Knowledge (XXG)

Neural engineering

Source đź“ť

591:
vulnerability to traumatic loading. This area of research focuses on translating the transformations of information among the neuromuscular and skeletal systems to develop functions and governing rules relating to operation and organization of these systems. Neuromechanics can be simulated by connecting computational models of neural circuits to models of animal bodies situated in virtual physical worlds. Experimental analysis of biomechanics including the kinematics and dynamics of movements, the process and patterns of motor and sensory feedback during movement processes, and the circuit and synaptic organization of the brain responsible for motor control are all currently being researched to understand the complexity of animal movement. Dr. Michelle LaPlaca's lab at Georgia Institute of Technology is involved in the study of mechanical stretch of cell cultures, shear deformation of planar cell cultures, and shear deformation of 3D cell containing matrices. Understanding of these processes is followed by development of functioning models capable of characterizing these systems under closed loop conditions with specially defined parameters. The study of neuromechanics is aimed at improving treatments for physiological health problems which includes optimization of prostheses design, restoration of movement post injury, and design and control of mobile robots. By studying structures in 3D hydrogels, researchers can identify new models of nerve cell mechanoproperties. For example, LaPlaca et al. developed a new model showing that strain may play a role in cell culture.
603:
Researchers in this field face the challenge of linking advances in understanding neural signals to advancements in technologies delivering and analyzing these signals with increased sensitivity, biocompatibility, and viability in closed loops schemes in the brain such that new treatments and clinical applications can be created to treat those with neural damage of various kinds. Neuromodulator devices can correct nervous system dysfunction related to Parkinson's disease, dystonia, tremor, Tourette's, chronic pain, OCD, severe depression, and eventually epilepsy. Neuromodulation is appealing as treatment for varying defects because it focuses in on treating highly specific regions of the brain only, contrasting that of systemic treatments that can have side effects on the body. Neuromodulator stimulators such as microelectrode arrays can stimulate and record brain function and with further improvements are meant to become adjustable and responsive delivery devices for drugs and other stimuli.
84: 248: 796:
its environment. For instance, making use of a computational model of epilectic spike-wave dynamics, it has been already proven the effectiveness of a method to simulate seizure abatement through a pseudospectral protocol. The computational model emulates the brain connectivity by using a magnetic imaging resonance from a patient with idiopathic generalized epilepsy. The method was able to generate stimuli able to lessen the seizures.
827:
treatment for CNS is minimally available and focuses mostly on reducing collateral damage caused by bone fragments near the site of injury or inflammation. After swelling surrounding injury lessens, patients undergo rehabilitation so that remaining nerves can be trained to compensate for the lack of nerve function in injured nerves. No treatment currently exists to restore nerve function of CNS nerves that have been damaged.
776:
be designed to replace missing limbs controlled by neural signals by transplanting nerves from the stump of an amputee to muscles. Sensory prosthetics provide sensory feedback by transforming mechanical stimuli from the periphery into encoded information accessible by the nervous system. Electrodes placed on the skin can interpret signals and then control the prosthetic limb. These prosthetics have been very successful.
3660: 2986: 2856: 3016: 146: 694:
to stimulate specified regions of neural tissue to restore function or sensation of that tissue (Cullen et al. 2011). The materials used for these devices must match the mechanical properties of neural tissue in which they are placed and the damage must be assessed. Neural interfacing involves temporary regeneration of biomaterial scaffolds or chronic electrodes and must manage the body's
43: 3006: 3672: 2996: 556:
researchers in the modulation of neural system activity. To understand properties of neural system activity, engineers use signal processing techniques and computational modeling. To process these signals, neural engineers must translate the voltages across neural membranes into corresponding code, a process known as neural coding.
3218: 818:
vitro and exploring alternative cell sources, engineering novel biopolymers that could be utilized in a scaffold, and investigating cell or tissue engineered construct transplants in vivo in models of traumatic brain and spinal cord injury, Dr. LaPlaca's lab aims to identify optimal strategies for nerve regeneration post injury.
284: 660:(CAT) scans. Functional neuroimaging studies are interested in which areas of the brain perform specific tasks. fMRI measures hemodynamic activity that is closely linked to neural activity. It is used to map metabolic responses in specific regions of the brain to a given task or stimulus. PET, CT scanners, and 767:
signal. Sensory prostheses use artificial sensors to replace neural input that might be missing from biological sources. Engineers researching these devices are charged with providing a chronic, safe, artificial interface with neuronal tissue. Perhaps the most successful of these sensory prostheses is the
899:
are innovative strategies focusing on larger defects that provide a conduit for sprouting axons directing growth and reducing growth inhibition from scar tissue. Nerve guidance channels must be readily formed into a conduit with the desired dimensions, sterilizable, tear resistant, and easy to handle
795:
and locomotion, learning and memory selection, and value systems and action selection. By studying neurorobots in real-world environments, they are more easily observed and assessed to describe heuristics of robot function in terms of its embedded neural systems and the reactions of these systems to
754:
are specific tools used to detect the sharp changes in voltage in the extracellular environments that occur from propagation of an action potential down an axon. Dr. Mark Allen and Dr. LaPlaca have microfabricated 3D electrodes out of cytocompatible materials such as SU-8 and SLA polymers which have
993:
Advanced therapies combine complex guidance channels and multiple stimuli that focus on internal structures that mimic the nerve architecture containing internal matrices of longitudinally aligned fibers or channels. Fabrication of these structures can use a number of technologies: magnetic polymer
826:
End to end surgical suture of damaged nerve ends can repair small gaps with autologous nerve grafts. For larger injuries, an autologous nerve graft that has been harvested from another site in the body might be used, though this process is time-consuming, costly and requires two surgeries. Clinical
775:
for restoring visual capabilities of blind persons is still in more elementary stages of development. Motor prosthetics are devices involved with electrical stimulation of biological neural muscular system that can substitute for control mechanisms of the brain or spinal cord. Smart prostheses can
742:
Neural microsystems can be developed to interpret and deliver electrical, chemical, magnetic, and optical signals to neural tissue. They can detect variations in membrane potential and measure electrical properties such as spike population, amplitude, or rate by using electrodes, or by assessment of
693:
are a major element used for studying neural systems and enhancing or replacing neuronal function with engineered devices. Engineers are challenged with developing electrodes that can selectively record from associated electronic circuits to collect information about the nervous system activity and
