Knowledge

Mitchell's embedding theorem

Source đź“ť

240: 506: 861: 967: 914: 792: 709: 338: 410: 655: 628: 268: 380: 577: 437: 294: 733: 597: 550: 530: 297: 190: 1008: 442: 1092: 804: 919: 866: 744: 667: 1122: 1117: 303: 973: 662: 47: 271: 112: 128: 1112: 385: 712: 630:
is an abelian category by using localization theory (also Swan). This is the hard part of the proof.
97: 39: 636: 609: 249: 1030: 1063: 243: 67: 343: 1088: 1004: 739: 164: 35: 1080: 1055: 996: 168: 144: 120: 78: 34:; it essentially states that these categories, while rather abstractly defined, are in fact 31: 555: 415: 43: 276: 16:
Abelian categories, while abstractly defined, are in fact concrete categories of modules
977: 718: 582: 535: 515: 160: 1106: 1020: 82: 658: 509: 74: 51: 1084: 235:{\displaystyle {\mathcal {L}}\subset \operatorname {Fun} ({\mathcal {A}},Ab)} 163:
and sums of morphisms being determined as in the case of modules. However,
132: 1067: 1000: 1059: 863:
we get another contravariant, exact and fully faithful embedding
501:{\displaystyle h^{A}(X)=\operatorname {Hom} _{\mathcal {A}}(A,X)} 1022:
Abelian Categories: An Introduction to the Theory of Functors
969:
is the desired covariant exact and fully faithful embedding.
856:{\displaystyle G(B)=\operatorname {Hom} _{\mathcal {L}}(B,I)} 139:
correspond to the ordinary kernels and cokernels computed in
934: 878: 829: 760: 684: 642: 615: 474: 397: 325: 315: 255: 215: 196: 1046:
Mitchell, Barry (July 1964). "The Full Imbedding Theorem".
962:{\displaystyle GH:{\mathcal {A}}\to R\operatorname {-Mod} } 909:{\displaystyle G:{\mathcal {L}}\to R\operatorname {-Mod} .} 787:{\displaystyle R:=\operatorname {Hom} _{\mathcal {L}}(I,I)} 579:
is already left exact. The proof of the right exactness of
175:
do not necessarily correspond to projective and injective
532:
is fully faithful and we also get the left exactness of
147:. The theorem thus essentially says that the objects of 46:
proofs in these categories. The theorem is named after
922: 869: 807: 747: 721: 704:{\displaystyle \bigoplus _{A\in {\mathcal {A}}}h^{A}} 670: 639: 612: 585: 558: 538: 518: 445: 418: 388: 346: 306: 279: 252: 193: 993:
Algebraic K-theory, Lecture Notes in Mathematics 76
96:-Mod (where the latter denotes the category of all 1054:(3). The Johns Hopkins University Press: 619–637. 1019: 961: 908: 855: 786: 727: 703: 649: 622: 591: 571: 544: 524: 500: 431: 404: 374: 333:{\displaystyle H:{\mathcal {A}}\to {\mathcal {L}}} 332: 288: 262: 234: 1035:Reprints in Theory and Applications of Categories 73:(with 1, not necessarily commutative) and a 66:is a small abelian category, then there exists a 633:It is easy to check that the abelian category 1079:. Cambridge Studies in Advanced Mathematics. 8: 715:and therefore has an injective cogenerator 945: 933: 932: 921: 889: 877: 876: 868: 828: 827: 806: 759: 758: 746: 720: 695: 683: 682: 675: 669: 641: 640: 638: 614: 613: 611: 584: 563: 557: 537: 517: 473: 472: 450: 444: 423: 417: 396: 395: 387: 366: 345: 324: 323: 314: 313: 305: 278: 254: 253: 251: 214: 213: 195: 194: 192: 143:-Mod. Such an equivalence is necessarily 794:is the ring we need for the category of 62:The precise statement is as follows: if 159:-linear maps, with kernels, cokernels, 1077:An introduction to homological algebra 42:. This allows one to use element-wise 7: 599:is harder and can be read in Swan, 405:{\displaystyle A\in {\mathcal {A}}} 955: 952: 949: 899: 896: 893: 14: 974:Gabriel–Quillen embedding theorem 1048:American Journal of Mathematics 601:Lecture Notes in Mathematics 76 155:-modules, and the morphisms as 939: 883: 850: 838: 817: 811: 781: 769: 650:{\displaystyle {\mathcal {L}}} 623:{\displaystyle {\mathcal {L}}} 495: 483: 462: 456: 439:is the covariant hom-functor, 356: 350: 320: 263:{\displaystyle {\mathcal {A}}} 229: 210: 1: 1028:reprinted with a forward as 20:Mitchell's embedding theorem 972:Note that the proof of the 1139: 1075:Charles A. Weibel (1993). 375:{\displaystyle H(A)=h^{A}} 272:category of abelian groups 246:from the abelian category 711:. In other words it is a 606:After that we prove that 1085:10.1017/CBO9781139644136 127:-Mod in such a way that 296:. First we construct a 963: 910: 857: 788: 729: 705: 651: 624: 593: 573: 546: 526: 502: 433: 406: 376: 334: 290: 264: 236: 28:full embedding theorem 24:Freyd–Mitchell theorem 980:is almost identical. 964: 911: 858: 789: 730: 713:Grothendieck category 706: 652: 625: 594: 574: 572:{\displaystyle h^{A}} 547: 527: 503: 434: 432:{\displaystyle h^{A}} 407: 377: 335: 291: 265: 237: 151:can be thought of as 1031:"Abelian Categories" 1018:Peter Freyd (1964). 920: 867: 805: 745: 719: 668: 637: 610: 583: 556: 552:very easily because 536: 516: 443: 416: 386: 344: 304: 277: 250: 191: 30:, is a result about 22:, also known as the 1123:Theorems in algebra 1118:Additive categories 991:R. G. Swan (1968). 244:left exact functors 242:be the category of 183:Sketch of the proof 36:concrete categories 1001:10.1007/BFb0080281 959: 906: 853: 784: 725: 701: 690: 647: 620: 589: 569: 542: 522: 498: 429: 402: 372: 330: 289:{\displaystyle Ab} 286: 260: 232: 32:abelian categories 1026:. Harper and Row. 1010:978-3-540-04245-7 948: 892: 740:endomorphism ring 728:{\displaystyle I} 671: 592:{\displaystyle H} 545:{\displaystyle H} 525:{\displaystyle H} 1130: 1098: 1071: 1042: 1027: 1025: 1014: 978:exact categories 968: 966: 965: 960: 958: 946: 938: 937: 916:The composition 915: 913: 912: 907: 902: 890: 882: 881: 862: 860: 859: 854: 834: 833: 832: 793: 791: 790: 785: 765: 764: 763: 734: 732: 731: 726: 710: 708: 707: 702: 700: 699: 689: 688: 687: 656: 654: 653: 648: 646: 645: 629: 627: 626: 621: 619: 618: 598: 596: 595: 590: 578: 576: 575: 570: 568: 567: 551: 549: 548: 543: 531: 529: 528: 523: 507: 505: 504: 499: 479: 478: 477: 455: 454: 438: 436: 435: 430: 428: 427: 411: 409: 408: 403: 401: 400: 381: 379: 378: 373: 371: 370: 339: 337: 336: 331: 329: 328: 319: 318: 295: 293: 292: 287: 269: 267: 266: 261: 259: 258: 241: 239: 238: 233: 219: 218: 200: 199: 121:full subcategory 1138: 1137: 1133: 1132: 1131: 1129: 1128: 1127: 1103: 1102: 1101: 1095: 1074: 1060:10.2307/2373027 1045: 1041:: 23–164. 2003. 1029: 1017: 1011: 990: 986: 918: 917: 865: 864: 823: 803: 802: 754: 743: 742: 717: 716: 691: 666: 665: 635: 634: 608: 607: 581: 580: 559: 554: 553: 534: 533: 514: 513: 468: 446: 441: 440: 419: 414: 413: 384: 383: 362: 342: 341: 302: 301: 275: 274: 248: 247: 189: 188: 185: 161:exact sequences 60: 44:diagram chasing 17: 12: 11: 5: 1136: 1134: 1126: 1125: 1120: 1115: 1105: 1104: 1100: 1099: 1093: 1072: 1043: 1015: 1009: 987: 985: 982: 957: 954: 951: 944: 941: 936: 931: 928: 925: 905: 901: 898: 895: 888: 885: 880: 875: 872: 852: 849: 846: 843: 840: 837: 831: 826: 822: 819: 816: 813: 810: 783: 780: 777: 774: 771: 768: 762: 757: 753: 750: 724: 