Knowledge (XXG)

Mixed-valence complex

Source đź“ť

157:
half-integer in value. This class is possible when the ligand environment is similar or identical for each of the two metal sites in the complex. In fact, Robson type dianionic tetraimino-diphenolate ligands which provide equivalent N2O2 environments for two metal centres have stabilized the mixed valence diiron complexes of class III. The bridging ligand needs to be very good at electron transfer, be highly conjugated, and be easily reduced.
187: 78: 136:(IT or IVCT) band, a broad intense absorption in the infrared or visible part of the spectrum, and also exhibit magnetic exchange coupling at low temperatures. The degree of interaction between the metal sites can be estimated from the absorption profile of the IVCT band and the spacing between the sites. This type of complex is common when metals are in different ligand fields. For example, 86: 31: 156:
Class III, wherein mixed valence is not distinguishable by spectroscopic methods as the valence is completely delocalized. The Creutz–Taube complex is an example of this class of complexes. These species also exhibit an IT band. Each site exhibits an intermediate oxidation state, which can be
152:
preparation, an iron(II) solution is mixed with an iron(III) cyanide (c-linked) complex. An electron-transfer reaction occurs via the cyanide ligands to give iron(III) associated with an iron(II)-cyanide
384:
Hazra, Susanta; Sasmal, Sujit; Fleck, Michel; Grandjean, Fernande; Sougrati, Moulay T.; Ghosh, Meenakshi; Harris, T. David; Bonville, Pierre; Long, Gary J.; Mohanta, Sasankasekhar (2011-05-07).
132:
for their interconversion. Some thermal activation is required to induce electron transfer from one site to another via the bridge. These species exhibit an intense
204:
Organic mixed valence compounds are also known. Mixed valency in fact seems to be required for organic compounds to exhibit electrical conductivity.
310:
Brunschwig, Bruce S.; Creutz, Carol; Sutin, Norman (2002). "Optical transitions of symmetrical mixed-valence systems in the Class II–III regime".
386:"Slow magnetic relaxation and electron delocalization in an S = 9/2 iron(II/III) complex with two crystallographically inequivalent iron sites" 248:
Demadis, Konstantinos D.; Hartshorn, Chris M.; Meyer, Thomas J. (2001). "The Localized-to-Delocalized Transition in Mixed-Valence Chemistry".
439:
Dutta, Sujit K.; Ensling, Jürgen; Werner, Rüdiger; Flörke, Ulrich; Haase, Wolfgang; Gütlich, Philipp; Nag, Kamalaksha (1997-02-03).
89: 170:
is a robust, readily analyzed, mixed-valence complex consisting of otherwise equivalent Ru(II) and Ru(III) centers bridged by the
175: 221:
Cowan, D. O.; LeVanda, C.; Park, J.; Kaufman, F. (1973). "Organic Solid State. VIII. Mixed-Valence Ferrocene Chemistry".
133: 347:"Synthesis and x-ray crystal structures of tetranickel and tetrazinc complexes of a macrocyclic tetranucleating ligand" 583: 128:
Class II, which are intermediate in character. There is some localization of distinct valences, but there is a low
167: 54: 478:
Richardson, D. E.; Taube, H. (1984). "Mixed-Valence Molecules: Electronic Delocalization and Stabilization".
125:. There are distinct sites with different specific valences in the complex that cannot easily interconvert. 95: 66: 421: 122: 507:"Réexamen de la structure du complexe hexaméthylène-tétrathiafulvalène-tétracyanoquinodiméthane" 149: 441:"Valence-Delocalized and Valence-Trapped FeIIFeIII Complexes: Drastic Influence of the Ligands" 588: 559: 460: 413: 405: 366: 327: 265: 129: 440: 551: 518: 487: 452: 397: 358: 319: 292: 257: 230: 191: 46: 539: 62: 50: 296: 17: 577: 491: 345:
Bell, M.; Edwards, A. J.; Hoskins, B. F.; Kachab, E. H.; Robson, Richard (May 1989).
199: 137: 58: 186: 346: 425: 385: 144:
complex in which there is an iron(II) atom surrounded by six carbon atoms of six
35: 77: 523: 506: 464: 409: 370: 563: 456: 417: 331: 269: 174:. This complex serves as a model for the bridged intermediate invoked in 110:
Class I, where the valences are trapped—localized on a single site—such as
102:
Mixed-valence compounds are subdivided into three groups, according to the
30: 171: 111: 362: 234: 85: 145: 141: 555: 401: 261: 323: 148:
ligands bridged to an iron(III) atom by their nitrogen ends. In the
185: 84: 76: 29: 283:
Robin, Melvin B.; Day, Peter (1967). "Mixed Valence Chemistry".
194:/TCNQ charge transfer salt, which features mixed valency. 505:
D. Chasseau; G. Comberton; J. Gaultier; C. Hauw (1978).
190:
Edge-on view of the crystal structure of hexamethylene