565:
is the process by which neurons understand the voltages that have been transmitted to them. Transformations involve the mechanisms that signals of a certain form get interpreted and then translated into another form. Engineers look to mathematically model these transformations. There are a variety
817:
by applying tissue engineering strategies. Dr. LaPlaca is looking into methods combining neural stem cells with an extracellular matrix protein based scaffold for minimally invasive delivery into the irregular shaped lesions that form after a traumatic insult. By studying the neural stem cells in
766:
are devices capable of supplementing or replacing missing functions of the nervous system by stimulating the nervous system and recording its activity. Electrodes that measure firing of nerves can integrate with prosthetic devices and signal them to perform the function intended by the transmitted
1009:
using engineering techniques is another possible application of neuroengineering. Deep brain stimulation has already been shown to enhance memory recall as noted by patients currently using this treatment for neurological disorders. Brain stimulation techniques are postulated to be able to sculpt
854:
are that they come from natural materials which have a high likelihood of biocompatibility while providing structural support to nerves that encourage cell adhesion and migration. Nonautologous tissue, acellular grafts, and extracellular matrix based materials are all options that may also provide
546:
results in a cascade of ion flux down and across an axonal membrane, creating an effective voltage spike train or "electrical signal" which can transmit further electrical changes in other cells. Signals can be generated by electrical, chemical, magnetic, optical, and other forms of stimuli that
525:
are the basic functional unit of the nervous system and are highly specialized cells that are capable of sending these signals that operate high and low level functions needed for survival and quality of life. Neurons have special electro-chemical properties that allow them to process information
984:
Delivery devices must be biocompatible and stable in vivo. Some examples include osmotic pumps, silicone reservoirs, polymer matrices, and microspheres. Gene therapy techniques have also been studied to provide long-term production of growth factors and could be delivered with viral or non-viral
676:
with the hopes of modeling neural systems in as realistic a manner as possible. Neural networks can be used for analyses to help design further neurotechnological devices. Specifically, researchers handle analytical or finite element modeling to determine nervous system control of movements and
590:
is the coupling of neurobiology, biomechanics, sensation and perception, and robotics. Researchers are using advanced techniques and models to study the mechanical properties of neural tissues and their effects on the tissues' ability to withstand and generate force and movements as well as their
555:
Engineers employ quantitative tools that can be used for understanding and interacting with complex neural systems. Methods of studying and generating chemical, electrical, magnetic, and optical signals responsible for extracellular field potentials and synaptic transmission in neural tissue aid
681:
can be built from theoretical and computational models and implemented on computers from theoretically devices equations or experimental results of observed behavior of neuronal systems. Models might represent ion concentration dynamics, channel kinetics, synaptic transmission, single neuron
808:
looks to restore function to those neurons that have been damaged in small injuries and larger injuries like those caused by traumatic brain injury. Functional restoration of damaged nerves involves re-establishment of a continuous pathway for regenerating axons to the site of innervation.
602:
aims to treat disease or injury by employing medical device technologies that would enhance or suppress activity of the nervous system with the delivery of pharmaceutical agents, electrical signals, or other forms of energy stimulus to re-establish balance in impaired regions of the brain.
985:
vectors such as lipoplexes. Cells are also effective delivery vehicles for ECM components, neurotrophic factors and cell adhesion molecules. Olfactory ensheathing cells (OECs) and stem cells as well as genetically modified cells have been used as transplants to support nerve regeneration.
479:
both emerged in 2004. International conferences on neural engineering have been held by the IEEE since 2003, from 29 April until 2 May 2009 in Antalya, Turkey 4th Conference on Neural Engineering, the 5th International IEEE EMBS Conference on Neural Engineering in April/May 2011 in
616:
focuses on engineering devices and materials that facilitate the growth of neurons for specific applications such as the regeneration of peripheral nerve injury, the regeneration of the spinal cord tissue for spinal cord injury, and the regeneration of retinal tissue.
1010:
emotions and personalities as well as enhance motivation, reduce inhibitions, etc. as requested by the individual. Ethical issues with this sort of human augmentation are a new set of questions that neural engineers have to grapple with as these studies develop.
1768:
Tate, Matthew C.; Shear, Deborah A.; Hoffman, Stuart W.; Stein, Donald G.; Archer, David R.; Laplaca, Michelle C. (April 2002). "Fibronectin Promotes Survival and Migration of Primary Neural Stem Cells Transplanted into the Traumatically Injured Mouse Brain".
560:
studies on how the brain encodes simple commands in the form of central pattern generators (CPGs), movement vectors, the cerebellar internal model, and somatotopic maps to understand movement and sensory phenomena. Decoding of these signals in the realm of
512:
The fundamentals behind neuroengineering involve the relationship of neurons, neural networks, and nervous system functions to quantifiable models to aid the development of devices that could interpret and control signals and produce purposeful responses.
611:
Neural engineering and rehabilitation applies neuroscience and engineering to investigating peripheral and central nervous system function and to finding clinical solutions to problems created by brain damage or malfunction. Engineering applied to
743:
chemical concentrations, fluorescence light intensity, or magnetic field potential. The goal of these systems is to deliver signals that would influence neuronal tissue potential and thus stimulate the brain tissue to evoke a desired response.
1344:
Nishikawa, K.; Biewener, A. A.; Aerts, P.; Ahn, A. N.; Chiel, H. J.; Daley, M. A.; Daniel, T. L.; Full, R. J.; Hale, M. E.; Hedrick, T. L.; Lappin, A. K.; Nichols, T. R.; Quinn, R. D.; Satterlie, R. A.; Szymik, B. (10 May 2007).
362:
that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs.
1898:
Irons, Hillary R; Cullen, D Kacy; Shapiro, Nicholas P; Lambert, Nevin A; Lee, Robert H; LaPlaca, Michelle C (2008-08-28). "Three-dimensional neural constructs: a novel platform for neurophysiological investigation".
733:
is a significant advance in this field that is especially effective in treating movement disorders such as Parkinson's disease with high frequency stimulation of neural tissue to suppress tremors (Lega et al. 2011).
470:
As neural engineering is a relatively new field, information and research relating to it is comparatively limited, although this is changing rapidly. The first journals specifically devoted to neural engineering,
1598:
Lucas, Timothy H.; Liu, Xilin; Zhang, Milin; Sritharan, Sri; Planell-Mendez, Ivette; Ghenbot, Yohannes; Torres-Maldonado, Solymar; Brandon, Cameron; Van der Spiegel, Jan; Richardson, Andrew G. (2017-09-01).
1391:
LaPlaca, Michelle C.; Cullen, D.Kacy; McLoughlin, Justin J.; Cargill, Robert S. (May 2005). "High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model".
