Knowledge (XXG)

Neocognitron

Source 📝

554: 77:
The local features are extracted by S-cells, and these features' deformation, such as local shifts, are tolerated by C-cells. Local features in the input are integrated gradually and classified in the higher layers. The idea of local feature integration is found in several other models, such as the
99:
There are various kinds of neocognitron. For example, some types of neocognitron can detect multiple patterns in the same input by using backward signals to achieve
362:
Fukushima, Kunihiko (April 1980). "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position".
69:
The neocognitron is a natural extension of these cascading models. The neocognitron consists of multiple types of cells, the most important of which are called
532: 595: 619: 245: 424:
Fukushima, Kunihiko (1987). "A hierarchical neural network model for selective attention". In Eckmiller, R.; Von der Malsburg, C. (eds.).
614: 399:
Fukushima, Kunihiko; Miyake, S.; Ito, T. (1983). "Neocognitron: a neural network model for a mechanism of visual pattern recognition".
86: 92: 161:[Neural network model for a mechanism of pattern recognition unaffected by shift in position — Neocognitron —]. 80: 40: 588: 112: 24: 561: 32: 581: 137: 66:, and also proposed a cascading model of these two types of cells for use in pattern recognition tasks. 446: 192: 132: 122: 100: 36: 412: 387: 216: 28: 499: 379: 292: 241: 235: 208: 565: 489: 481: 454: 404: 371: 282: 274: 200: 158: 127: 450: 196: 494: 469: 287: 262: 51: 47: 177: 608: 391: 117: 521: 517: 485: 416: 278: 220: 62: 553: 56: 459: 434: 408: 503: 296: 212: 54:
in 1959. They found two types of cells in the visual primary cortex called
538: 526: 383: 204: 375: 470:"Receptive fields of single noreones in the cat's striate cortex" 263:"Receptive fields of single neurones in the cat's striate cortex" 237:
Brain and visual perception: the story of a 25-year collaboration
569: 46:
The neocognitron was inspired by the model proposed by
176:
LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015).
401:IEEE Transactions on Systems, Man, and Cybernetics 159:"位置ずれに影響されないパターン認識機構の神経回路のモデル --- ネオコグニトロン ---" 589: 234:David H. Hubel and Torsten N. Wiesel (2005). 8: 240:. Oxford University Press US. p. 106. 596: 582: 533:Neocognitron resources at Visiome Platform 493: 458: 345: 333: 321: 309: 286: 39:tasks, and served as the inspiration for 149: 31:in 1979. It has been used for Japanese 261:Hubel, DH; Wiesel, TN (October 1959). 7: 550: 548: 527:NeoCognitron by Ing. Gabriel Minarik 157:Fukushima, Kunihiko (October 1979). 165:(in Japanese). J62-A (10): 658–665. 568:. You can help Knowledge (XXG) by 468:Hubel, D.H.; Wiesel, T.N. (1959). 428:. Springer-Verlag. pp. 81–90. 14: 33:handwritten character recognition 16:Type of artificial neural network 552: 23:is a hierarchical, multilayered 486:10.1113/jphysiol.1959.sp006308 279:10.1113/jphysiol.1959.sp006308 1: 620:Artificial intelligence stubs 535:- includes MATLAB environment 41:convolutional neural networks 529:- application (C#) and video 433:Fukushima, Kunihiko (2007). 81:Convolutional Neural Network 636: 615:Artificial neural networks 547: 541:- a Neocognitron simulator 460:10.4249/scholarpedia.1717 409:10.1109/TSMC.1983.6313076 113:Artificial neural network 25:artificial neural network 562:artificial intelligence 403:. SMC-13 (3): 826–834. 564:-related article is a 364:Biological Cybernetics 138:Unsupervised learning 451:2007SchpJ...2.1717F 205:10.1038/nature14539 197:2015Natur.521..436L 133:Self-organizing map 123:Pattern recognition 101:selective attention 37:pattern recognition 376:10.1007/bf00344251 348:, pp. 81, 85. 