Knowledge

Moody chart

Source đź“ť

74: 962: 146:
Moody's team used the available data (including that of Nikuradse) to show that fluid flow in rough pipes could be described by four dimensionless quantities: Reynolds number, pressure loss coefficient, diameter ratio of the pipe and the relative roughness of the pipe. They then produced a single
137:
The chart's purpose was to provide a graphical representation of the function of C. F. Colebrook in collaboration with C. M. White, which provided a practical form of transition curve to bridge the transition zone between smooth and rough pipes, the region of incomplete turbulence.
832: 432: 1098: 735: 305: 355: 793: 607: 957:{\displaystyle {1 \over {\sqrt {f_{D}}}}=-2.0\log _{10}\left({\frac {\epsilon /D}{3.7}}+{\frac {2.51}{\mathrm {Re} {\sqrt {f_{D}}}}}\right),{\text{for turbulent flow}}.} 168: 1026: 824: 765: 671: 575: 502: 455: 226: 195: 641: 998: 542: 522: 475: 147:
plot which showed that all of these collapsed onto a series of lines, now known as the Moody chart. This dimensionless chart is used to work out pressure drop,
130:, whose work was based upon an analysis of some 10,000 experiments from various sources. Measurements of fluid flow in artificially roughened pipes by 1150: 366: 1034: 683: 234: 1132: 1270: 581:
Re for a variety of relative roughnesses, the ratio of the mean height of roughness of the pipe to the pipe diameter or
198: 103: 47: 1234:"Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws" 316: 1205: 1285: 977: 644: 548: 43: 973: 1290: 796: 770: 584: 150: 111: 99: 63: 1245: 1233: 131: 1004: 802: 743: 649: 553: 480: 440: 204: 173: 70:
in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
1295: 578: 127: 107: 59: 623: 1218:
These show in detail the transition region for pipes with high relative roughness (ε /
983: 617: 527: 507: 460: 1279: 1265: 1117: 613: 123: 86:
plotted against Reynolds number Re for various relative roughness ε / 
674: 1249: 17: 740:
For the turbulent flow regime, the relationship between the friction factor
67: 1155:. Proceedings Second Hydraulic Conference, University of Iowa Bulletin 27. 643:< ~3000), roughness has no discernible effect, and the Darcy–Weisbach 1185:
Kemler, E. (1933). "A Study of the Data on the Flow of Fluid in Pipes".
197:(m)) and flow rate through pipes. Head loss can be calculated using the 427:{\displaystyle \Delta p=f_{D}{\frac {\rho V^{2}}{2}}{\frac {L}{D}},} 73: 1166:
Pigott, R. J. S. (1933). "The Flow of Fluids in Closed Conduits".
1093:{\displaystyle \Delta p={\frac {\rho V^{2}}{2}}{\frac {4fL}{D}},} 730:{\displaystyle f_{D}=64/\mathrm {Re} ,{\text{for laminar flow}}.} 300:{\displaystyle h_{f}=f_{D}{\frac {L}{D}}{\frac {V^{2}}{2\,g}};} 126:
but uses the more practical choice of coordinates employed by
134:
were at the time too recent to include in Pigott's chart.