875:
and amniotic tissue grafts.Synthetic materials are attractive options because their physical and chemical properties can typically be controlled. A challenge that remains with synthetic materials is
530:, is normally maintained by certain concentrations of specific ions across neuronal membranes. Disruptions or variations in this voltage create an imbalance, or polarization, across the membrane. 526:
and then transmit that information to other cells. Neuronal activity is dependent upon neural membrane potential and the changes that occur along and across it. A constant voltage, known as the
839:
damage has been clinically possible so far, but advances in research of genetic techniques and biomaterials demonstrate the potential for SC nerves to regenerate in permissible environments.
900:
and suture. Ideally they would degrade over time with nerve regeneration, be pliable, semipermeable, maintain their shape, and have a smooth inner wall that mimics that of a real nerve.
1832:
Cullen, DK; Wolf, JA; Vernekar, VN; Vukasinovic, J; LaPlaca, MC (2011). "Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (Part 1)".
1192:
Babb, Tony G.; Wyrick, Brenda L.; DeLorey, Darren S.; Chase, Paul J.; Feng, Mabel Y. (October 2008). "Fat Distribution and End-Expiratory Lung Volume in Lean and Obese Men and Women".
682:
computation, oxygen metabolism, or application of dynamic system theory. Liquid-based template assembly was used to engineer 3D neural networks from neuron-seeded microcarrier beads.
521:
Messages that the body uses to influence thoughts, senses, movements, and survival are directed by nerve impulses transmitted across brain tissue and to the rest of the body.
1129:
Engineering in Medicine and Biology Society; Institute of Electrical and Electronics Engineers; International IEEE/EMBS Conference on Neural Engineering; NER (1 January 2009).
2961: 887:
uses a cell graft technology AVANCE to mimic a human nerve. It has been shown to achieve meaningful recovery in 87 percent of patients with peripheral nerve injuries.
729:
seek to directly communicate with human nervous system to monitor and stimulate neural circuits as well as diagnose and treat intrinsic neurological dysfunction.
755:
led to the development of in vitro and in vivo microelectrode systems with the characteristics of high compliance and flexibility to minimize tissue disruption.
1705:
Tate, M (May 2001). "Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury".
3580: 2181: 1803:
Cullen, DK; Pfister, B (2011). "State of the art and future challenges in neural engineering: neural interfaces: foreword / editors' commentary (volume 1)".
566:
of methods being used to record these voltage signals. These can be intracellular or extracellular. Extracellular methods involve single-unit recordings,
644:
techniques are used to investigate the activity of neural networks, as well as the structure and function of the brain. Neuroimaging technologies include
972:. There is also the potential for blocking inhibitory biomolecules in the CNS due to glial scarring. Some currently being studied are treatments with 698:. Microelectrode arrays are recent advances that can be used to study neural networks (Cullen & Pfister 2011). Optical neural interfaces involve 1059: 2902: 2764: 948:
has also been shown to support nerve regeneration following TBI in rats. Other therapies are looking into regeneration of nerves by upregulating
3052: 2070: 2060: 2050: 2040: 2030: 2020: 2006: 1176: 645: 1952:
Serruya, Mijail D.; Lega, Bradley C.; Zaghloul, Kareem (2011). "Brain-Machine Interfaces: Electrophysiological Challenges and Limitations".
2686: 2324: 791:
is the study of how neural systems can be embodied and movements emulated in mechanical machines. Neurorobots are typically used to study
3009: 105: 835:
Engineering strategies for the repair of spinal cord injury are focused on creating a friendly environment for nerve regeneration. Only
302: 163: 56: 2971: 2966: 809:
Researchers like Dr. LaPlaca at Georgia Institute of Technology are looking to help find treatment for repair and regeneration after
672:
Scientists can use experimental observations of neuronal systems and theoretical and computational models of these systems to create
3560: 2951: 1239: 921: 777: 338: 320: 229: 127: 70: 2944: 2939: 2174: 1533:
Chen, Pu; Luo, Zhengyuan; GĂĽven, Sinan; Tasoglu, Savas; Ganesan, Adarsh Venkataraman; Weng, Andrew; Demirci, Utkan (2014-06-23).
1309:
LaPlaca, Michelle C.; Prado, Gustavo R. (January 2010). "Neural mechanobiology and neuronal vulnerability to traumatic loading".
715: 210: 2432: 1498:
Schmidt, Christine E.; Leach, Jennie Baier (August 2003). "Neural Tissue Engineering: Strategies for Repair and Regeneration".
941: 182: 2479: 2299: 567: 167: 294: 1740: 937: 3401: 2956: 2681: 2560: 2525: 189: 3555: 1019: 726: 438: 3376: 2211: 1131:
4th International IEEE/EMBS Conference on Neural Engineering, 2009: NER'09 ; Antalya, Turkey, 29 April - 2 May 2009
710:
can be implanted in the brain to stimulate or silence targeted neurons using light, as well as record photon activity—a
653: 3698: 3595: 2759: 2734: 2530: 2469: 2167: 933: 98: 92: 633:
Research focused on neural engineering utilizes devices to study how the nervous system functions and malfunctions.
196: 3122: 3045: 2674: 2669: 2319: 1444: 1074: 949: 649: 599: 372: 156: 3590: 3565: 3434: 2374: 2364: 2262: 2242: 994:
fiber alignment, injection molding, phase separation, solid free-form fabrication, and ink jet polymer printing.
836: 678: 657: 400: 1861:
Durand, DM (2007). "Neural engineering—a new discipline for analyzing and interacting with the nervous system".
109: 3529: 3504: 3429: 3336: 3241: 3137: 2634: 2284: 2252: 178: 3676: 3366: 3077: 3072: 2872: 2831: 2754: 2714: 2508: 2497: 62: 3361: 3351: 3261: 3142: 3097: 2749: 2729: 2724: 2709: 2649: 2644: 2503: 2449: 2414: 2359: 2349: 2341: 2314: 2279: 2267: 2257: 2206: 2201: 1601:"Strategies for Autonomous Sensor–Brain Interfaces for Closed-Loop Sensory Reanimation of Paralyzed Limbs" 953: 896: 810: 730: 661: 380: 359: 3664: 3424: 3419: 3226: 3117: 3038: 2864: 2801: 2771: 2744: 2598: 2588: 2550: 2540: 2454: 2422: 2354: 2289: 695: 419: 2150: 2132: 929: 3645: 3396: 3236: 3207: 3102: 2989: 2897: 2892: 2826: 2821: 2796: 2786: 2739: 2659: 2613: 2489: 2427: 2304: 2272: 1908: 1669: 1546: 1064: 814: 751: 571: 396: 625:
are areas developing scaffolds for spinal cord to regrow across thus helping neurological problems.
