Knowledge (XXG)

Transverse mode

Source 📝

607: 36: 1784: 854: 259: 578:
Decomposition of field distributions into modes is useful because a large number of field amplitudes readings can be simplified into a much smaller number of mode amplitudes. Because these modes change over time according to a simple set of rules, it is also possible to anticipate future behavior of
1305: 323:
which has a significant longitudinal component to the propagated wave due to the inhomogeneity at the boundary of the dielectric substrate below the conductor and the air above it. In an optical fiber or other dielectric waveguide, modes are generally of the hybrid type.
1935: 1015: 804: 1779: 1840:
The overall intensity profile of a laser's output may be made up from the superposition of any of the allowed transverse modes of the laser's cavity, though often it is desirable to operate only on the fundamental mode.
318:
energy is normally transported in the fundamental TEM mode. The TEM mode is also usually assumed for most other electrical conductor line formats as well. This is mostly an accurate assumption, but a major exception is
575:, respectively. Fiber with a V-parameter of less than 2.405 only supports the fundamental mode (a hybrid mode), and is therefore a single-mode fiber whereas fiber with a higher V-parameter has multiple modes. 187:
amplitude at the walls of the waveguide, so the transverse pattern of the electric field of waves is restricted to those that fit between the walls. For this reason, the modes supported by a waveguide are
1946: 961:, and this may increase or decrease with the propagation of the beam, however the modes preserve their general shape during propagation. Higher order modes are relatively larger compared to the 460: 884:
mode is the lowest order. It is the fundamental transverse mode of the laser resonator and has the same form as a Gaussian beam. The pattern has a single lobe, and has a constant
662: 1494: 1419: 1481: 1454: 1332: 565: 538: 487: 1390: 1361: 511: 1921: 1300:{\displaystyle E_{mn}(x,y,z)=E_{0}{\frac {w_{0}}{w}}H_{m}\left({\frac {{\sqrt {2}}x}{w}}\right)H_{n}\left({\frac {{\sqrt {2}}y}{w}}\right)\exp \left} 1837:
radians with respect to its horizontal or vertical neighbours. This is equivalent to the polarization of each lobe being flipped in direction.
656: 968:
mode, and thus the fundamental Gaussian mode of a laser may be selected by placing an appropriately sized aperture in the laser cavity.
386: 314:
Hollow metallic waveguides filled with a homogeneous, isotropic material (usually air) support TE and TM modes but not the TEM mode. In
2056: 2006: 1908: 119: 53: 347:
is the number of half-wave patterns across the height of the waveguide. In circular waveguides, circular modes exist and here
327:
In rectangular waveguides, rectangular mode numbers are designated by two suffix numbers attached to the mode type, such as TE
100: 57: 72: 364: 392: 79: 183:
imposed on the wave by the waveguide. For example, a radio wave in a hollow metal waveguide must have zero tangential
46: 382: 234:. When two or more modes have an identical propagation constant along the waveguide, then there is more than one 137: 86: 226:
are imposed by a physical structure, a wave of a particular frequency can be described in terms of a transverse
378: 306: 2036: 2051: 1795:
mode corresponds to exactly the same fundamental mode as in the cylindrical geometry. Modes with increasing
979:
windows. In these lasers, transverse modes with rectangular symmetry are formed. These modes are designated
572: 68: 1815:
lobes present in the pattern. As before, higher-order modes have a larger spatial extent than the 00 mode.
2061: 1888: 584: 193: 189: 598:
approximation for the field solution, treating it as if it contains only one transverse field component.
