Knowledge (XXG)

Nucellar embryony

Source 📝

98:. Different from nucellar embryony, double fertilization occurs via the syngamy of sperm and egg cells, producing a triploid endosperm and a diploid zygotic embryo. In nucellar embryony, embryos are formed asexually from the nucellus tissue. Zygotic and nucellar embryos can occur in the same seed (monoembryony), and a zygotic embryo can divide to produce multiple embryos. The nucellar embryonic initial cells form, divide, and expand. Once the zygotic embryo becomes dominant, the initial cells stop dividing and expanding. Following this stage, the zygotic embryo continues to develop and the initial cells continue to develop as well, forming nucellar embryos. The nucellar embryos generally end up outcompeting the zygotic embryo, rending the zygotic embryo dormant. The polyembryonic seed is then formed by the many adventitious embryos within the ovule (to picture this process, refer to Figure 1). The nucellar embryos produced via apomixis inherit its mother's genetics, making them desirable for citrus propagation, research, and breeding. 150:, the production of fruit without fertilization. Self-incompatible fruits are able to undergo parthenocarpy to yield seedless fruits. In citrus specifically, there have been other modes developed to reduce seeding as well: gibberellic acid enhances ovule abortion and copper sulfate has been shown to reduce seed number in fruit. An example is the ‘Afourer’ mandarin that contains a haploid self-incompatibility system and parthenocarpy. Under conditions where cross-pollination is not present, the ‘Afourer’ mandarin produces a seedless fruit by undergoing parthenocarpy. Where cross-pollination is present, gibberellic acid is applied and produces a decreased seeding fruit. 20: 146:, another reproductive trait within citrus fruits and many seed plants. Self incompatibility is the phenomena where hermaphroditic plants are not able to produce fertile embryos after self-pollination. Self-incompatibility is regulated by the S-loci; if pollen is rendered incompatible, it is determined by its haploid S genotype, or if its sporophyte is rendered incompatible, it would be determined by its diploid S genotype. This is also termed and associated with 29: 23:
Figure 1. depicts the process of nucellar embryony. A) begins with megaspore formation. B) shows the nucellus and forming of cells, nucellar embryonic initial cells, from the nucellus tissue. These initial cells form, divide, and expand. C) The nucellar embryos are developed. If and when a zygote is
129:
An important component of nucellar embryo development is its changing cell wall thickness. Between nucellar embryo's initial cell stage and its dividing and expanding stage, the cells' wall thickens. This most likely occurs due to callose deposition; callose deposition reduces the permeability of a
106:
Nucellar embryos have also been found in polyembryonic Mango varieties, where generally one of the embryos is zygotic and the rest are nucellar. However, there is little research on Mangos undergoing nucellar embryo development as there has on varieties of citrus.
130:
cell and is usually found in the initial cells about to undergo embryogenesis. The initial cells become enlarged, rounded, and divided. During this stage, the initial cell's cell walls thin out, leaving room for the nucleus to become distinguished.
115:
Nucellar embryony is able to occur within both fertilized and unfertilized ovules. Furthermore, instead of using the endosperm as nutritive tissue, it will utilize the surrounding nucellus tissue for nutrition. For example, the
138:
Many seed plants, including citrus fruits, are self-compatible, meaning that they are able to fertilize themselves. Self-compatibility produces a seedy fruit which may be deemed as undesirable to the citrus industry.
120:
undergoes nucellar embryony in both fertilized and unfertilized conditions. But, it has been found that nucellar embryo development, under fertilized or unfertilized conditions, can take place in different positions.
24:
present, the nucellar embryos supersede the zygote. D) The presence of extra embryos formed from the nucellar tissue gives rise to polyembryonic seeds. E) Polyembryonic seeds germinate and develop.
723: 679:
Gambetta, Giuliana; Gravina, Alfredo; Fasiolo, Carolina; Fornero, Cecilia; Galiger, Sebastián; Inzaurralde, Cristian; Rey, Florencia (2013-12-17).