3539: 3439: 3316: 3286: 3271: 2877: 2841: 2836: 2806: 2791: 2719: 2703: 2693: 2618: 2608: 2583: 2555: 2513: 2459: 2439: 2399: 2389: 2329: 2247: 2225: 917: 913: 909: 618: 535: 3015: 425:
Much current research is focused on understanding the coding and processing of information in the
3615: 3509: 3172: 3019: 2816: 2811: 2518: 2394: 2384: 2379: 2369: 2294: 1985: 1940: 1886: 1039: 856: 711: 622: 527: 455: 2882: 2015:
Operative Neuromodulation: Volume 1: Functional Neuroprosthetic Surgery. An Introduction (2007)
780:(FES) is a system aimed at restoring motor processes such as standing, walking, and hand grasp. 203: 3534: 3469: 3444: 3296: 3256: 2664: 2570: 2545: 2474: 2464: 2309: 2234: 2109: 2066: 2056: 2046: 2036: 2026: 2016: 2002: 1977: 1969: 1932: 1924: 1878: 1849: 1820: 1786: 1722: 1687: 1638: 1620: 1580: 1562: 1515: 1409: 1368: 1326: 1291: 1235: 1209: 1172: 1134: 1111: 1069: 1006: 957: 868: 805: 772: 699: 613: 539: 415: 404: 384: 2076:
Taylor, P. N.; Thomas, J.; Sinha, N.; Dauwels, J.; Kaiser, M.; Thesen, T.; Ruths, J. (2015).
3575: 3459: 3386: 3301: 3182: 3132: 2535: 2444: 2099: 2089: 1961: 1916: 1870: 1841: 1812: 1778: 1714: 1677: 1628: 1612: 1570: 1554: 1507: 1401: 1358: 1318: 1281: 1271: 1201: 1164: 1103: 1044: 876: 768: 763: 690: 543: 442: 437:
state, and how it can be manipulated through interactions with artificial devices including
31: 1511: 448:
Other research concentrates more on investigation by experimentation, including the use of
3635: 3630: 3625: 3620: 3514: 3454: 3391: 3306: 3266: 3251: 3202: 3192: 3147: 2698: 2154: 1232:
Neural engineering: computational, representation, and dynamics in neurobiological systems
1054: 880: 449: 2999: 538:
generates an action potential, which is the main source of signal transmission, known as
1912: 1673: 1550: 261:
Please help update this article to reflect recent events or newly available information.
3600: 3570: 3499: 3474: 3464: 3311: 3291: 3281: 3167: 3087: 2654: 2639: 2603: 2104: 2077: 1965: 1845: 1816: 1633: 1600: 1575: 1534: 1457: 1286: 1259: 973: 925: 673: 587: 531: 426: 408: 2855: 1718: 916:
can influence development, survival, outgrowth, and branching. Neurotrophins include
883:-based constructs have been shown to be a biocompatible option serving this purpose. 706:, making certain brain cells sensitive to light in order to modulate their activity. 3692: 3524: 3519: 3484: 3381: 3371: 3331: 3177: 3112: 3107: 1049: 1024: 792: 788: 557: 459: 1944: 1920: 1890: 1107: 3610: 3605: 3489: 3321: 3246: 3197: 3187: 3162: 3157: 3127: 3061: 2781: 1989: 1439:
Potter S. 2012. NeuroEngineering: Neuroscience - Applied. In TEDxGeorgiaTech: TEDx
1405: 1322: 851: 707: 703: 641: 562: 434: 430: 1158: 3479: 3326: 2578: 2190: 1029: 945: 547:
influence the flow of charges, and thus voltage levels across neural membranes.
497: 392: 145: 17: 718:
can study living neuronal networks and the communicatory events among neurons.
3640: 3341: 2593: 1682: 1657: 1440: 1094:
Hetling, J R (15 September 2008). "Comment on 'What is Neural Engineering?'".
969: 848: 493: 2094: 1973: 1928: 1691: 1624: 1566: 1276: 1234:(1. MIT Press paperback ed.). Cambridge, Mass.: MIT Press. p. 356. 1138: 3585: 3276: 2887: 2404: 2078:"Optimal control based seizure abatement using patient derived connectivity" 1782: 1616: 1034: 961: 872: 864: 860: 489: 376: 2113: 1981: 1936: 1882: 1874: 1853: 1824: 1790: 1726: 1642: 1584: 1558: 1519: 1413: 1372: 1330: 1295: 1213: 1115: 481: 1205: 1163:. Bioelectric Engineering (1 ed.). New York: Kluwer Academic/Plenum. 677:
apply these techniques to help patients with brain injuries or disorders.