141: 618:
In a laser with cylindrical symmetry, the transverse mode patterns are described by a combination of a
623: 231: 1860: 1488: 976: 835: 223: 643:
are integers labeling the radial and angular mode orders, respectively. The intensity at a point
238:
possible in order to describe a wave with that propagation constant (for instance, a non-central
180: 1395: 996:
being the horizontal and vertical orders of the pattern. The electric field pattern at a point
2002: 1920:
U.S. Navy-Marine Corps Military Auxiliary Radio System (MARS), NAVMARCORMARS Operator Course,
1904: 1855: 580: 173: 93: 1422: 799:{\displaystyle I_{pl}(\rho ,\varphi )=I_{0}\rho ^{l}\left^{2}\cos ^{2}(l\varphi )e^{-\rho }} 595: 568: 145: 1459: 1432: 1310: 543: 516: 465: 1870: 1366: 1337: 144:
pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's
1774:{\displaystyle I_{mn}(x,y,z)=I_{0}\left({\frac {w_{0}}{w}}\right)^{2}\left^{2}\left^{2}} 1865: 579:
the field distribution. These simplifications of complex field distributions ease the
496: 184: 2045: 1819: 1426: 885: 619: 590:
The modes in typical low refractive index contrast fibers are usually referred to as
372: 315: 247: 243: 239: 165: 1924:, Figure 1-38.—Various modes of operation for rectangular and circular waveguides. 17: 1850: 1803:
show lobes appearing in the horizontal and vertical directions, with in general
606: 368: 235: 227: 35: 1783: 853: 27:
Electromagnetic wave with oscillations perpendicular to the direction of travel
490: 320: 293:
No magnetic field in the direction of propagation. These are sometimes called
279:
No electric field in the direction of propagation. These are sometimes called
212: 208: 149: 972: 258: 219: 205: 157: 153: 297:
because there is only an electric field along the direction of propagation.
283:
because there is only a magnetic field along the direction of propagation (
1972: 343:
is the number of half-wave patterns across the width of the waveguide and
230:(or superposition of such modes). These modes generally follow different 850:
is the spot size of the mode corresponding to the Gaussian beam radius.
971:
In many lasers, the symmetry of the optical resonator is restricted by
957:
The overall size of the mode is determined by the Gaussian beam radius
303:
Non-zero electric and magnetic fields in the direction of propagation.
273:
Neither electric nor magnetic field in the direction of propagation.
1943:
EE 247: Introduction to Optical Fiber Communications, Lecture Notes
1782: 852: 605: 257: 169: 161: 351:
is the number of full-wave patterns along the circumference and
385:. To determine the number of modes in a step-index fiber, the 242:
laser mode can be equivalently described as a superposition of
892:
show concentric rings of intensity, and modes with increasing
29: 204:
Unguided electromagnetic waves in free space, or in a bulk
930:, is a special case consisting of a superposition of two 355:
is the number of half-wave patterns along the diameter.