1001:, equal to one fourth the Darcy-Weisbach friction factor 612:
The Moody chart can be divided into two regimes of flow:
77:
Moody diagram showing the Darcy–Weisbach friction factor
795:
is more complex. One model for this relationship is the
1037: 1007: 986: 835: 805: 773: 746: 686: 652: 626: 587: 556: 530: 510: 483: 463: 443: 369: 319: 237: 207: 176: 153: 767:
the Reynolds number Re, and the relative roughness
1092: 1020: 992: 956: 818: 787: 759: 729: 665: 635: 601: 569: 536: 516: 496: 469: 449: 426: 349: 299: 220: 189: 162: 1238:Journal of the Institution of Civil Engineers 504:is the friction factor from the Moody chart, 8: 972:This formula must not be confused with the 118:. This chart became commonly known as the 1069: 1057: 1047: 1036: 1012: 1006: 985: 946: 927: 921: 913: 907: 890: 884: 870: 847: 841: 836: 834: 810: 804: 777: 772: 751: 745: 719: 708: 703: 691: 685: 657: 651: 625: 591: 586: 561: 555: 529: 509: 488: 482: 462: 442: 411: 399: 389: 383: 368: 341: 336: 332: 318: 287: 277: 271: 261: 255: 242: 236: 212: 206: 181: 175: 152: 122:or Moody diagram. It adapts the work of 350:{\displaystyle \Delta p=\rho \,g\,h_{f}} 310:Pressure drop can then be evaluated as: 72: 1108: 477:is the average velocity in the pipe, 7: 201:in which the Darcy friction factor 1206:"Strömungsgesetze in Rauen Rohren" 1038: 917: 914: 799:(which is an implicit equation in 712: 709: 370: 320: 154: 110:Re for various values of relative 25: 1152:Evaluation of Boundary Roughness 1118:"Friction factors for pipe flow" 1244:(4). London, England: 133–156. 1138:from the original on 2019-11-26 673:was determined analytically by 620:. For the laminar flow regime ( 547:The chart plots Darcy–Weisbach 1271:Darcy friction factor formulae 1232:Colebrook, C. F. (1938–1939). 524:is the length of the pipe and 104:Darcy–Weisbach friction factor 48:Darcy–Weisbach friction factor 1: 1028:. Here the pressure drop is: 457:is the density of the fluid, 27:Graph used in fluid dynamics 788:{\displaystyle \epsilon /D} 602:{\displaystyle \epsilon /D} 1312: 1250:10.1680/ijoti.1939.13150 1187:Transactions of the ASME 1125:Transactions of the ASME 163:{\displaystyle \Delta p} 1210:V. D. I. Forschungsheft 978:Fanning friction factor 968:Fanning friction factor 199:Darcy–Weisbach equation 1204:Nikuradse, J. (1933). 1168:Mechanical Engineering 1094: 1022: 994: 958: 820: 789: 761: 731: 667: 637: 603: 571: 544:is the pipe diameter. 538: 518: 498: 471: 451: 428: 351: 301: 222: 191: 164: 90: 46:form that relates the 1116:Moody, L. F. (1944), 1095: 1023: 1021:{\displaystyle f_{D}} 995: 959: 821: 819:{\displaystyle f_{D}} 790: 762: 760:{\displaystyle f_{D}} 732: 668: 666:{\displaystyle f_{D}} 638: 604: 572: 570:{\displaystyle f_{D}} 539: 519: 499: 497:{\displaystyle f_{D}} 472: 452: 450:{\displaystyle \rho } 429: 352: 302: 223: 221:{\displaystyle f_{D}} 192: 190:{\displaystyle h_{f}} 165: 76: 1035: 1005: 984: 833: 803: 771: 744: 684: 650: 624: 585: 554: 528: 508: 481: 461: 441: 367: 317: 235: 205: 174: 170:(Pa) (or head loss, 151: 66:for fully developed 30:In engineering, the 1149:Rouse, H. (1943). 