3494: 2928: 2918: 2776: 1363: 1347:"Neuromechanics: an integrative approach for understanding motor control" 1346: 501: 418:
of human function via direct interactions between the nervous system and
388: 884: 522: 485: 1168: 3217: 2133:
IEEE Transactions on Neural Systems and Rehabilitation Engineering
664:(EEG) are currently being improved and used for similar purposes. 2142: 965: 3034: 3030: 2163: 496:
in November 2013. The 7th conference was held in April 2015 in
2159: 277: 241: 139: 77: 36: 2147: 2137: 2035:
Handbook of Stereotactic and Functional Neurosurgery (2003)
433:
systems, quantifying how this processing is altered in the
908:
Highly controlled delivery systems are needed to promote
2127: 944:(aFGF, bFGF) that promote a range of neural responses. 1535:"Microscale Assembly Directed by Liquid-Based Template" 387:
of living neural tissue, and encompasses elements from
371:
The field of neural engineering draws on the fields of
2025:
Deep Brain Stimulation for Parkinson's Disease (2007)
414:
Prominent goals in the field include restoration and
458:
is a division of neural engineering that focuses on
3548: 3410: 3350: 3225: 3086: 2927: 2911: 2863: 2627: 2569: 2488: 2413: 2340: 2233: 2220: 2143:
JNER Journal of NeuroEngineering and Rehabilitation
771:which has restored hearing abilities to the deaf. 170:. Unsourced material may be challenged and removed. 714:of neural activity— instead of using electrodes. 477:The Journal of NeuroEngineering and Rehabilitation 2065:Foundations on Cellular Neurophysiology (1995) 1741:"Avance Nerve Graft Clinical Results Published" 1386: 1384: 1382: 1230:Eliasmith, Chris; Anderson, Charles H. (2004). 297:for grammar, style, cohesion, tone, or spelling 2045:Neural Prostheses: Fundamental Studies (1990) 1253: 1251: 952:(RAGs), neuronal cytoskeletal components, and 3046: 2175: 1435: 1433: 1431: 1429: 1427: 1425: 1423: 500:. The 8th conference was held in May 2017 in 8: 3581:Intraoperative neurophysiological monitoring 1763: 1761: 574:have been used to record and mimic signals. 2128:IEEE Transactions on Biomedical Engineering 2055:IEEE Handbook of Neural Engineering (2007) 71:Learn how and when to remove these messages 3053: 3039: 3031: 2230: 2182: 2168: 2160: 1954:Critical Reviews in Biomedical Engineering 1493: 1491: 1489: 1487: 1485: 1483: 1481: 1479: 1477: 2103: 2093: 1681: 1632: 1574: 1362: 1285: 1275: 1152: 1150: 1148: 1005:Augmentation of human neural systems, or 942:acidic and basic fibroblast growth factor 339:Learn how and when to remove this message 321:Learn how and when to remove this message 230:Learn how and when to remove this message 128:Learn how and when to remove this message 1060:Prosthetic neuronal memory silicon chips 871:. while others include small intestinal 822:Current approaches to clinical treatment 91:This article includes a list of general 1500:Annual Review of Biomedical Engineering 1225: 1223: 1086: 2962:Electrical and electronics engineering 1512:10.1146/annurev.bioeng.5.011303.120731 938:glial cell line-derived growth factor 646:functional magnetic resonance imaging 7: 3671: 2995: 1264:Frontiers in Behavioral Neuroscience 452:connected with external technology. 168:adding citations to reliable sources 27:Discipline in biomedical engineering 3005: 2001:(in Dutch). Boca Raton: CRC Press. 1351:Integrative and Comparative Biology 867:tissues that must be combined with 1966:10.1615/critrevbiomedeng.v39.i1.20 1846:10.1615/critrevbiomedeng.v39.i3.30 1817:10.1615/critrevbiomedeng.v39.i1.10 976:ABC and blocking NgR, ADP-ribose. 956:. RAGs include GAP-43 and Cap-23, 570:, and amperometry; more recently, 97:it lacks sufficient corresponding 25: 3561:Development of the nervous system 2138:The Journal of Neural Engineering 922:brain derived neurotrophic factor 831:Engineering strategies for repair 778:Functional electrical stimulation 473:The Journal of Neural Engineering 52:This article has multiple issues. 3670: 3659: 3658: 3216: 3014: 3004: 2994: 2985: 2984: 2854: 716:Two-photon excitation microscopy 282: 246: 144: 82: 41: 804:Neural tissue regeneration, or 155:needs additional citations for 60:or discuss these issues on the 1406:10.1016/j.jbiomech.2004.05.032 1323:10.1016/j.jbiomech.2009.09.011 568:extracellular field potentials 1: 3402:Social cognitive neuroscience 1901:Journal of Neural Engineering 1719:10.1016/s0142-9612(00)00348-3 1656:Krichmar, Jeff (2008-03-31). 1096:Journal of Neural Engineering 950:regeneration associated genes 932:(NT-4/5). Other factors are 696:response to foreign materials 375:, experimental neuroscience, 3377:Molecular cellular cognition 2212:List of engineering branches 1456:Sofatzis, Tia (2016-12-12). 1260:"Neuromechanical simulation" 654:positron emission tomography 488:, and the 6th conference in 462:of the neurological system. 3596:Neurodevelopmental disorder 3571:Neural network (biological) 3566:Neural network (artificial) 1258:Edwards, Donald H. (2010). 934:ciliary neurotrophic factor 542:of the nervous system. An 3715: 3123:Computational neuroscience 2148:Journal of Neurophysiology 1997:DiLorenzo, Daniel (2008). 