215:; these can be described as TEM modes as defined below. 896:
show angularly distributed lobes. In general there are
1936:"Lecture 3: Wave Optics Description of Optical Fibers" 395: 377:
The number of modes in an optical fiber distinguishes
1497: 1462: 1435: 1398: 1369: 1340: 1313: 1018: 665: 546: 519: 499: 468: 1012:
for a beam propagating along the z-axis is given by
262:
Field patterns of some commonly used waveguide modes
1421:are the waist, spot size, radius of curvature, and 60:. Unsourced material may be challenged and removed. 1773: 1475: 1448: 1413: 1384: 1355: 1326: 1299: 798: 559: 532: 505: 481: 455:{\textstyle V=k_{0}a{\sqrt {n_{1}^{2}-n_{2}^{2}}}} 454: 266:Modes in waveguides can be classified as follows: 196:for the boundary conditions of a given waveguide. 1945:. Stanford University. p. 8. Archived from 594:(linear polarization) modes, which refers to a 287:is the conventional symbol for magnetic field). 8: 2001:, pp. 71–79, Elsevier Academic Press, 2006, 1977:Encyclopedia of Laser Physics and Technology 1787:Rectangular transverse mode patterns TEM(mn) 192:. The allowed modes can be found by solving 1922:Chapter 1, Waveguide Theory and Application 659:) from the centre of the mode is given by: 1765: 1748: 1737: 1727: 1697: 1694: 1684: 1668: 1651: 1640: 1630: 1600: 1597: 1587: 1571: 1556: 1550: 1539: 1502: 1496: 1491:. The corresponding intensity pattern is 1467: 1461: 1440: 1434: 1397: 1368: 1339: 1318: 1312: 1225: 1214: 1205: 1191: 1178: 1137: 1134: 1124: 1100: 1097: 1087: 1072: 1066: 1060: 1023: 1017: 787: 762: 752: 732: 727: 711: 701: 670: 664: 610:Cylindrical transverse mode patterns TEM( 551: 545: 524: 518: 498: 473: 467: 444: 439: 426: 421: 415: 406: 394: 211:, can be described as a superposition of 120:Learn how and when to remove this message 1903:, pp.52-53, London: Edward Arnold 1971 1881: 888:across the mode. Modes with increasing 908:spots in the mode pattern (except for 270:Transverse electromagnetic (TEM) modes 307:Planar transmission line § Modes 148:direction. Transverse modes occur in 7: 2037:Detailed descriptions of laser modes 58:adding citations to reliable sources 1999:Fundamentals of Optical Waveguides 179:Transverse modes occur because of 25: 1889:"Transverse electromagnetic mode" 1456:is a normalization constant; and 857:Cylindrical transverse mode with 1934:Kahn, Joseph M. (Sep 21, 2006). 513:is the fiber's core radius, and 34: 45:needs additional citations for 1529: 1511: 1408: 1402: 1379: 1373: 1350: 1344: 1286: 1268: 1197: 1171: 1050: 1032: 780: 771: 744: 738: 691: 679: 290:Transverse magnetic (TM) modes 276:Transverse electric (TE) modes 1: 954:with respect to one another. 365:Equilibrium mode distribution 2023:(5th ed.). p. 158. 250:which are described below). 