445:Angewandte Chemie International Edition in English 285:Advances in Inorganic Chemistry and Radiochemistry 53:. Well-known mixed valence compounds include the 38:is classified as type II mixed valence complex. 8: 538:Hankache, Jihane; Wenger, Oliver S. (2011). 98:that is also mixed-valence (Ru(II)Ru(III)). 65:. Many solids are mixed-valency including 81:The structure of the Creutz-Taube complex. 522: 351:Journal of the American Chemical Society 213: 7: 49:which is present in more than one 25: 511:Acta Crystallographica Section B 390:The Journal of Chemical Physics 182:Mixed valence organic compounds 480:Coordination Chemistry Reviews 176:inner-sphere electron transfer 1: 297:10.1016/S0065-2792(08)60179-X 223:Accounts of Chemical Research 492:10.1016/0010-8545(84)85063-8 134:Intervalence charge transfer 605: 197: 524:10.1107/S0567740878003830 27:Type of chemical compound 312:Chemical Society Reviews 104:Robin–Day classification 73:Robin–Day classification 540:"Organic Mixed Valence" 43:Mixed valence complexes 457:10.1002/anie.199701521 195: 99: 82: 39: 18:Mixed valence compound 189: 88: 80: 33: 168:Creutz–Taube complex 96:coordination polymer 67:indium chalcogenides 55:Creutz–Taube complex 36:biferrocenium cation 363:10.1021/ja00192a018 235:10.1021/ar50061a001 140:is an iron(II,III)– 584:Physical chemistry 196: 123:antimony tetroxide 100: 83: 40: 556:10.1021/cr100441k 402:10.1063/1.3581028 357:(10): 3603–3610. 262:10.1021/cr990413m 130:activation energy 16:(Redirected from 596: 568: 567: 544:Chemical Reviews 535: 529: 528: 526: 502: 496: 495: 475: 469: 468: 436: 430: 429: 381: 375: 374: 342: 336: 335: 324:10.1039/B008034I 307: 301: 300: 280: 274: 273: 256:(9): 2655–2686. 250:Chemical Reviews 245: 239: 238: 218: 162:Creutz–Taube ion 21: 604: 603: 599: 598: 597: 595: 594: 593: 574: 573: 572: 571: 537: 536: 532: 504: 503: 499: 477: 476: 472: 451:(12): 152–155. 438: 437: 433: 383: 382: 378: 344: 343: 339: 309: 308: 304: 282: 281: 277: 247: 246: 242: 220: 219: 215: 210: 202: 184: 164: 150:Turnbull's blue 119: 115: 92: 75: 63:molybdenum blue 51:oxidation state 28: 23: 22: 15: 12: 11: 5: 602: 600: 592: 591: 586: 576: 575: 570: 569: 550:(8): 5138–78. 530: 497: 470: 431: 396:(17): 174507. 376: 337: 302: 275: 240: 212: 211: 209: 206: 198:Main article: 183: 180: 163: 160: 159: 158: 154: 126: 117: 113: 90: 74: 71: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 601: 590: 587: 585: 582: 581: 579: 565: 561: 557: 553: 549: 545: 541: 534: 531: 525: 520: 516: 512: 508: 501: 498: 493: 489: 485: 481: 474: 471: 466: 462: 458: 454: 450: 446: 442: 435: 432: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 380: 377: 372: 368: 364: 360: 356: 352: 348: 341: 338: 333: 329: 325: 321: 318:(3): 168–84. 317: 313: 306: 303: 298: 294: 290: 286: 279: 276: 271: 267: 263: 259: 255: 251: 244: 241: 236: 232: 228: 224: 217: 214: 207: 205: 201: 200:organic metal 193: 188: 181: 179: 177: 173: 169: 161: 155: 151: 147: 143: 139: 138:Prussian blue 135: 131: 127: 124: 120: 109: 108: 107: 105: 97: 93: 87: 79: 72: 70: 68: 64: 60: 59:Prussian blue 56: 52: 48: 44: 37: 32: 19: 547: 543: 533: 514: 510: 500: 483: 479: 473: 448: 444: 434: 393: 389: 379: 354: 350: 340: 315: 311: 305: 288: 284: 278: 253: 249: 243: 226: 222: 216: 203: 165: 103: 101: 42: 41: 486:: 107–129. 291:: 247–422. 45:contain an 578:Categories 517:(2): 689. 208:References 465:0570-0833 410:0021-9606 371:0002-7863 589:Electron 564:21574545 418:21548699 332:12122642 270:11749392 172:pyrazine 153:complex. 229:: 1–7. 146:cyanide 142:cyanide 47:element 562:  463:  426:489239 424:  416:  408:  369:  330:  268:  61:, and 422:S2CID 94:is a 560:PMID 461:ISSN 414:PMID 406:ISSN 367:ISSN 328:PMID 266:PMID 166:The 121:and 34:The 552:doi 548:111 519:doi 488:doi 453:doi 398:doi 394:134 359:doi 355:111 320:doi 293:doi 258:doi 254:101 231:doi 192:TTF 69:. 580:: 558:. 546:. 542:. 515:34 513:. 509:. 484:60 482:. 459:. 449:36 447:. 443:. 420:. 412:. 404:. 392:. 388:. 365:. 353:. 349:. 326:. 316:31 314:. 289:10 287:. 264:. 252:. 225:. 178:. 112:Pb 106:: 57:, 566:. 554:: 527:. 521:: 494:. 490:: 467:. 455:: 428:. 400:: 373:. 361:: 334:. 322:: 299:. 295:: 272:. 260:: 237:. 233:: 227:6 118:4 116:O 114:3 91:n 20:)

Index

Mixed valence compound

biferrocenium cation
element
oxidation state
Creutz–Taube complex
Prussian blue
molybdenum blue
indium chalcogenides


n
coordination polymer
Pb3O4
antimony tetroxide
activation energy
Intervalence charge transfer
Prussian blue
cyanide
cyanide
Turnbull's blue
Creutz–Taube complex
pyrazine
inner-sphere electron transfer

TTF
organic metal
doi
10.1021/ar50061a001
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