1075:Wirehead (science fiction) 800:Neural tissue regeneration 679:Artificial neural networks 650:magnetic resonance imaging 607:Neural regrowth and repair 373:computational neuroscience 29: 3654: 3591:Neurodegenerative disease 3435:Evolutionary neuroscience 3214: 3068: 2980: 2852: 2197: 2082:Frontiers in Neuroscience 1921:10.1088/1741-2560/5/3/006 1683:10.4249/scholarpedia.1365 1108:10.1088/1741-2560/5/3/N01 895:Nerve guidance channels, 727:Brain–computer interfaces 722:Brain–computer interfaces 658:computed axial tomography 629:Research and applications 534:of the membrane past its 439:brain–computer interfaces 401:neural tissue engineering 358:) is a discipline within 255:This article needs to be 3556:Brain–computer interface 3505:Neuromorphic engineering 3430:Educational neuroscience 3337:Nutritional neuroscience 3242:Clinical neurophysiology 3138:Integrative neuroscience 2095:10.3389/fnins.2015.00202 1277:10.3389/fnbeh.2010.00040 1020:Brain–computer interface 3367:Behavioral neuroscience 2873:Bachelor of Engineering 2715:Engineering mathematics 1783:10.3727/096020198389933 1458:"About Neuromodulation" 1394:Journal of Biomechanics 1311:Journal of Biomechanics 891:Nerve guidance channels 112:more precise citations. 3362:Affective neuroscience 3143:Molecular neuroscience 3098:Behavioral epigenetics 2972:Structural engineering 2967:Mechanical engineering 2710:Engineering management 1875:10.1055/s-0038-1625395 1559:10.1002/adma.201402079 904:Biomolecular therapies 897:Nerve guidance conduit 855:ideal scaffolding for 811:traumatic brain injury 731:Deep brain stimulation 662:electroencephalography 381:electrical engineering 360:biomedical engineering 3425:Cultural neuroscience 3420:Consumer neuroscience 3262:Neurogastroenterology 3118:Cellular neuroscience 2952:Aerospace engineering 2865:Engineering education 1617:10.1093/neuros/nyx367 1611:(CN_suppl_1): 11–20. 1206:10.1378/chest.07-1728 954:antiapoptosis factors 752:Microelectrode arrays 747:Microelectrode arrays 572:multielectrode arrays 3397:Sensory neuroscience 3237:Behavioral neurology 3208:Systems neuroscience 2893:Graduate certificate 1771:Cell Transplantation 1065:Sensory substitution 914:Neurotrophic factors 837:Peripheral PNS nerve 815:spinal cord injuries 397:computer engineering 179:"Neural engineering" 164:improve this article 30:For other uses, see 3540:Social neuroscience 3440:Global neurosurgery 3317:Neurorehabilitation 3287:Neuro-ophthalmology 3272:Neurointensive care 3103:Behavioral genetics 2878:Bachelor of Science 2720:Engineering physics 2704:Engineering drawing 2226:Interdisciplinarity 1913:2008JNEng...5..333I 1834:Crit Rev Biomed Eng 1805:Crit Rev Biomed Eng 1745:Free Online Library 1674:2008SchpJ...3.1365K 1551:2014AdM....26.5936C 980:Delivery techniques 918:nerve growth factor 910:neural regeneration 619:Genetic engineering 536:threshold potential 3699:Neural engineering 3616:Neuroimmune system 3510:Neurophenomenology 3450:Neural engineering 3173:Neuroendocrinology 3153:Neural engineering 2480:Telecommunications 2385:Naval architecture 2153:2017-11-23 at the 1539:Advanced Materials 1364:10.1093/icb/icm024 1160:Neural engineering 1040:Experience machine 1001:Neural enhancement 989:Advanced therapies 958:adhesion molecules 869:immunosuppressants 859:. Some come from 857:nerve regeneration 700:optical recordings 623:tissue engineering 528:membrane potential 456:Neurohydrodynamics 420:artificial devices 352:Neural engineering 301:You can assist by 3686: 3685: 3535:Paleoneurobiology 3470:Neuroepistemology 3445:Neuroanthropology 3411:Interdisciplinary 3297:Neuropharmacology 3257:Neuroepidemiology 3028: 3027: 2957:Civil engineering 2903:Licensed engineer 2898:Engineer's degree 2850: 2849: 2682:Building services 2665:Health technology 2526:Chemical reaction 2475:Signal processing 2071:978-0-262-10053-3 2061:978-0-470-05669-1 2051:978-0-13-615444-0 2041:978-0-8247-0720-0 2031:978-0-8493-7019-9 2021:978-3-211-33078-4 2008:978-0-8493-8174-4 1713:(10): 1113–1123. 1545:(34): 5936–5941. 1178:978-0-306-48610-4 1070:Simulated reality 1007:human enhancement 806:neuroregeneration 773:Visual prosthesis 759:Neural prostheses 691:Neural interfaces 686:Neural interfaces 614:neuroregeneration 540:neurotransmission 405:materials science 385:signal processing 349: 348: 341: 331: 330: 323: 276: 275: 240: 239: 232: 214: 138: 137: 130: 75: 16:(Redirected from 3706: 3674: 3673: 3662: 3661: 3576:Detection theory 3460:Neurocriminology 3387:Neurolinguistics 3302:Neuroprosthetics 3220: 3183:Neuroinformatics 3133:Imaging genetics 3055: 3048: 3041: 3032: 3018: 3008: 3007: 2998: 2997: 2988: 2987: 2858: 2445:Electromechanics 2231: 2184: 2177: 2170: 2161: 2117: 2107: 2097: 2012: 1999:Neuroengineering 1993: 1948: 1894: 1857: 1828: 1795: 1794: 1765: 1756: 1755: 1753: 1752: 1737: 1731: 1730: 1702: 1696: 1695: 1685: 1653: 1647: 1646: 1636: 1595: 1589: 1588: 1578: 1530: 1524: 1523: 1495: 1472: 1471: 1469: 1468: 1453: 1447: 1437: 1418: 1417: 1400:(5): 1093–1105. 1388: 1377: 1376: 1366: 1341: 1335: 1334: 1306: 1300: 1299: 1289: 1279: 1255: 1246: 1245: 1227: 1218: 1217: 1189: 1183: 1182: 1157:He, Bin (2005). 1154: 1143: 1142: 1126: 1120: 1119: 1091: 1045:Neuroprosthetics 930:neurotrophin-4/5 877:biocompatibility 769:cochlear implant 764:Neuroprosthetics 544:action potential 443:neuroprosthetics 356:neuroengineering 344: 337: 326: 319: 315: 312: 306: 286: 285: 278: 271: 268: 262: 250: 249: 242: 235: 228: 224: 221: 215: 213: 172: 148: 140: 133: 126: 122: 119: 113: 108:this article by 99:inline citations 86: 85: 78: 67: 45: 44: 37: 32:Neurocybernetics 21: 18:Neuroengineering 3714: 3713: 3709: 3708: 3707: 3705: 3704: 3703: 3689: 3688: 3687: 3682: 3650: 3636:Neurotechnology 3631:Neuroplasticity 3626:Neuromodulation 3621:Neuromanagement 3544: 3515:Neurophilosophy 3412: 3406: 3392:Neuropsychology 3353: 3346: 3307:Neuropsychiatry 3267:Neuroimmunology 3252:Neurocardiology 3228: 3221: 3212: 3203:Neurophysiology 3193:Neuromorphology 3148:Neural decoding 3089: 3082: 3064: 3059: 3029: 3024: 2976: 2923: 2907: 