Knowledge (XXG)

Mixed-data sampling

Source 📝

459:. High-dimensional mixed frequency time series regressions involve certain data structures that once taken into account should improve the performance of unrestricted estimators in small samples. These structures are represented by groups covering lagged dependent variables and groups of lags for a single (high-frequency) covariate. To that end, the machine learning MIDAS approach exploits the sparse-group LASSO (sg-LASSO) regularization that accommodates conveniently such structures. The attractive feature of the sg-LASSO estimator is that it allows us to combine effectively the approximately sparse and dense signals. 790: 37:
A MIDAS regression is a direct forecasting tool which can relate future low-frequency data with current and lagged high-frequency indicators, and yield different forecasting models for each forecast horizon. It can flexibly deal with data sampled at different frequencies and provide a direct forecast
438:
when applied in the context of mixed frequency data. Bai, Ghysels and Wright (2013) examine the relationship between MIDAS regressions and Kalman filter state space models applied to mixed frequency data. In general, the latter involves a system of equations, whereas, in contrast, MIDAS regressions
28:
with several co-authors. There is now a substantial literature on MIDAS regressions and their applications, including Ghysels, Santa-Clara and Valkanov (2006), Ghysels, Sinko and Valkanov, Andreou, Ghysels and Kourtellos (2010) and Andreou, Ghysels and Kourtellos (2013).
439:
involve a (reduced form) single equation. As a consequence, MIDAS regressions might be less efficient, but also less prone to specification errors. In cases where the MIDAS regression is only an approximation, the approximation errors tend to be small.
184: 429: 38:
of the low-frequency variable. It incorporates each individual high-frequency data in the regression, which solves the problems of losing potentially useful information and including mis-specification.
541:
Andreou, Elena & Eric Ghysels & Andros Kourtellos "Should macroeconomic forecasters use daily financial data and how?", Journal of Business and Economic Statistics 31, 240-251.
311: 261: 241: 55: 831: 532:
Andreou, Elena & Eric Ghysels & Andros Kourtellos "Regression Models with Mixed Sampling Frequencies", Journal of Econometrics, 158, 246-261.
324: 860: 700:"midasml: Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data maintained by Jonas Striaukas" 824: 850: 865: 855: 817: 671: 452: 686:"midasr: Mixed Data Sampling Regression maintained by Virmantas Kvedaras and Vaidotas Zemlys-Balevicius" 266: 614: 565: 456: 42: 467:
Several software packages feature MIDAS regressions and related econometric methods. These include:
615:"Machine learning panel data regressions with heavy-tailed dependent data: Theory and application" 246: 622: 577: 208: 46: 179:{\displaystyle y_{t}=\beta _{0}+\beta _{1}B(L^{1/m};\theta )x_{t}^{(m)}+\varepsilon _{t}^{(m)},} 640: 595: 801: 699: 685: 632: 587: 448: 16:
Econometric models involving data sampled at different frequencies are of general interest.
508:
Predicting Volatility: How to Get Most Out of Returns Data Sampled at Different Frequencies
770: 318: 844: 435: 314: 797: 25: 636: 591: 713: 21: 644: 599: 613:
Babii, Andrii; Ball, Ryan T.; Ghysels, Eric; Striaukas, Jonas (2022-07-26).
566:"Machine Learning Time Series Regressions With an Application to Nowcasting" 727: 789: 434:
The regression models can be viewed in some cases as substitutes for the