1090: 1018: 990: 954: 948:for turbulent flow 816: 797:Colebrook equation 785: 757: 727: 663: 636:{\displaystyle Re} 633: 599: 567: 534: 514: 494: 467: 447: 424: 347: 297: 218: 187: 160: 91: 1193:(Hyd-55-2): 7–32. 1085: 1067: 993:{\displaystyle f} 949: 936: 933: 902: 855: 853: 722: 537:{\displaystyle D} 517:{\displaystyle L} 470:{\displaystyle V} 419: 409: 360:or directly from 292: 269: 100:Lewis Ferry Moody 64:surface roughness 16:(Redirected from 1303: 1254: 1253: 1229: 1223: 1217: 1201: 1195: 1194: 1182: 1176: 1175: 1163: 1157: 1156: 1146: 1140: 1139: 1137: 1122: 1113: 1099: 1097: 1096: 1091: 1086: 1081: 1070: 1068: 1063: 1062: 1061: 1048: 1027: 1025: 1024: 1019: 1017: 1016: 999: 997: 996: 991: 974:Fanning equation 963: 961: 960: 955: 950: 947: 942: 938: 937: 935: 934: 932: 931: 922: 920: 908: 903: 898: 894: 885: 875: 874: 856: 854: 852: 851: 842: 837: 825: 823: 822: 817: 815: 814: 794: 792: 791: 786: 781: 766: 764: 763: 758: 756: 755: 736: 734: 733: 728: 723: 721:for laminar flow 720: 715: 707: 696: 695: 672: 670: 669: 664: 662: 661: 642: 640: 639: 634: 608: 606: 605: 600: 595: 576: 574: 573: 568: 566: 565: 543: 541: 540: 535: 523: 521: 520: 515: 503: 501: 500: 495: 493: 492: 476: 474: 473: 468: 456: 454: 453: 448: 433: 431: 430: 425: 420: 412: 410: 405: 404: 403: 390: 388: 387: 356: 354: 353: 348: 346: 345: 306: 304: 303: 298: 293: 291: 282: 281: 272: 270: 262: 260: 259: 247: 246: 227: 225: 224: 219: 217: 216: 196: 194: 193: 188: 186: 185: 169: 167: 166: 161: 42:) is a graph in 21: 1311: 1310: 1306: 1305: 1304: 1302: 1301: 1300: 1276: 1275: 1262: 1257: 1231: 1230: 1226: 1216:. Berlin: 1–22. 1203: 1202: 1198: 1184: 1183: 1179: 1174:: 497–501, 515. 1165: 1164: 1160: 1148: 1147: 1143: 1135: 1120: 1115: 1114: 1110: 1106: 1071: 1053: 1049: 1033: 1032: 1008: 1003: 1002: 982: 981: 970: 923: 912: 886: 883: 879: 866: 843: 831: 830: 806: 801: 800: 769: 768: 747: 742: 741: 687: 682: 681: 653: 648: 647: 645:friction factor 622: 621: 583: 582: 579:Reynolds number 557: 552: 551: 549:friction factor 526: 525: 506: 505: 484: 479: 478: 459: 458: 439: 438: 395: 391: 379: 365: 364: 337: 315: 314: 283: 273: 251: 238: 233: 232: 228:appears : 208: 203: 202: 177: 172: 171: 149: 148: 144: 128:R. J. S. Pigott 108:Reynolds number 96: 85: 60:Reynolds number 57: 44:non-dimensional 40:Stanton diagram 28: 23: 22: 15: 12: 11: 5: 1309: 1307: 1299: 1298: 1293: 1288: 1286:Fluid dynamics 1278: 1277: 1274: 1273: 1268: 1261: 1258: 1256: 1255: 1224: 1196: 1177: 1158: 1141: 1131:(8): 671–684, 1107: 1105: 1102: 1101: 1100: 1089: 1084: 1080: 1077: 1074: 1066: 1060: 1056: 1052: 1046: 1043: 1040: 1015: 1011: 989: 969: 966: 965: 964: 953: 945: 941: 930: 926: 919: 916: 911: 906: 901: 897: 893: 889: 882: 878: 873: 869: 865: 862: 859: 850: 846: 840: 813: 809: 784: 780: 776: 754: 750: 738: 737: 726: 718: 714: 711: 706: 702: 699: 694: 690: 660: 656: 632: 629: 598: 594: 590: 564: 560: 533: 513: 491: 487: 466: 446: 435: 434: 423: 418: 415: 408: 402: 398: 394: 386: 382: 378: 375: 372: 358: 357: 344: 340: 335: 331: 328: 325: 322: 308: 307: 296: 290: 286: 280: 276: 268: 265: 258: 254: 250: 245: 241: 215: 211: 184: 180: 159: 156: 143: 140: 95: 92: 81: 53: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1308: 