157:
which yields consistent results in fruit production. However, this trait can interfere with progress in cross-breeding; most commercial
753: 142:
Seedless fruits have been made popular as they are sought-after in the citrus industry. To be seedless, a citrus must exhibit
808: 793: 803: 734: 766:
Plant & Animal Genomes XI Conference. January 11–15, 2003, Town & Country Convention Center, San Diego, CA
415: 457:"Adventive Embryogenesis in Citrus I. The Occurrence of Adventive Embryos Without Pollination or Fertilization" 161:
varieties produce mainly nucellar seedlings which do not inherit any of the traits of the "father" plant.
19: 680: 143: 95: 71: 153:
Nucellar embryony is important to the citrus industry, as it allows for the production of uniform
601: 554: 396: 230: 195:"Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility" 700: 658: 640: 593: 546: 507: 437: 388: 380: 341: 323: 279: 222: 214: 692: 648: 632: 585: 538: 499: 468: 427: 372: 331: 315: 269: 261: 206: 798: 681:"Self-incompatibility, parthenocarpy and reduction of seed presence in 'Afourer' mandarin" 456: 117: 79: 75: 769: 86:) are genetically identical to the parent plant, rendering them as clones. By contrast, 472: 274: 249: 193:
Zhang, Siqi; Liang, Mei; Wang, Nan; Xu, Qiang; Deng, Xiuxin; Chai, Lijun (March 2018).
653: 336: 303: 787: 416:"Polyembryony in Mango (Mangifera indica L.) Is Controlled by a Single Dominant Gene" 304:"Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules" 234: 194: 147: 400: 605: 503: 83: 51: 696: 527:"Adventive Embryogenesis in Citrus (Rutaceae). II. Postfertilization Development" 487: 82:
can produce nucellar cells, also termed initial cells. These additional embryos (
432: 376: 210: 704: 644: 620: 597: 550: 511: 441: 384: 327: 218: 360: 154: 662: 392: 345: 283: 226: 28: 636: 319: 265: 170: 158: 63: 59: 486:
Wilms, H. J.; Went, J. L. van; Cresti, M.; Ciampolini, F. (1983-01-01).
589: 558: 526: 67: 74:. During the development of seeds in plants that possess this genetic 573: 87: 55: 33: 542: 27: 18: 48: 754:"Molecular Genetic Analysis of Nucellar Embryony (Apomixis) in 94:
from both parents. Most angiosperms reproduce sexually through
91: 724:"Molecular Genetic Analysis of Nucellar Embryony in Citrus" 619:
Newbigin, E.; Anderson, M. A.; Clarke, A. E. (1993-10-01).
414:
Aron, Y.; Gazit, S.; Czosnek, H.; Degani, C. (1998-12-01).
248:
Aleza, P.; Juárez, J.; Ollitrault, P.; Navarro, L. (2010).
359:
Spillane, C.; Steimer, A.; Grossniklaus, U. (2001-12-01).
361:"Apomixis in agriculture: the quest for clonal seeds" 54:
that occurs in certain plant species, including many
134:
Seedless fruits and influence by the citrus industry
574:"D. de Nettancourt Incompatibility in angiosperms" 250:"Polyembryony in non-apomictic citrus genotypes" 66:tissue of the ovule are formed, independent of 455:Wakana, Akira; Uemoto, Shunpei (April 1987). 102:Nucellar embryony outside of citrus varieties 62:, where eventually nucellar embryos from the 8: 90:seedlings are sexually produced and inherit 36:varieties produce mainly nucellar seedlings. 621:"Gametophytic Self-Incompatibility Systems" 78:, the nucellus tissue which surrounds the 58:varieties. Nucellar embryony is a type of 652: 431: 335: 273: 731:Citrus Research Board 2000 Annual Report 572:Končalová, Marie Naděžda (1978-12-01). 525:Wakana, Akira; Uemoto, Shunpei (1988). 182: 674: 672: 297: 295: 293: 7: 752:Kepiro, Joseph L.; Mikeal L. Roose. 578:Folia Geobotanica et Phytotaxonomica 188: 186: 488:"Adventive Embryogenesis in Citrus" 473:10.1002/j.1537-2197.1987.tb08672.x 14: 504:10.1080/00087114.1983.10797645 302:Koltunow, A. M. (1993-10-01). 1: 697:10.1016/j.scienta.2013.09.002 825: 531:American Journal of Botany 461:American Journal of Botany 433:10.21273/HORTSCI.33.7.1241 377:10.1007/s00497-001-0117-1 365:Sexual Plant Reproduction 211:10.1007/s00497-018-0327-4 16:Form of seed reproduction 685:Scientia Horticulturae 37: 25: 637:10.1105/tpc.5.10.1315 320:10.1105/tpc.5.10.1425 31: 22: 809:Asexual reproduction 794:Tropical agriculture 144:self-incompatibility 96:double fertilization 760:Poncirus Trifoliata 72:sexual reproduction 804:Plant reproduction 590:10.1007/BF02851938 266:10.1093/aob/mcq148 199:Plant Reproduction 38: 26: 722:Roose, Mikeal L. 631:(10): 1315–1324. 314:(10): 1425–1437. 