2883:Master's degree 2859: 2846: 2760:Instrumentation 2623: 2565: 2531:Electrochemical 2484: 2470:Radio frequency 2409: 2336: 2300:Municipal/Urban 2224: 2222: 2216: 2193: 2188: 2155:Wayback Machine 2124: 2075: 2009: 1996: 1951: 1897: 1863:Methods Inf Med 1860: 1831: 1802: 1799: 1798: 1767: 1766: 1759: 1750: 1748: 1739: 1738: 1734: 1704: 1703: 1699: 1658:"Neurorobotics" 1655: 1654: 1650: 1597: 1596: 1592: 1532: 1531: 1527: 1497: 1496: 1475: 1466: 1464: 1455: 1454: 1450: 1438: 1421: 1390: 1389: 1380: 1343: 1342: 1338: 1308: 1307: 1303: 1257: 1256: 1249: 1242: 1229: 1228: 1221: 1191: 1190: 1186: 1179: 1169:10.1007/b112182 1156: 1155: 1146: 1128: 1127: 1123: 1093: 1092: 1088: 1083: 1055:Neurotechnology 1016: 1003: 997: 991: 982: 906: 893: 881:Methylcellulose 845: 833: 824: 802: 786: 761: 749: 740: 724: 688: 674:Neural networks 670: 668:Neural networks 639: 631: 609: 600:Neuromodulation 597: 595:Neuromodulation 585: 580: 553: 519: 510: 468: 450:neural implants 369: 354:(also known as 345: 334: 333: 332: 327: 316: 310: 307: 300: 287: 283: 272: 266: 263: 260: 251: 247: 236: 225: 219: 216: 173: 171: 161: 149: 134: 123: 117: 114: 104:Please help to 103: 87: 83: 46: 42: 35: 28: 23: 22: 15: 12: 11: 5: 3712: 3710: 3702: 3701: 3691: 3690: 3684: 3683: 3681: 3680: 3668: 3655: 3652: 3651: 3649: 3648: 3646:Self-awareness 3643: 3638: 3633: 3628: 3623: 3618: 3613: 3608: 3603: 3601:Neurodiversity 3598: 3593: 3588: 3583: 3578: 3573: 3568: 3563: 3558: 3552: 3550: 3546: 3545: 3543: 3542: 3537: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3500:Neuromarketing 3497: 3492: 3487: 3482: 3477: 3475:Neuroesthetics 3472: 3467: 3465:Neuroeconomics 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3422: 3416: 3414: 3408: 3407: 3405: 3404: 3399: 3394: 3389: 3384: 3379: 3374: 3369: 3364: 3358: 3356: 3348: 3347: 3345: 3344: 3339: 3334: 3329: 3324: 3319: 3314: 3312:Neuroradiology 3309: 3304: 3299: 3294: 3292:Neuropathology 3289: 3284: 3282:Neuro-oncology 3279: 3274: 3269: 3264: 3259: 3254: 3249: 3244: 3239: 3233: 3231: 3223: 3222: 3215: 3213: 3211: 3210: 3205: 3200: 3195: 3190: 3185: 3180: 3175: 3170: 3168:Neurochemistry 3165: 3160: 3155: 3150: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3110: 3105: 3100: 3094: 3092: 3084: 3083: 3081: 3080: 3075: 3069: 3066: 3065: 3060: 3058: 3057: 3050: 3043: 3035: 3026: 3025: 3023: 3022: 3012: 3002: 2992: 2981: 2978: 2977: 2975: 2974: 2969: 2964: 2959: 2954: 2949: 2948: 2947: 2942: 2933: 2931: 2925: 2924: 2922: 2921: 2915: 2913: 2912:Related topics 2909: 2908: 2906: 2905: 2900: 2895: 2890: 2885: 2880: 2875: 2869: 2867: 2861: 2860: 2853: 2851: 2848: 2847: 2845: 2844: 2839: 2834: 2832:Sustainability 2829: 2824: 2819: 2814: 2809: 2804: 2799: 2794: 2789: 2784: 2779: 2774: 2769: 2768: 2767: 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2707: 2701: 2696: 2694:Geoengineering 2691: 2690: 2689: 2679: 2678: 2677: 2675:Rehabilitation 2672: 2670:Pharmaceutical 2667: 2662: 2657: 2655:Bioinformatics 2647: 2642: 2637: 2631: 2629: 2625: 2624: 2622: 2621: 2616: 2614:Semiconductors 2611: 2606: 2604:Nanotechnology 2601: 2596: 2591: 2586: 2581: 2575: 2573: 2567: 2566: 2564: 2563: 2558: 2553: 2548: 2543: 2538: 2533: 2528: 2523: 2522: 2521: 2516: 2511: 2501: 2494: 2492: 2486: 2485: 2483: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2447: 2442: 2437: 2436: 2435: 2425: 2419: 2417: 2411: 2410: 2408: 2407: 2402: 2397: 2392: 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2352: 2346: 2344: 2338: 2337: 2335: 2334: 2333: 2332: 2327: 2320:Transportation 2317: 2312: 2307: 2302: 2297: 2292: 2287: 2282: 2277: 2276: 2275: 2270: 2260: 2255: 2250: 2245: 2239: 2237: 2228: 2218: 2217: 2215: 2214: 2209: 2204: 2198: 2195: 2194: 2189: 2187: 2186: 2179: 2172: 2164: 2158: 2157: 2145: 2140: 2135: 2130: 2123: 2122:External links 2120: 2119: 2118: 2073: 2063: 2053: 2043: 2033: 2023: 2013: 2007: 1994: 1949: 1907:(3): 333–341. 1895: 1858: 1829: 1797: 1796: 1777:(3): 283–295. 1757: 1732: 1697: 1648: 1590: 1525: 1506:(1): 293–347. 1473: 1448: 1419: 1378: 1336: 1301: 1247: 1240: 1219: 1200:(4): 704–711. 1184: 1177: 1144: 1121: 1102:(3): 360–361. 1085: 1084: 1082: 1079: 1078: 1077: 1072: 1067: 1062: 1057: 1052: 1047: 1042: 1037: 1032: 1027: 1022: 1015: 1012: 1002: 999: 990: 987: 981: 978: 974:chondroitinase 926:neurotrophin-3 905: 902: 892: 889: 847:Advantages of 844: 841: 832: 829: 823: 820: 801: 798: 785: 782: 760: 757: 748: 745: 739: 736: 723: 720: 687: 684: 669: 666: 638: 637:Neural imaging 635: 630: 627: 608: 605: 596: 593: 588:Neuromechanics 584: 583:Neuromechanics 581: 579: 576: 552: 549: 532:Depolarization 518: 515: 509: 506: 467: 464: 409:nanotechnology 368: 365: 347: 346: 329: 328: 290: 288: 281: 274: 273: 254: 252: 245: 238: 237: 152: 150: 143: 136: 135: 90: 88: 81: 76: 50: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3711: 3700: 3697: 3696: 3694: 3679: 3678: 3669: 3667: 3666: 3657: 3656: 3653: 3647: 3644: 3642: 3639: 3637: 3634: 3632: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3607: 3604: 3602: 3599: 3597: 3594: 3592: 3589: 3587: 3584: 3582: 3579: 3577: 3574: 3572: 3569: 3567: 3564: 3562: 3559: 3557: 3554: 3553: 3551: 3547: 3541: 3538: 3536: 3533: 3531: 3530:Neurotheology 3528: 3526: 3525:Neurorobotics 3523: 3521: 3520:Neuropolitics 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3485:Neuroethology 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3417: 3415: 3409: 3403: 3400: 3398: 3395: 3393: 3390: 3388: 3385: 3383: 3382:Motor control 3380: 3378: 3375: 3373: 3372:Chronobiology 3370: 3368: 3365: 3363: 3360: 3359: 3357: 3355: 3349: 3343: 3340: 3338: 