2078: 362: 2057:Electromagnetic radiation 1414:{\displaystyle \zeta (z)} 585:fiber-optic communication 383:single-mode optical fiber 138:electromagnetic radiation 626:. The modes are denoted 389:needs to be determined: 379:multi-mode optical fiber 248:Laguerre-Gaussian modes 218:However in any sort of 1788: 1775: 1477: 1450: 1415: 1386: 1357: 1328: 1301: 866: 800: 615: 561: 534: 507: 483: 456: 263: 244:Hermite-Gaussian modes 1786: 1776: 1478: 1476:{\displaystyle H_{k}} 1451: 1449:{\displaystyle E_{0}} 1416: 1387: 1358: 1329: 1327:{\displaystyle w_{0}} 1302: 856: 801: 609: 562: 560:{\displaystyle n_{2}} 535: 533:{\displaystyle n_{1}} 508: 484: 482:{\displaystyle k_{0}} 457: 261: 232:propagation constants 142:electromagnetic field 2021:Principles of Lasers 1971:Paschotta, Rüdiger. 1495: 1460: 1433: 1396: 1385:{\displaystyle R(z)} 1367: 1356:{\displaystyle w(z)} 1338: 1311: 1016: 926:mode, the so-called 663: 544: 517: 497: 466: 393: 54:improve this article 2019:Svelto, O. (2010). 1861:Laser beam profiler 973:polarizing elements 836:Laguerre polynomial 737: 624:Laguerre polynomial 449: 431: 236:modal decomposition 224:boundary conditions 194:Maxwell's equations 181:boundary conditions 1822:of each lobe of a 1789: 1771: 1489:Hermite polynomial 1473: 1446: 1411: 1382: 1353: 1324: 1297: 867: 834:is the associated 796: 723: 616: 569:refractive indices 557: 530: 503: 479: 452: 435: 417: 264: 18:Modal distribution 1901:Wave Transmission 1856:Longitudinal mode 1754: 1711: 1702: 1657: 1614: 1605: 1565: 1243: 1220: 1151: 1142: 1114: 1105: 1081: 657:polar coordinates 581:signal processing 506:{\displaystyle a} 450: 174:optical resonator 130: 129: 122: 104: 69:"Transverse mode" 16:(Redirected from 2069: 2025: 2024: 2016: 2010: 1995: 1989: 1988: 1986: 1984: 1968: 1962: 1961: 1959: 1957: 1952:on June 14, 2007 1951: 1940: 1931: 1925: 1918: 1912: 1897: 1891: 1886: 1836: 1830: 1814: 1802: 1798: 1780: 1778: 1777: 1772: 1770: 1769: 1764: 1760: 1759: 1755: 1753: 1752: 1743: 1742: 1741: 1728: 1716: 1712: 1707: 1703: 1698: 1695: 1689: 1688: 1673: 1672: 1667: 1663: 1662: 1658: 1656: 1655: 1646: 1645: 1644: 1631: 1619: 1615: 1610: 1606: 1601: 1598: 1592: 1591: 1576: 1575: 1570: 1566: 1561: 1560: 1551: 1544: 1543: 1510: 1509: 1487:-th physicist's 1486: 1482: 1480: 1479: 1474: 1472: 1471: 1455: 1453: 1452: 1447: 1445: 1444: 1423:Gouy phase shift 1420: 1418: 1417: 1412: 1391: 1389: 1388: 1383: 1362: 1360: 1359: 1354: 1333: 1331: 1330: 1325: 1323: 1322: 1306: 1304: 1303: 1298: 1296: 1292: 1249: 1245: 1244: 1242: 1234: 1226: 1221: 1219: 1218: 1206: 1196: 1195: 1183: 1182: 1156: 1152: 1147: 1143: 1138: 1135: 1129: 1128: 1119: 1115: 1110: 1106: 1101: 1098: 1092: 1091: 1082: 1077: 1076: 1067: 1065: 1064: 1031: 1030: 1011: 995: 991: 987: 977:Brewster's angle 967: 960: 953: 946: 939: 925: 914: 907: 895: 891: 879: 849: 845: 841: 833: 831: 830: 819: 805: 803: 802: 797: 795: 794: 767: 766: 757: 756: 751: 747: 736: 731: 716: 715: 706: 705: 678: 677: 654: 642: 638: 634: 583:requirements of 571:of the core and 566: 564: 563: 558: 556: 555: 539: 537: 536: 531: 529: 528: 512: 510: 509: 504: 488: 486: 485: 480: 478: 477: 461: 459: 458: 453: 451: 448: 443: 430: 425: 416: 411: 410: 140:is a particular 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 