29:Kunihiko Fukushima 577: 576: 247:978-0-19-517618-6 191:(7553): 436–444. 627: 598: 591: 584: 556: 549: 507: 497: 464: 462: 429: 426:Neural computers 420: 395: 349: 343: 337: 331: 325: 319: 313: 307: 301: 300: 290: 258: 252: 251: 231: 225: 224: 182: 173: 167: 166: 154: 90:method, and the 635: 634: 630: 629: 628: 626: 625: 624: 605: 604: 603: 602: 545: 514: 467: 432: 423: 398: 361: 358: 353: 352: 344: 340: 332: 328: 320: 316: 308: 304: 260: 259: 255: 248: 233: 232: 228: 180: 178:"Deep learning" 175: 174: 170: 156: 155: 151: 146: 128:Receptive field 109: 17: 12: 11: 5: 633: 631: 623: 622: 617: 607: 606: 601: 600: 593: 586: 578: 575: 574: 557: 543: 542: 536: 530: 524: 513: 512:External links 510: 509: 508: 480:(3): 574–591. 465: 435:"Neocognitron" 430: 421: 396: 370:(4): 193–202. 357: 354: 351: 350: 346:Fukushima 1987 338: 334:Fukushima 2007 326: 322:Fukushima 1987 314: 310:Fukushima 1987 302: 253: 246: 226: 168: 148: 147: 145: 142: 141: 140: 135: 130: 125: 120: 115: 108: 105: 15: 13: 10: 9: 6: 4: 3: 2: 632: 621: 618: 616: 613: 612: 610: 599: 594: 592: 587: 585: 580: 579: 573: 571: 567: 563: 558: 555: 551: 546: 540: 537: 534: 531: 528: 525: 523: 519: 516: 515: 511: 505: 501: 496: 491: 487: 483: 479: 475: 471: 466: 461: 456: 452: 448: 444: 440: 436: 431: 427: 422: 418: 414: 410: 406: 402: 397: 393: 389: 385: 381: 377: 373: 369: 365: 360: 359: 355: 347: 342: 339: 335: 330: 327: 324:, p. 84. 323: 318: 315: 312:, p. 83. 311: 306: 303: 298: 294: 289: 284: 280: 276: 273:(3): 574–91. 272: 268: 264: 257: 254: 249: 243: 239: 238: 230: 227: 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 179: 172: 169: 164: 160: 153: 150: 143: 139: 136: 134: 131: 129: 126: 124: 121: 119: 118:Deep learning 116: 114: 111: 110: 106: 104: 102: 97: 95: 94: 89: 88: 83: 82: 76: 72: 67: 65: 64: 59: 58: 53: 49: 44: 42: 38: 34: 30: 26: 22: 570:expanding it 559: 544: 522:Scholarpedia 518:Neocognitron 477: 473: 442: 439:Scholarpedia 438: 425: 400: 367: 363: 341: 329: 317: 305: 270: 266: 256: 236: 229: 188: 184: 171: 162: 152: 98: 91: 85: 79: 74: 70: 68: 63:complex cell 61: 55: 45: 27:proposed by 21:neocognitron 20: 18: 445:(1): 1717. 163:Trans. IECE 84:model, the 57:simple cell 609:Categories 356:References 267:J. Physiol 35:and other 474:J Physiol 392:206775608 539:Beholder 504:14403679 297:14403679 213:26017442 107:See also 96:method. 75:C-cells. 495:1363130 447:Bibcode 417:8235461 384:7370364 288:1363130 221:3074096 193:Bibcode 71:S-cells 502:  492:  415:  390:  382:  295:  285:  244:  219:  211:  185:Nature 52:Wiesel 50:& 560:This 413:S2CID 388:S2CID 217:S2CID 181:(PDF) 144:Notes 48:Hubel 566:stub 500:PMID 380:PMID 293:PMID 242:ISBN 209:PMID 87:SIFT 73:and 60:and 19:The 520:on 490:PMC 482:doi 478:148 455:doi 405:doi 372:doi 283:PMC 275:doi 271:148 201:doi 189:521 93:HoG 611:: 498:. 488:. 476:. 472:. 453:. 441:. 437:. 411:. 386:. 378:. 368:36 366:. 291:. 281:. 269:. 265:. 215:. 207:. 199:. 187:. 183:. 103:. 43:. 597:e 590:t 583:v 572:. 506:. 484:: 463:. 457:: 449:: 443:2 419:. 407:: 394:. 374:: 336:. 299:. 277:: 250:. 223:. 203:: 195::

Index

artificial neural network
Kunihiko Fukushima
handwritten character recognition
pattern recognition
convolutional neural networks
Hubel
Wiesel
simple cell
complex cell
Convolutional Neural Network
SIFT
HoG
selective attention
Artificial neural network
Deep learning
Pattern recognition
Receptive field
Self-organizing map
Unsupervised learning
"位置ずれに影響されないパターン認識機構の神経回路のモデル --- ネオコグニトロン ---"
"Deep learning"
Bibcode
2015Natur.521..436L
doi
10.1038/nature14539
PMID
26017442
S2CID
3074096
Brain and visual perception: the story of a 25-year collaboration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.