Knowledge (XXG)

Nano-I-beam

Source 📝

79:, nano-I-beams exhibit higher structural stiffness, reduced induced stress, and longer service life. They have the potential to outperform carbon nanotubes in various applications, offering enhanced mechanical properties and improved functionality. The Wide Flange Nano-I-beam variation has been found to provide even higher structural stiffness and longer service life compared to the Equal Flange & Web Nano-I-beam. 354: 126:, is employed to determine the equilibrium state and minimize the energy functional of a conservative structural system undergoing kinematically admissible growth or deformation. Hamilton's principle considers the interplay of different energy elements, including the kinetic energy (T), strain energy (U), and potential energy (WP). By applying the Ritz method based on Hamilton's principle, the strain energy 135: 65: 99:. The I-beam, also known as the H-beam or universal beam, is a widely used structural element due to its high strength-to-weight ratio and structural stability. The shape of the I-beam, with its central vertical web and horizontal flanges, provides excellent load-bearing capabilities and resistance to bending and torsion. 577:
Ultimately, the choice between CNTs and Nano-I-beams depends on the specific requirements of the application, considering factors such as scale, performance needs, and cost-effectiveness. Each material has its own strengths and limitations, and the selection should be based on a careful evaluation of
546:
Both CNTs and I-beams have distinct properties and advantages, and their suitability depends on the specific application and requirements. CNTs offer exceptional mechanical properties, including high tensile strength and stiffness. They have a high strength-to-weight ratio, making them lightweight
358:
When considering the kinetic energy, observations are often made in a moving frame of reference. To account for this, the time derivative of the observed variables in the fixed frame of reference (ρ, θ, z) is utilized. As a result, the formulation of the kinetic energy, denoted as T, takes into
54: 349:{\displaystyle U={\int }_{V}({\sigma }_{\rho }{\epsilon }_{\rho }+{\sigma }_{\theta }{\epsilon }_{\theta }+{\sigma }_{z}{\epsilon }_{z}+{\sigma }_{\rho \theta }{\epsilon }_{\rho \theta }+{\sigma }_{\rho z}{\epsilon }_{\rho z}+{\sigma }_{\theta z}{\epsilon }_{\theta z})dV} 570:, reduced induced stress, and an extended service life when compared to the Equal Flange & Web Nano-I-Beam. This distinction makes the Wide Flange variation particularly desirable for various applications, including 102:
Inspired by the structural properties of I-beams, the nano-I-beam was developed as a nanoscale counterpart, utilizing the same I-shaped cross-section. The nano-I-beam inherits the geometric characteristics of the
537: 563:. However, challenges in large-scale production, potential toxicity concerns, and difficulties in achieving uniform dispersion within materials are some drawbacks associated with CNTs. 566:
Among the variations of the Hybrid Organic/Inorganic Nano-I-beam, research highlights the good performance of the Wide Flange Nano-I-Beam. It demonstrates decent