2077: 2076: 2072: 2071: 2070: 2068: 2067: 2066: 2042: 2041: 2033: 2028: 2018: 2017: 2013: 1996: 1992: 1982: 1980: 1970: 1969: 1965: 1955: 1953: 1949: 1938: 1933: 1932: 1928: 1919: 1915: 1898: 1894: 1887: 1883: 1879: 1871:Transverse wave 1847: 1832: 1829: 1823: 1804: 1800: 1796: 1794: 1744: 1733: 1729: 1723: 1696: 1690: 1680: 1679: 1675: 1674: 1647: 1636: 1632: 1626: 1599: 1593: 1583: 1582: 1578: 1577: 1552: 1546: 1545: 1535: 1498: 1493: 1492: 1484: 1463: 1458: 1457: 1436: 1431: 1430: 1425:as given for a 1394: 1393: 1365: 1364: 1336: 1335: 1314: 1309: 1308: 1235: 1227: 1210: 1204: 1200: 1187: 1174: 1167: 1163: 1136: 1130: 1120: 1099: 1093: 1083: 1068: 1056: 1019: 1014: 1013: 997: 993: 989: 986: 980: 966: 962: 958: 948: 941: 938: 931: 924: 916: 909: 897: 893: 889: 883: 870: 847: 843: 839: 829: 826: 825: 824: 821: 807: 783: 758: 722: 718: 717: 707: 697: 666: 661: 660: 644: 640: 636: 633: 627: 622:profile with a 604: 547: 542: 541: 520: 515: 514: 495: 494: 469: 464: 463: 402: 391: 390: 375: 361: 338: 332: 256: 202: 134:transverse mode 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 2075: 2073: 2065: 2064: 2059: 2054: 2052:Wave mechanics 2044: 2043: 2040: 2039: 2032: 2031:External links 2029: 2027: 2026: 2011: 1990: 1979:. RP Photonics 1963: 1926: 1913: 1899:F. R. Connor, 1892: 1880: 1878: 1875: 1874: 1873: 1868: 1866:Spatial filter 1863: 1858: 1853: 1846: 1843: 1825: 1792: 1768: 1763: 1758: 1751: 1747: 1740: 1736: 1732: 1726: 1722: 1719: 1715: 1710: 1706: 1701: 1693: 1687: 1683: 1678: 1671: 1666: 1661: 1654: 1650: 1643: 1639: 1635: 1629: 1625: 1622: 1618: 1613: 1609: 1604: 1596: 1590: 1586: 1581: 1574: 1569: 1564: 1559: 1555: 1549: 1542: 1538: 1534: 1531: 1528: 1525: 1522: 1519: 1516: 1513: 1508: 1505: 1501: 1470: 1466: 1443: 1439: 1410: 1407: 1404: 1401: 1381: 1378: 1375: 1372: 1352: 1349: 1346: 1343: 1321: 1317: 1295: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1248: 1241: 1238: 1233: 1230: 1224: 1217: 1213: 1209: 1203: 1199: 1194: 1190: 1186: 1181: 1177: 1173: 1170: 1166: 1162: 1159: 1155: 1150: 1146: 1141: 1133: 1127: 1123: 1118: 1113: 1109: 1104: 1096: 1090: 1086: 1080: 1075: 1071: 1063: 1059: 1055: 1052: 1049: 1046: 1043: 1040: 1037: 1034: 1029: 1026: 1022: 982: 964: 933: 918: 881: 827: 793: 790: 786: 782: 779: 776: 773: 770: 765: 761: 755: 750: 746: 743: 740: 735: 730: 726: 721: 714: 710: 704: 700: 696: 693: 690: 687: 684: 681: 676: 673: 669: 629: 603: 600: 554: 550: 527: 523: 502: 476: 472: 447: 442: 438: 434: 429: 424: 420: 414: 409: 405: 401: 398: 360: 359:Optical fibers 357: 334: 328: 312: 311: 301: 298: 291: 288: 277: 274: 271: 255: 252: 201: 200:Types of modes 198: 185:electric field 160:, and also in 156:confined to a 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2074: 2063: 2062:Laser science 2060: 2058: 2055: 2053: 2050: 2049: 2047: 2038: 2035: 2034: 2030: 2022: 2015: 2012: 2008: 2007:0-12-525096-7 2004: 2000: 1994: 1991: 1978: 1974: 1967: 1964: 1948: 1944: 1937: 1930: 1927: 1923: 1917: 1914: 