118:‘Valencia’ orange 41:Nucellar embryony 816: 780: 778: 777: 768:. Archived from 748: 746: 745: 739: 733:. Archived from 728: 709: 708: 676: 667: 666: 656: 616: 610: 609: 569: 563: 562: 537:(7): 1033–1047. 522: 516: 515: 483: 477: 476: 452: 446: 445: 435: 426:(7): 1241–1242. 411: 405: 404: 356: 350: 349: 339: 299: 288: 287: 277: 254:Annals of Botany 245: 239: 238: 190: 92:genetic material 32:Most commercial 824: 823: 819: 818: 817: 815: 814: 813: 784: 783: 775: 773: 751: 743: 741: 737: 726: 721: 718: 713: 712: 678: 677: 670: 618: 617: 613: 571: 570: 566: 543:10.2307/2443771 524: 523: 519: 485: 484: 480: 454: 453: 449: 413: 412: 408: 358: 357: 353: 301: 300: 291: 247: 246: 242: 192: 191: 184: 179: 167: 136: 127: 113: 104: 80:megagametophyte 47:) is a form of 17: 12: 11: 5: 822: 820: 812: 811: 806: 801: 796: 786: 785: 782: 781: 756:Citrus Maximus 749: 717: 716:External links 714: 711: 710: 668: 625:The Plant Cell 611: 564: 517: 478: 467:(4): 517–530. 447: 406: 371:(4): 179–187. 351: 308:The Plant Cell 289: 260:(4): 533–545. 240: 181: 180: 178: 175: 174: 173: 166: 163: 135: 132: 126: 123: 112: 109: 103: 100: 15: 13: 10: 9: 6: 4: 3: 2: 821: 810: 807: 805: 802: 800: 797: 795: 792: 791: 789: 772:on 2006-10-10 771: 767: 763: 761: 757: 750: 740:on 2007-09-30 736: 732: 725: 720: 719: 715: 706: 702: 698: 694: 690: 686: 682: 675: 673: 669: 664: 660: 655: 650: 646: 642: 638: 634: 630: 626: 622: 615: 612: 607: 603: 599: 595: 591: 587: 583: 580:(in German). 579: 575: 568: 565: 560: 556: 552: 548: 544: 540: 536: 532: 528: 521: 518: 513: 509: 505: 501: 497: 493: 489: 482: 479: 474: 470: 466: 462: 458: 451: 448: 443: 439: 434: 429: 425: 421: 417: 410: 407: 402: 398: 394: 390: 386: 382: 378: 374: 370: 366: 362: 355: 352: 347: 343: 338: 333: 329: 325: 321: 317: 313: 309: 305: 298: 296: 294: 290: 285: 281: 276: 271: 267: 263: 259: 255: 251: 244: 241: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 189: 187: 183: 176: 172: 169: 168: 164: 162: 160: 156: 151: 149: 148:parthenocarpy 145: 140: 133: 131: 124: 122: 119: 110: 108: 101: 99: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 50: 46: 42: 35: 30: 21: 774:. Retrieved 770:the original 765: 759: 755: 742:. Retrieved 735:the original 730: 688: 684: 628: 624: 614: 581: 577: 567: 534: 530: 520: 498:(1): 65–78. 495: 491: 481: 464: 460: 450: 423: 419: 409: 368: 364: 354: 311: 307: 257: 253: 243: 205:(1): 43–57. 202: 198: 152: 141: 137: 128: 114: 105: 84:polyembryony 52:reproduction 44: 40: 39: 762:Using AFLP" 691:: 183–188. 420:HortScience 788:Categories 776:2006-10-26 744:2006-10-26 584:(4): 370. 492:Caryologia 177:References 111:Conditions 705:0304-4238 645:1040-4651 598:1874-9348 551:0002-9122 512:0008-7114 442:0018-5345 385:1432-2145 328:1040-4651 235:254022638 219:2194-7953 155:rootstock 43:(notated 663:12271031 401:23996256 393:24573424 346:12271038 284:20675656 227:29457194 171:Apomixis 165:See also 125:Features 64:nucellus 60:apomixis 606:5868472 559:2443771 275:2944972 88:zygotic 68:meiosis 799:Citrus 703:  661:  654:160364 651:  643:  604:  596:  557:  549:  510:  440:  399:  391:  383:  344:  337:160373 334:  326:  282:  272:  233:  225:  217:  56:citrus 34:citrus 738:(PDF) 727:(PDF) 602:S2CID 555:JSTOR 397:S2CID 231:S2CID 159:scion 76:trait 701:ISSN 659:PMID 641:ISSN 594:ISSN 547:ISSN 508:ISSN 438:ISSN 389:PMID 381:ISSN 342:PMID 324:ISSN 280:PMID 223:PMID 215:ISSN 70:and 49:seed 693:doi 689:164 649:PMC 633:doi 586:doi 539:doi 500:doi 469:doi 428:doi 373:doi 332:PMC 316:doi 270:PMC 262:doi 258:106 207:doi 45:Nu+ 790:: 764:. 758:x 729:. 699:. 687:. 683:. 671:^ 657:. 647:. 639:. 627:. 623:. 600:. 592:. 582:13 576:. 553:. 545:. 535:75 533:. 529:. 506:. 496:36 494:. 490:. 465:74 463:. 459:. 436:. 424:33 422:. 418:. 395:. 387:. 379:. 369:14 367:. 363:. 340:. 330:. 322:. 310:. 306:. 292:^ 278:. 268:. 256:. 252:. 229:. 221:. 213:. 203:31 201:. 197:. 185:^ 779:. 747:. 707:. 695:: 665:. 635:: 629:5 608:. 588:: 561:. 541:: 514:. 502:: 475:. 471:: 444:. 430:: 403:. 375:: 348:. 318:: 312:5 286:. 264:: 237:. 209::

Index



citrus
seed
reproduction
citrus
apomixis
nucellus
meiosis
sexual reproduction
trait
megagametophyte
polyembryony
zygotic
genetic material
double fertilization
‘Valencia’ orange
self-incompatibility
parthenocarpy
rootstock
scion
Apomixis


"Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility"
doi
10.1007/s00497-018-0327-4
ISSN
2194-7953
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.