913:"A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration of Isotropic and Anisotropic Beams and Plates" 671: 122:, based on the shell theory, is frequently utilised for dynamic analysis of carbon nanotubes (CNTs). The Ritz method, connected to 364: 999:
Wang, Fei; Zhao, Siming; Jiang, Qinyuan; Li, Run; Zhao, Yanlong; Huang, Ya; Wu, Xueke; Wang, Baoshun; Zhang, Rufan (2022-08-17).
695: 31: 960:"Rayleigh-Ritz Vibrational Analysis of Multiwalled Carbon Nanotubes Based on the Nonlocal Flügge Shell Theory" 548: 123: 1062: 567: 96: 651: 805: 647: 571: 1000: 596: 1012: 842: 830: 732: 552: 595:
Barretta, Raffaele; Čanađija, Marko; Luciano, Raimondo; Marotti de Sciarra, Francesco (2022-10-01).
46:
materials and have unique properties that make them suitable for various applications in structural
53: 43: 1038: 940: 868: 624: 1030: 981: 932: 860: 766: 748: 667: 616: 104: 39: 1020: 971: 924: 850: 846: 756: 740: 659: 643: 608: 855: 76: 58: 886: 107:
I-beam, but at a much smaller scale, making it suitable for applications in the realm of
1016: 736: 761: 720: 560: 108: 574:
and sensors as an attractive option for cost-effective and high-performance material.
1056: 1042: 944: 872: 658:, Woodhead Publishing Series in Biomaterials, Woodhead Publishing, pp. 275–301, 628: 47: 23: 612: 92: 663: 650:(2013-01-01), Gaharwar, A. K.; Sant, S.; Hancock, M. J.; Hacking, S. A. (eds.), 556: 119: 1025: 911:
Moreno-García, Pablo; dos Santos, José V. Araújo; Lopes, Hernani (2018-07-01).
831:"Finite Element Model for the Optimization of Steel I-Beam with Variable Depth" 784: 744: 928: 1034: 985: 936: 864: 752: 696:"Carbon nanotubes – what they are, how they are made, what they are used for" 620: 1001:"Advanced functional carbon nanotube fibers from preparation to application" 912: 770: 976: 959: 829:
Mohammedali, T K; Mohammed, A H; Khalaf, R D; Sammen, S Sh (2021-02-01).
88: 69: 721:"Hybrid Organic/Inorganic Nano-I-beam for Structural Nano-mechanics" 130:
of Single & Multi-Walled Nano-I-beams (SWNT) is formulated as:
63: 52: 64: 578:
the desired properties and constraints of the project at hand.
785:"I-Beam vs H-Beam: What İs the Difference? - Yena Engineering" 532:{\displaystyle T={\frac {1}{2}}\,\gamma {\int }_{V}^{V}\,dV} 38:
in macroscopic scale. They are typically made from hybrid
958:
Rouhi, H.; Bazdid-Vahdati, M.; Ansari, R. (2015-12-27).
835:
IOP Conference Series: Materials Science and Engineering
806:"Why Are I Beams Used in Structural Steel Construction?" 367: 138: 597:"On the mechanics of nanobeams on nano-foundations" 652:"10 - Nanomaterials for neural tissue engineering" 531: 348: 917:Archives of Computational Methods in Engineering 8: 601:International Journal of Engineering Science 555:, making them suitable for applications in 1024: 975: 854: 760: 522: 513: 489: 485: 475: 451: 447: 437: 413: 409: 399: 394: 389: 384: 374: 366: 328: 323: 313: 308: 295: 290: 280: 275: 262: 257: 247: 242: 232: 227: 220: 215: 205: 200: 193: 188: 178: 173: 166: 161: 151: 146: 137: 547:yet strong. CNTs also exhibit excellent 587: 719:Elmoselhy, Salah A. M. (2019-12-04). 