698: 694: 686: 681: 678: 674: 644: 617: 588: 566: 562: 541: 521: 497: 494: 491: 488: 485: 482: 476: 471: 467: 464: 461: 458: 453: 449: 426: 422: 399: 394: 391: 369: 365: 361: 358: 355: 352: 349: 327: 322: 317: 312: 309: 285: 282: 257: 231: 228: 225: 222: 217: 212: 209: 206: 203: 198: 184: 181: 59: 56: 48:Barry Mitchell 15: 13: 10: 9: 6: 4: 3: 2: 1135: 1124: 1121: 1119: 1116: 1114: 1113:Module theory 1111: 1110: 1108: 1096: 1094:9781139644136 1090: 1086: 1082: 1078: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1044: 1040: 1036: 1032: 1024: 1023: 1016: 1012: 1006: 1002: 998: 994: 989: 988: 983: 981: 979: 975: 970: 942: 929: 926: 923: 903: 886: 873: 870: 847: 844: 841: 835: 824: 820: 814: 808: 799: 797: 778: 775: 772: 766: 755: 751: 748: 741: 736: 722: 714: 696: 692: 679: 676: 672: 664: 660: 631: 604: 602: 586: 564: 560: 539: 519: 511: 492: 489: 486: 480: 469: 465: 459: 451: 447: 424: 420: 392: 389: 367: 363: 359: 353: 347: 310: 307: 299: 298:contravariant 283: 280: 273: 245: 226: 223: 220: 207: 204: 201: 182: 180: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 126: 122: 118: 114: 110: 105: 103: 101: 95: 91: 87: 84: 83:exact functor 80: 76: 72: 69: 65: 57: 55: 53: 49: 45: 41: 37: 33: 29: 25: 21: 1076: 1051: 1047: 1038: 1034: 1021: 995:. Springer. 992: 971: 800: 795: 737: 659:AB5 category 632: 605: 600: 512:states that 510:Yoneda Lemma 186: 176: 172: 156: 152: 148: 140: 136: 135:computed in 124: 116: 108: 107:The functor 106: 99: 93: 89: 85: 70: 63: 61: 27: 23: 19: 18: 171:objects in 113:equivalence 52:Peter Freyd 1107:Categories 984:References 798:-modules. 300:embedding 179:-modules. 165:projective 111:yields an 940:→ 884:→ 836:⁡ 767:⁡ 680:∈ 673:⨁ 663:generator 481:⁡ 393:∈ 321:→ 208:⁡ 202:⊂ 169:injective 133:cokernels 412:, where 382:for all 145:additive 115:between 102:-modules 79:faithful 1068:2373027 661:with a 270:to the 129:kernels 58:Details 40:modules 26:or the 1091:  1066:  1007:  657:is an 508:. The 119:and a 1064:JSTOR 98:left 1089:ISBN 1005:ISBN 976:for 738:The 187:Let 167:and 131:and 81:and 75:full 68:ring 50:and 1081:doi 1056:doi 997:doi 825:Hom 801:By 756:Hom 470:Hom 340:by 205:Fun 123:of 104:). 38:of 1109:: 1087:. 1062:. 1052:86 1050:. 1037:. 1033:. 1003:. 752::= 735:. 603:. 92:→ 88:: 77:, 54:. 1097:. 1083:: 1070:. 1058:: 1039:3 1013:. 999:: 956:d 953:o 950:M 947:- 943:R 935:A 930:: 927:H 924:G 904:. 900:d 897:o 894:M 891:- 887:R 879:L 874:: 871:G 851:) 848:I 845:, 842:B 839:( 830:L 821:= 818:) 815:B 812:( 809:G 796:R 782:) 779:I 776:, 773:I 770:( 761:L 749:R 723:I 697:A 693:h 685:A 677:A 643:L 616:L 587:H 565:A 561:h 540:H 520:H 496:) 493:X 490:, 487:A 484:( 475:A 466:= 463:) 460:X 457:( 452:A 448:h 425:A 421:h 398:A 390:A 368:A 364:h 360:= 357:) 354:A 351:( 348:H 326:L 316:A 311:: 308:H 284:b 281:A 256:A 230:) 227:b 224:A 221:, 216:A 211:( 197:L 177:R 173:A 157:R 153:R 149:A 141:R 137:A 125:R 117:A 109:F 100:R 94:R 90:A 86:F 71:R 64:A

Index

abelian categories
concrete categories
modules
diagram chasing
Barry Mitchell
Peter Freyd
ring
full
faithful
exact functor
left R-modules
equivalence
full subcategory
kernels
cokernels
additive
exact sequences
projective
injective
left exact functors
category of abelian groups
contravariant
Yoneda Lemma
AB5 category
generator
Grothendieck category
endomorphism ring
Gabriel–Quillen embedding theorem
exact categories
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