1910: 1909:0-7131-3278-7 1906: 1902: 1896: 1893: 1890: 1885: 1882: 1876: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1848: 1844: 1842: 1838: 1835: 1831:is offset by 1828: 1821: 1816: 1812: 1808: 1785: 1781: 1766: 1761: 1756: 1749: 1745: 1738: 1734: 1730: 1724: 1720: 1717: 1713: 1708: 1704: 1699: 1691: 1685: 1681: 1676: 1669: 1664: 1659: 1652: 1648: 1641: 1637: 1633: 1627: 1623: 1620: 1616: 1611: 1607: 1602: 1594: 1588: 1584: 1579: 1572: 1567: 1562: 1557: 1553: 1547: 1540: 1536: 1532: 1526: 1523: 1520: 1517: 1514: 1506: 1503: 1499: 1490: 1468: 1464: 1441: 1437: 1428: 1427:Gaussian beam 1424: 1405: 1399: 1376: 1370: 1347: 1341: 1319: 1315: 1293: 1289: 1283: 1280: 1277: 1274: 1271: 1265: 1262: 1259: 1256: 1253: 1250: 1246: 1239: 1236: 1231: 1228: 1222: 1215: 1211: 1207: 1201: 1192: 1188: 1184: 1179: 1175: 1168: 1164: 1160: 1157: 1153: 1148: 1144: 1139: 1131: 1125: 1121: 1116: 1111: 1107: 1102: 1094: 1088: 1084: 1078: 1073: 1069: 1061: 1057: 1053: 1047: 1044: 1041: 1038: 1035: 1027: 1024: 1020: 1009: 1005: 1001: 985: 978: 974: 969: 955: 952: 944: 937: 929: 928:doughnut mode 922: 912: 905: 901: 887: 877: 873: 864: 860: 855: 851: 837: 832: 818: 814: 810: 791: 788: 784: 777: 774: 768: 763: 759: 753: 748: 741: 733: 728: 724: 719: 712: 708: 702: 698: 694: 688: 685: 682: 674: 671: 667: 658: 652: 648: 632: 625: 621: 620:Gaussian beam 613: 608: 601: 599: 597: 593: 588: 586: 582: 576: 574: 570: 552: 548: 525: 521: 500: 492: 474: 470: 445: 440: 436: 432: 427: 422: 418: 412: 407: 403: 399: 396: 388: 384: 380: 374: 373:Cladding mode 370: 366: 358: 356: 354: 350: 346: 342: 337: 331: 325: 322: 317: 316:coaxial cable 309: 308: 302: 299: 296: 292: 289: 286: 282: 278: 275: 272: 269: 268: 267: 260: 253: 251: 249: 245: 241: 237: 233: 229: 225: 221: 216: 214: 210: 207: 199: 197: 195: 191: 186: 182: 177: 175: 171: 167: 166:optical fiber 163: 159: 155: 151: 147: 143: 139: 135: 124: 121: 113: 110:November 2009 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 2020: 2014: 1998: 1997:K. Okamoto, 1993: 1981:. Retrieved 1976: 1966: 1954:. Retrieved 1947:the original 1942: 1929: 1916: 1900: 1895: 1884: 1839: 1833: 1826: 1817: 1810: 1806: 1790: 1007: 1003: 999: 983: 970: 956: 950: 942: 935: 927: 920: 910: 903: 899: 875: 871: 868: 862: 858: 822: 816: 812: 808: 650: 646: 630: 617: 611: 591: 589: 577: 376: 352: 348: 344: 340: 335: 329: 326: 313: 304: 300:Hybrid modes 294: 284: 280: 265: 217: 203: 178: 164:waves in an 133: 131: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 1851:Normal mode 947:), rotated 369:Mode volume 213:plane waves 150:radio waves 146:propagation 2046:Categories 1877:References 842:and index 491:wavenumber 363:See also: 321:microstrip 254:Waveguides 209:dielectric 154:microwaves 80:newspapers 1731:− 1721:⁡ 1634:− 1624:⁡ 1400:ζ 1290:ζ 1263:− 1251:− 1169:− 1161:⁡ 945:= 1, 2, 3 880:, the TEM 838:of order 792:ρ 789:− 778:φ 769:⁡ 742:ρ 709:ρ 689:φ 683:ρ 587:systems. 