7: 690: 688: 656:Nanomaterials in Tissue Engineering 500: 492: 462: 454: 424: 416: 114:Kinetics and growth of nano-I-beam 14: 87:Nano-I-beams are named after the 856:10.1088/1757-899X/1076/1/012100 887:"Nanotechnology | NIOSH | CDC" 613:10.1016/j.ijengsci.2022.103747 519: 509: 486: 471: 448: 433: 410: 405: 359:account these considerations. 337: 157: 57:Rotating single-walled zigzag 1: 1005:Cell Reports Physical Science 642:Marti, M. E.; Sharma, A. D.; 664:10.1533/9780857097231.2.275 542:Application and suitability 1079: 1026:10.1016/j.xcrp.2022.100989 745:10.1038/s41598-019-53588-2 929:10.1007/s11831-017-9214-7 68:Typical cross-section of 75:Compared to traditional 34:, resembling the letter 847:2021MS&E.1076a2100M 26:characterized by their 533: 350: 97:structural engineering 72: 61: 964:Journal of Composites 534: 351: 67: 56: 16:Type of nanostructure 810:blog.swantonweld.com 568:structural stiffness 553:thermal conductivity 365: 136: 124:Hamilton's principle 1017:2022CRPS....300989W 977:10.1155/2015/750392 737:2019NatSR...918324E 648:Mallapragada, S. K. 404: 725:Scientific Reports 529: 388: 346: 83:Origin of the name 73: 62: 673:978-0-85709-596-1 572:nano-heat engines 507: 469: 431: 382: 1070: 1047: 1046: 1028: 996: 990: 989: 979: 955: 949: 948: 908: 902: 901: 899: 898: 883: 877: 876: 858: 826: 820: 819: 817: 816: 802: 796: 795: 793: 792: 781: 775: 774: 764: 716: 710: 709: 707: 706: 700:www.nanowerk.com 692: 683: 682: 681: 680: 644:Sakaguchi, D. S. 639: 633: 632: 592: 538: 536: 535: 530: 518: 517: 512: 508: 506: 498: 490: 480: 479: 474: 470: 468: 460: 452: 442: 441: 436: 432: 430: 422: 414: 403: 398: 393: 383: 375: 355: 353: 352: 347: 336: 335: 327: 321: 320: 312: 303: 302: 294: 288: 287: 279: 270: 269: 261: 255: 254: 246: 237: 236: 231: 225: 224: 219: 210: 209: 204: 198: 197: 192: 183: 182: 177: 171: 170: 165: 156: 155: 150: 77:carbon nanotubes 1078: 1077: 1073: 1072: 1071: 1069: 1068: 1067: 1053: 1052: 1051: 1050: 998: 997: 993: 957: 956: 952: 910: 909: 905: 896: 894: 885: 884: 880: 828: 827: 823: 814: 812: 804: 803: 799: 790: 788: 783: 782: 778: 718: 717: 713: 704: 702: 694: 693: 686: 678: 676: 674: 641: 640: 636: 594: 593: 589: 584: 544: 499: 491: 484: 461: 453: 446: 423: 415: 408: 363: 362: 322: 307: 289: 274: 256: 241: 226: 214: 199: 187: 172: 160: 145: 134: 133: 116: 85: 59:carbon nanotube 17: 12: 11: 5: 1076: 1074: 1066: 1065: 1055: 1054: 1049: 1048: 991: 950: 923:(3): 785–815. 903: 878: 821: 797: 776: 711: 684: 672: 634: 586: 585: 583: 580: 561:energy storage 543: 540: 528: 525: 521: 516: 511: 505: 502: 497: 494: 488: 483: 478: 473: 467: 464: 459: 456: 450: 445: 440: 435: 429: 426: 421: 418: 412: 407: 402: 397: 392: 387: 381: 378: 373: 370: 345: 342: 339: 334: 331: 326: 319: 316: 311: 306: 301: 298: 293: 286: 283: 278: 273: 268: 265: 260: 253: 250: 245: 240: 235: 230: 223: 218: 213: 208: 203: 196: 191: 186: 181: 176: 169: 164: 159: 154: 149: 144: 141: 115: 112: 109:nanotechnology 84: 81: 48:nano-mechanics 24:nanostructures 15: 13: 10: 9: 6: 4: 3: 2: 1075: 1064: 1063:Nanomaterials 1061: 1060: 1058: 1044: 1040: 1036: 1032: 1027: 1022: 1018: 1014: 1011:(8): 100989. 1010: 1006: 1002: 995: 992: 987: 983: 978: 973: 969: 965: 961: 954: 951: 946: 942: 938: 934: 930: 926: 922: 918: 914: 907: 904: 892: 888: 882: 879: 874: 870: 866: 862: 857: 852: 848: 844: 841:(1): 012100. 