477:
midasml, R package for High-Dimensional Mixed Frequency Time Series Data
747: 752: 732: 424:{\displaystyle B(L^{1/m};\theta )=\sum _{k=0}^{K}B(k;\theta )L^{k/m}} 661:, Journal of Computational and Graphical Statistics, 22(2), 231-245. 627: 582: 775: 657:
Simon, N., J. Friedman, T. Hastie, and R. Tibshirani (2013):
564:
Babii, Andrii; Ghysels, Eric; Striaukas, Jonas (2022-07-03).
506:
Ghysels, Eric, Pedro Santa-Clara and Rossen Valkanov (2006)
519:
Ghysels, Eric and Arthur Sinko and Rossen Valkanov (2006)
550:
Bai, Jennie and Eric Ghysels and Jonathan Wright (2013)
805: 521:
MIDAS Regressions: Further Results and New Directions
327: 269: 249: 211: 58: 423: 305: 255: 235: 178: 455:. The machine learning MIDAS regressions involve 672:"MIDAS Matlab Toolbox maintained by Hang Qian" 201:denotes the frequency – for instance if 825: 570:Journal of Business & Economic Statistics 8: 714:"EViews 9.5 MIDAS Forecasting Demonstration" 832: 818: 626: 581: 411: 407: 379: 368: 342: 338: 326: 284: 280: 268: 248: 221: 216: 210: 161: 156: 137: 132: 109: 105: 89: 76: 63: 57: 45:appearing at a higher frequency than the 552:State Space Models and MIDAS Regressions 313:is a lag distribution, for instance the 499: 510:, Journal of Econometrics, 131, 59-95 7: 786: 784: 41:A simple regression example has the 554:, Econometric Reviews, 32, 779–813. 804:. You can help Knowledge (XXG) by 443:Machine Learning MIDAS Regressions 306:{\displaystyle B(L^{1/m};\theta )} 14: 523:, Econometric Reviews, 26, 53-90. 788: 447:The MIDAS can also be used for 400: 388: 358: 331: 300: 273: 228: 222: 168: 162: 144: 138: 125: 98: 1: 637:10.1016/j.jeconom.2022.07.001 592:10.1080/07350015.2021.1899933 256:{\displaystyle \varepsilon } 451:time series and panel data 236:{\displaystyle x_{t}^{(4)}} 193:is the dependent variable, 18:Mixed-data sampling (MIDAS) 882: 783: 24:regression developed by 861:Statistical forecasting 619:Journal of Econometrics 263:is the disturbance and 800:-related article is a 425: 384: 307: 257: 237: 180: 426: 364: 308: 258: 243:is quarterly – 238: 181: 851:Econometric modeling 659:A sparse-group LASSO 471:MIDAS Matlab Toolbox 457:Legendre polynomials 325: 267: 247: 209: 56: 43:independent variable 728:"MIDAS Python code" 688:. 23 February 2021. 232: 172: 148: 866:Econometrics stubs 856:Time series models 421: 303: 253: 233: 212: 197:is the regressor, 176: 152: 128: 47:dependent variable 813: 812: 474:midasr, R package 463:Software packages 33:MIDAS Regressions 873: 834: 827: 820: 792: 785: 758: 757: 744: 738: 737: 724: 718: 717: 710: 704: 703: 702:. 29 April 2022. 696: 690: 689: 682: 676: 675: 668: 662: 655: 649: 648: 630: 610: 604: 603: 585: 576:(3): 1094–1106. 561: 555: 548: 542: 539: 533: 530: 524: 517: 511: 504: 449:machine learning 430: 428: 427: 422: 420: 419: 415: 383: 378: 351: 350: 346: 312: 310: 309: 304: 293: 292: 288: 262: 260: 259: 254: 242: 240: 239: 234: 231: 220: 185: 183: 182: 177: 171: 160: 147: 136: 118: 117: 113: 94: 93: 81: 80: 68: 67: 881: 880: 876: 875: 874: 872: 871: 870: 841: 840: 839: 838: 781: 771:Distributed lag 767: 762: 761: 746: 745: 741: 726: 725: 721: 712: 711: 707: 698: 697: 693: 684: 683: 679: 670: 669: 665: 656: 652: 612: 611: 607: 563: 562: 558: 549: 545: 540: 536: 531: 527: 518: 514: 505: 501: 496: 465: 445: 403: 334: 323: 322: 321:. For example 276: 265: 264: 245: 244: 207: 206: 101: 85: 72: 59: 54: 53: 35: 12: 11: 5: 879: 877: 869: 868: 863: 858: 853: 843: 842: 837: 836: 829: 822: 814: 811: 810: 793: 779: 778: 