: 424: 423: 419: 418: 417: 415: 414: 413: 389: 388: 381: 351:10.2307/1969027 334: 329: 320: 292: 286: 264:Conway, John H. 262: 259: 247: 185: 102: 88: 75: 74: 56:Euclidean space 40:lattice packing 28: 23: 22: 15: 12: 11: 5: 422: 420: 412: 411: 406: 401: 391: 390: 387: 386: 345:(2): 340–347, 327: 318: 290: 284: 258: 255: 254: 253: 246: 243: 184: 181: 134: 133: 122: 115: 112: 109: 105: 100: 97: 94: 91: 85: 82: 64:lattice points 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 421: 410: 407: 405: 402: 400: 397: 396: 394: 384:on 2020-02-26 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 339:Ann. of Math. 333: 328: 324: 319: 316: 312: 308: 304: 300: 296: 291: 287: 285:0-387-98585-9 281: 276: 275: 269: 265: 261: 260: 256: 252: 249: 248: 244: 242: 240: 235: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 193: 189: 188:Siegel (1945) 180: 178: 174: 170: 166: 162: 158: 153: 151: 147: 143: 139: 120: 113: 110: 107: 103: 95: 89: 83: 73: 72: 71: 69: 65: 61: 58:of dimension 57: 53: 49: 46:in dimension 45: 41: 37: 33: 19: 379:the original 342: 338: 322: 298: 294: 273: 238: 236: 231: 227: 223: 219: 215: 211: 207: 203: 199: 195: 191: 186: 154: 149: 145: 141: 135: 59: 47: 44:hyperspheres 35: 29: 301:: 285–312, 173:lower bound 32:mathematics 393:Categories 257:References 140:. Here as 375:124272126 111:− 90:ζ 84:≥ 81:Δ 295:Math. Z. 270:(1999). 245:See also 175:for the 367:0012093 359:1969027 315:0009782 222:is vol( 206:is vol( 167: ( 159: ( 68:density 52:lattice 373:  365:  357:  313:  282:  34:, the 382:(PDF) 371:S2CID 355:JSTOR 341:, 2, 335:(PDF) 280:ISBN 169:1943 161:1911 66:has 347:doi 303:doi 234:). 54:in 42:of 30:In 395:: 369:, 363:MR 361:, 353:, 343:46 337:, 311:MR 309:, 299:49 297:, 266:; 230:ζ( 226:)/ 210:)/ 179:. 349:: 305:: 288:. 239:S 232:n 228:D 224:S 220:S 216:D 212:D 208:S 204:S 200:S 196:R 192:S 150:n 146:n 142:n 121:, 114:1 108:n 104:2 99:) 96:n 93:( 60:n 48:n 20:)

Index

Minkowski-Hlawka theorem
mathematics
lattice packing
hyperspheres
lattice
Euclidean space
lattice points
density
Riemann zeta function
Hermann Minkowski
1911
Edmund Hlawka
1943
lower bound
Hermite constant
Siegel (1945)
Kepler conjecture
Conway, John H.
Neil J.A. Sloane
Sphere Packings, Lattices and Groups
ISBN
0-387-98585-9
doi
10.1007/BF01174201
MR
0009782
"A mean value theorem in geometry of numbers"
doi
10.2307/1969027
JSTOR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.