840: 836: 832: 825: 822: 811: 807: 801: 798: 786: 780: 777: 772: 768: 763: 758: 754: 750: 746: 742: 738: 734: 730: 726: 722: 715: 712: 701: 697: 691: 689: 685: 675: 669: 665: 661: 657: 653: 649: 645: 638: 635: 630: 626: 622: 618: 614: 610: 606: 602: 598: 591: 588: 581: 579: 575: 573: 569: 564: 562: 558: 554: 550: 541: 539: 526: 523: 514: 503: 495: 481: 476: 465: 457: 443: 438: 427: 419: 400: 395: 390: 385: 379: 376: 371: 368: 360: 356: 343: 340: 332: 329: 324: 317: 314: 309: 304: 299: 296: 291: 284: 281: 276: 271: 266: 263: 258: 251: 248: 243: 238: 233: 228: 221: 216: 211: 206: 201: 194: 189: 184: 179: 174: 167: 162: 152: 147: 142: 139: 131: 129: 125: 121: 113: 111: 110: 106: 100: 98: 94: 90: 82: 80: 78: 71: 66: 60: 55: 51: 49: 45: 41: 37: 33: 32:cross-section 29: 25: 21: 1008: 1004: 994: 967: 963: 953: 920: 916: 906: 895:. Retrieved 893:. 2022-08-05 890: 881: 838: 834: 824: 813:. Retrieved 809: 800: 789:. Retrieved 787:. 2022-05-11 779: 731:(1): 18324. 728: 724: 714: 703:. Retrieved 699: 677:, retrieved 655: 637: 604: 600: 590: 576: 565: 545: 361: 357: 132: 127: 117: 101: 93:construction 86: 74: 35: 27: 20:Nano-I-beams 19: 18: 891:www.cdc.gov 557:electronics 120:Ritz method 105:macroscopic 897:2023-05-27 815:2023-05-27 791:2023-05-27 705:2023-05-27 679:2023-05-27 607:: 103747. 582:References 549:electrical 1043:251206127 1035:2666-3864 986:2356-7252 945:255410161 937:1886-1784 873:234048784 865:1757-8981 753:2045-2322 629:252290748 621:0020-7225 501:∂ 493:∂ 463:∂ 455:∂ 425:∂ 417:∂ 391:∫ 386:γ 330:θ 325:ϵ 315:θ 310:σ 297:ρ 292:ϵ 282:ρ 277:σ 267:θ 264:ρ 259:ϵ 252:θ 249:ρ 244:σ 229:ϵ 217:σ 207:θ 202:ϵ 195:θ 190:σ 180:ρ 175:ϵ 168:ρ 163:σ 148:∫ 44:inorganic 1057:Category 970:: 1–11. 771:31797945 91:used in 30:-shaped 1013:Bibcode 843:Bibcode 762:6893021 733:Bibcode 89:I-beams 70:I-beams 40:organic 1041:  1033:  984:  943:  935:  871:  863:  769:  759:  751:  670:  627:  619:  1039:S2CID 941:S2CID 869:S2CID 625:S2CID 1031:ISSN 982:ISSN 968:2015 933:ISSN 861:ISSN 839:1076 767:PMID 749:ISSN 668:ISBN 617:ISSN 559:and 551:and 118:The 95:and 22:are 1021:doi 972:doi 925:doi 851:doi 757:PMC 741:doi 660:doi 609:doi 605:180 1059:: 1037:. 1029:. 1019:. 1007:. 1003:. 980:. 966:. 962:. 939:. 931:. 921:25 919:. 915:. 889:. 867:. 859:. 849:. 837:. 833:. 808:. 765:. 755:. 747:. 739:. 727:. 723:. 698:. 687:^ 666:, 654:, 646:; 623:. 615:. 603:. 599:. 50:. 1045:. 1023:: 1015:: 1009:3 988:. 974:: 947:. 927:: 900:. 875:. 853:: 845:: 818:. 794:. 773:. 743:: 735:: 729:9 708:. 662:: 631:. 611:: 527:V 524:d 520:] 515:2 510:) 504:t 496:w 487:( 482:+ 477:2 472:) 466:t 458:v 449:( 444:+ 439:2 434:) 428:t 420:u 411:( 406:[ 401:V 396:V 380:2 377:1 372:= 369:T 344:V 341:d 338:) 333:z 318:z 305:+ 300:z 285:z 272:+ 239:+ 234:z 222:z 212:+ 185:+ 158:( 153:V 143:= 140:U 128:U 42:/ 36:Ɪ 28:Ɪ

Index

nanostructures
cross-section
organic
inorganic
nano-mechanics

carbon nanotube

I-beams
carbon nanotubes
I-beams
construction
structural engineering
macroscopic
nanotechnology
Ritz method
Hamilton's principle
electrical
thermal conductivity
electronics
energy storage
structural stiffness
nano-heat engines
"On the mechanics of nanobeams on nano-foundations"
doi
10.1016/j.ijengsci.2022.103747
ISSN
0020-7225
S2CID
252290748

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.