1297: 1294: 1292: 1289: 1287: 1284: 1283: 1281: 1272: 1269: 1267: 1266:Friction loss 1264: 1263: 1259: 1251: 1247: 1243: 1239: 1235: 1228: 1225: 1221: 1215: 1211: 1207: 1200: 1197: 1192: 1188: 1181: 1178: 1173: 1169: 1162: 1159: 1154: 1153: 1145: 1142: 1134: 1130: 1126: 1119: 1112: 1109: 1103: 1087: 1082: 1078: 1075: 1072: 1064: 1058: 1054: 1050: 1044: 1041: 1031: 1030: 1029: 1013: 1009: 1000: 987: 979: 975: 967: 951: 943: 939: 928: 924: 909: 904: 899: 895: 891: 887: 880: 876: 871: 867: 863: 860: 857: 848: 844: 838: 829: 828: 827: 811: 807: 798: 782: 778: 774: 752: 748: 724: 716: 704: 700: 697: 692: 688: 680: 679: 678: 676: 658: 654: 646: 630: 627: 619: 615: 610: 596: 592: 588: 580: 562: 558: 550: 545: 531: 511: 489: 485: 464: 444: 421: 416: 413: 406: 400: 396: 392: 384: 380: 376: 373: 363: 362: 361: 342: 338: 333: 329: 326: 323: 313: 312: 311: 294: 288: 284: 278: 274: 266: 263: 256: 252: 248: 243: 239: 231: 230: 229: 213: 209: 200: 182: 178: 157: 141: 139: 135: 133: 129: 125: 121: 117: 113: 109: 105: 101: 93: 89: 84: 80: 75: 71: 69: 65: 61: 56: 52: 49: 45: 41: 37: 36:Moody diagram 33: 19: 18:Moody diagram 1241: 1237: 1227: 1222:> 0.001). 1219: 1213: 1209: 1199: 1190: 1186: 1180: 1171: 1167: 1161: 1151: 1144: 1128: 1124: 1111: 980: 976:, using the 971: 739: 611: 546: 436: 359: 309: 145: 136: 132:J. Nikuradse 124:Hunter Rouse 119: 115: 102:plotted the 97: 87: 82: 78: 54: 50: 39: 35: 31: 29: 142:Description 120:Moody chart 32:Moody chart 1291:Hydraulics 1280:Categories 1104:References 675:Poiseuille 1051:ρ 1039:Δ 888:ϵ 877:⁡ 861:− 775:ϵ 618:turbulent 589:ϵ 445:ρ 393:ρ 371:Δ 330:ρ 321:Δ 155:Δ 112:roughness 98:In 1944, 1260:See also 1133:archived 577:against 106:against 62:Re, and 614:laminar 94:History 1296:Piping 437:where 38:(also 1136:(PDF) 1121:(PDF) 910:2.51 616:and 114:ε / 68:flow 1246:doi 1214:361 900:3.7 868:log 864:2.0 826:): 34:or 1282:: 1242:11 1240:. 1236:. 1212:. 1208:. 1191:55 1189:. 1172:55 1170:. 1129:66 1127:, 1123:, 872:10 701:64 677:: 609:. 58:, 1252:. 1248:: 1220:D 1088:, 1083:D 1079:L 1076:f 1073:4 1065:2 1059:2 1055:V 1045:= 1042:p 1014:D 1010:f 988:f 952:. 944:, 940:) 929:D 925:f 918:e 915:R 905:+ 896:D 892:/ 881:( 858:= 849:D 845:f 839:1 812:D 808:f 783:D 779:/ 753:D 749:f 725:. 717:, 713:e 710:R 705:/ 698:= 693:D 689:f 659:D 655:f 631:e 628:R 597:D 593:/ 563:D 559:f 532:D 512:L 490:D 486:f 465:V 422:, 417:D 414:L 407:2 401:2 397:V 385:D 381:f 377:= 374:p 343:f 339:h 334:g 327:= 324:p 295:; 289:g 285:2 279:2 275:V 267:D 264:L 257:D 253:f 249:= 244:f 240:h 214:D 210:f 183:f 179:h 158:p 116:D 88:D 83:D 79:f 55:D 51:f 20:)

Index

Moody diagram
non-dimensional
Darcy–Weisbach friction factor
Reynolds number
surface roughness
flow

Lewis Ferry Moody
Darcy–Weisbach friction factor
Reynolds number
roughness
Hunter Rouse
R. J. S. Pigott
J. Nikuradse
Darcy–Weisbach equation
friction factor
Reynolds number
laminar
turbulent
friction factor
Poiseuille
Colebrook equation
Fanning equation
Fanning friction factor
"Friction factors for pipe flow"
archived
Evaluation of Boundary Roughness
"Strömungsgesetze in Rauen Rohren"
"Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