433:− 305:See also 220:waveguide 206:isotropic 190:quantized 168:and in a 158:waveguide 1845:See also 975:such as 573:cladding 567:are the 387:V number 339:, where 240:Gaussian 1983:Jan 26, 1973:"Modes" 1791:The TEM 1483:is the 940:modes ( 915:). The 489:is the 295:E modes 281:H modes 94:scholar 2005:  1956:27 Jan 1907:  1392:, and 1307:where 949:360°/4 846:, and 806:where 635:where 602:Lasers 596:scalar 462:where 371:, and 222:where 96:  89:  82:  75:  67:  1950:(PDF) 1939:(PDF) 1820:phase 1809:+ 1)( 988:with 886:phase 869:With 381:from 333:or TM 170:laser 162:light 101:JSTOR 87:books 2003:ISBN 1985:2015 1958:2015 1905:ISBN 1818:The 1813:+ 1) 1799:and 992:and 861:=2, 655:(in 639:and 540:and 228:mode 152:and 73:news 1824:TEM 1718:exp 1621:exp 1158:exp 981:TEM 963:TEM 932:TEM 917:TEM 913:= 0 906:+1) 878:= 0 811:= 2 760:cos 628:TEM 246:or 172:'s 136:of 56:by 2048:: 1975:. 1941:. 1827:mn 1793:00 1429:; 1363:, 1334:, 984:mn 965:00 882:00 874:= 865:=1 820:, 631:pl 612:pl 592:LP 493:, 367:, 336:mn 330:mn 176:. 132:A 2009:. 1987:. 1960:. 1911:. 1834:π 1811:n 1807:m 1805:( 1801:n 1797:m 1767:2 1762:] 1757:) 1750:2 1746:w 1739:2 1735:y 1725:( 1714:) 1709:w 1705:y 1700:2 1692:( 1686:n 1682:H 1677:[ 1670:2 1665:] 1660:) 1653:2 1649:w 1642:2 1638:x 1628:( 1617:) 1612:w 1608:x 1603:2 1595:( 1589:m 1585:H 1580:[ 1573:2 1568:) 1563:w 1558:0 1554:w 1548:( 1541:0 1537:I 1533:= 1530:) 1527:z 1524:, 1521:y 1518:, 1515:x 1512:( 1507:n 1504:m 1500:I 1485:k 1469:k 1465:H 1442:0 1438:E 1409:) 1406:z 1403:( 1380:) 1377:z 1374:( 1371:R 1351:) 1348:z 1345:( 1342:w 1320:0 1316:w 1294:] 1287:) 1284:1 1281:+ 1278:n 1275:+ 1272:m 1269:( 1266:j 1260:z 1257:k 1254:j 1247:) 1240:R 1237:2 1232:k 1229:j 1223:+ 1216:2 1212:w 1208:1 1202:( 1198:) 1193:2 1189:y 1185:+ 1180:2 1176:x 1172:( 1165:[ 1154:) 1149:w 1145:y 1140:2 1132:( 1126:n 1122:H 1117:) 1112:w 1108:x 1103:2 1095:( 1089:m 1085:H 1079:w 1074:0 1070:w 1062:0 1058:E 1054:= 1051:) 1048:z 1045:, 1042:y 1039:, 1036:x 1033:( 1028:n 1025:m 1021:E 1010:) 1008:z 1006:, 1004:y 1002:, 1000:x 998:( 994:n 990:m 959:w 951:i 943:i 936:i 934:0 923:* 921:i 919:0 911:l 904:p 902:( 900:l 898:2 894:l 890:p 876:l 872:p 863:l 859:p 848:w 844:l 840:p 828:p 823:L 817:w 815:/ 813:r 809:ρ 785:e 781:) 775:l 772:( 764:2 754:2 749:] 745:) 739:( 734:l 729:p 725:L 720:[ 713:l 703:0 699:I 695:= 692:) 686:, 680:( 675:l 672:p 668:I 653:) 651:φ 649:, 647:r 645:( 641:l 637:p 614:) 553:2 549:n 526:1 522:n 501:a 475:0 471:k 446:2 441:2 437:n 428:2 423:1 419:n 413:a 408:0 404:k 400:= 397:V 353:n 349:m 345:n 341:m 310:. 285:H 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Modal distribution

verification
improve this article
adding citations to reliable sources
"Transverse mode"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
electromagnetic radiation
electromagnetic field
propagation
radio waves
microwaves
waveguide
light
optical fiber
laser
optical resonator
boundary conditions
electric field
quantized
Maxwell's equations
isotropic
dielectric
plane waves
waveguide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.