773: 766: 763: 760: 759: 739: 719: 705: 691: 677: 663: 650: 605: 556: 543: 534: 525: 512: 498: 497: 495: 492: 491: 490: 489:Stata,midasreg 487: 484: 481: 478: 475: 472: 464: 461: 444: 441: 418: 414: 410: 406: 402: 399: 396: 393: 390: 387: 382: 377: 374: 371: 367: 363: 360: 357: 354: 349: 345: 341: 337: 333: 330: 302: 299: 296: 291: 287: 283: 279: 275: 272: 252: 230: 227: 224: 219: 215: 187: 186: 175: 170: 167: 164: 159: 155: 151: 146: 143: 140: 135: 131: 127: 124: 121: 116: 112: 108: 104: 100: 97: 92: 88: 84: 79: 75: 71: 66: 62: 34: 31: 13: 10: 9: 6: 4: 3: 2: 878: 867: 864: 862: 859: 857: 854: 852: 849: 848: 846: 835: 830: 828: 823: 821: 816: 815: 809: 807: 803: 799: 794: 791: 787: 782: 777: 774: 772: 769: 768: 764: 755: 754: 749: 748:"MIDAS Julia" 743: 740: 735: 734: 729: 723: 720: 715: 709: 706: 701: 695: 692: 687: 681: 678: 673: 667: 664: 660: 654: 651: 646: 642: 638: 634: 629: 624: 620: 616: 609: 606: 601: 597: 593: 589: 584: 579: 575: 571: 567: 560: 557: 553: 547: 544: 538: 535: 529: 526: 522: 516: 513: 509: 503: 500: 493: 488: 485: 482: 479: 476: 473: 470: 469: 468: 462: 460: 458: 454: 450: 442: 440: 437: 436:Kalman filter 432: 416: 412: 408: 404: 397: 394: 391: 385: 380: 375: 372: 369: 365: 361: 355: 352: 347: 343: 339: 335: 328: 320: 316: 315:Beta function 297: 294: 289: 285: 281: 277: 270: 250: 225: 217: 213: 204: 200: 196: 192: 173: 165: 157: 153: 149: 141: 133: 129: 122: 119: 114: 110: 106: 102: 95: 90: 86: 82: 77: 73: 69: 64: 60: 52: 51: 50: 48: 44: 39: 32: 30: 27: 23: 19: 806:expanding it 798:Econometrics 795: 780: 751: 742: 731: 722: 708: 694: 680: 666: 658: 653: 618: 608: 573: 569: 559: 551: 546: 537: 528: 520: 515: 507: 502: 466: 446: 433: 202: 198: 194: 190: 188: 40: 36: 26:Eric Ghysels 17: 15: 22:econometric 845:Categories 628:2008.03600 621:: 105315. 583:2005.14057 494:References 453:nowcasting 205:is yearly 645:0304-4076 600:0735-0015 398:θ 366:∑ 356:θ 319:Almon Lag 298:θ 251:ε 154:ε 123:θ 87:β 74:β 765:See also 317:or the 753:GitHub 733:GitHub 643:  598:  483:Python 480:EViews 189:where 20:is an 796:This 776:ARMAX 623:arXiv 578:arXiv 486:Julia 802:stub 641:ISSN 596:ISSN 633:doi 588:doi 847:: 750:. 730:. 639:. 631:. 617:. 594:. 586:. 574:40 572:. 568:. 431:. 49:: 833:e 826:t 819:v 808:. 756:. 736:. 716:. 674:. 647:. 635:: 625:: 602:. 590:: 580:: 417:m 413:/ 409:k 405:L 401:) 395:; 392:k 389:( 386:B 381:K 376:0 373:= 370:k 362:= 359:) 353:; 348:m 344:/ 340:1 336:L 332:( 329:B 301:) 295:; 290:m 286:/ 282:1 278:L 274:( 271:B 229:) 226:4 223:( 218:t 214:x 203:y 199:m 195:x 191:y 174:, 169:) 166:m 163:( 158:t 150:+ 145:) 142:m 139:( 134:t 130:x 126:) 120:; 115:m 111:/ 107:1 103:L 99:( 96:B 91:1 83:+ 78:0 70:= 65:t 61:y

Index

econometric
Eric Ghysels
independent variable
dependent variable
Beta function
Almon Lag
Kalman filter
machine learning
nowcasting
Legendre polynomials
"Machine Learning Time Series Regressions With an Application to Nowcasting"
arXiv
2005.14057
doi
10.1080/07350015.2021.1899933
ISSN
0735-0015
"Machine learning panel data regressions with heavy-tailed dependent data: Theory and application"
arXiv
2008.03600
doi
10.1016/j.jeconom.2022.07.001
ISSN
0304-4076
"MIDAS Matlab Toolbox maintained by Hang Qian"
"midasr: Mixed Data Sampling Regression maintained by Virmantas Kvedaras and Vaidotas Zemlys-Balevicius"
"midasml: Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data maintained by Jonas Striaukas"
"EViews 9.5 MIDAS Forecasting Demonstration"
"MIDAS Python code"
GitHub

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.