3335: 3333: 3332:Neurovirology 3330: 3328: 3325: 3323: 3320: 3318: 3315: 3313: 3310: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3255: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3234: 3232: 3230: 3224: 3219: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3178:Neurogenetics 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3113:Brain-reading 3111: 3109: 3108:Brain mapping 3106: 3104: 3101: 3099: 3096: 3095: 3093: 3091: 3085: 3079: 3076: 3074: 3071: 3070: 3067: 3063: 3056: 3051: 3049: 3044: 3042: 3037: 3036: 3033: 3021: 3017: 3013: 3011: 3003: 3001: 2993: 2991: 2983: 2982: 2979: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2946: 2943: 2941: 2938: 2937: 2935: 2934: 2932: 2930: 2926: 2920: 2917: 2916: 2914: 2910: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2884: 2881: 2879: 2876: 2874: 2871: 2870: 2868: 2866: 2862: 2857: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2766: 2763: 2762: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2705: 2702: 2700: 2697: 2695: 2692: 2688: 2685: 2684: 2683: 2680: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2652: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2632: 2630: 2626: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2576: 2574: 2572: 2568: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2520: 2517: 2515: 2512: 2510: 2507: 2506: 2505: 2502: 2499: 2496: 2495: 2493: 2491: 2487: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2434: 2431: 2430: 2429: 2426: 2424: 2421: 2420: 2418: 2416: 2412: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2375:Manufacturing 2373: 2371: 2368: 2366: 2365:Biomechanical 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2347: 2345: 2343: 2339: 2331: 2328: 2326: 2323: 2322: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2274: 2271: 2269: 2266: 2265: 2264: 2263:Environmental 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2243:Architectural 2241: 2240: 2238: 2236: 2232: 2229: 2227: 2219: 2213: 2210: 2208: 2205: 2203: 2200: 2199: 2196: 2192: 2185: 2180: 2178: 2173: 2171: 2166: 2165: 2162: 2156: 2152: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2125: 2121: 2115: 2111: 2106: 2101: 2096: 2091: 2087: 2083: 2079: 2074: 2072: 2068: 2064: 2062: 2058: 2054: 2052: 2048: 2044: 2042: 2038: 2034: 2032: 2028: 2024: 2022: 2018: 2014: 2010: 2004: 2000: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1859: 1855: 1851: 1847: 1843: 1840:(3): 201–40. 1839: 1835: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1801: 1800: 1792: 1788: 1784: 1780: 1776: 1772: 1764: 1762: 1758: 1746: 1742: 1736: 1733: 1728: 1724: 1720: 1716: 1712: 1708: 1701: 1698: 1693: 1689: 1684: 1679: 1675: 1671: 1667: 1663: 1659: 1652: 1649: 1644: 1640: 1635: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1594: 1591: 1586: 1582: 1577: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1529: 1526: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1492: 1490: 1488: 1486: 1484: 1482: 1480: 1478: 1474: 1463: 1459: 1452: 1449: 1446: 1442: 1436: 1434: 1432: 1430: 1428: 1426: 1424: 1420: 1415: 1411: 1407: 1403: 1399: 1395: 1387: 1385: 1383: 1379: 1374: 1370: 1365: 1360: 1356: 1352: 1348: 1340: 1337: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1302: 1297: 1293: 1288: 1283: 1278: 1273: 1269: 1265: 1261: 1254: 1252: 1248: 1243: 1241:9780262550604 1237: 1233: 1226: 1224: 1220: 1215: 1211: 1207: 1203: 1199: 1195: 1188: 1185: 1180: 1174: 1170: 1166: 1162: 1161: 1153: 1151: 1149: 1145: 1140: 1136: 1132: 1125: 1122: 1117: 1113: 1109: 1105: 1101: 1097: 1090: 1087: 1080: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1050:Neurosecurity 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1025:Brain-reading 1023: 1021: 1018: 1017: 1013: 1011: 1008: 1000: 998: 995: 988: 986: 979: 977: 975: 971: 967: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 919: 915: 911: 903: 901: 898: 890: 888: 886: 882: 878: 874: 870: 866: 862: 858: 853: 852:tissue grafts 850: 842: 840: 838: 830: 828: 821: 819: 816: 812: 807: 799: 797: 794: 793:motor control 790: 789:Neurorobotics 784:Neurorobotics 783: 781: 779: 774: 770: 765: 758: 756: 753: 746: 744: 737: 735: 732: 728: 721: 719: 717: 713: 709: 705: 701: 697: 692: 685: 683: 680: 675: 667: 665: 663: 659: 655: 651: 647: 643: 636: 634: 628: 626: 624: 620: 615: 606: 604: 601: 594: 592: 589: 582: 577: 575: 573: 569: 564: 559: 558:Neural coding 550: 548: 545: 541: 537: 533: 529: 524: 516: 514: 507: 505: 503: 499: 495: 491: 487: 483: 478: 474: 465: 463: 461: 460:hydrodynamics 457: 453: 451: 446: 444: 440: 436: 432: 428: 423: 421: 417: 412: 410: 406: 402: 398: 394: 390: 386: 382: 378: 374: 366: 364: 361: 357: 353: 343: 340: 325: 322: 314: 304: 298: 296: 291:This article 289: 280: 279: 270: 258: 253: 244: 243: 234: 231: 223: 212: 209: 205: 202: 198: 195: 191: 188: 184: 181: â€“  180: 176: 175:Find sources: 169: 165: 159: 158: 153:This article 151: 147: 142: 141: 132: 129: 121: 111: 107: 101: 100: 94: 89: 80: 79: 74: 72: 65: 64: 59: 58: 53: 48: 39: 38: 33: 19: 3675: 3663: 3611:Neuroimaging 3606:Neurogenesis 3490:Neurohistory 3455:Neurobiotics 3449: 3354:neuroscience 3322:Neurosurgery 3247:Epileptology 3229:neuroscience 3198:Neurophysics 3188:Neurometrics 3163:Neurobiology 3158:Neuroanatomy 3152: 3128:Connectomics 3062:Neuroscience 2936:Engineering 2782:Mechatronics 2635:Agricultural 2285:Geotechnical 2253:Construction 2085: 2081: 1998: 1957: 1953: 1904: 1900: 1869:(2): 142–6. 1866: 1862: 1837: 1833: 1808: 1804: 1774: 1770: 1749:. Retrieved 1747:. 2015-01-01 1744: 1735: 1710: 1707:Biomaterials 1706: 1700: 1665: 1662:Scholarpedia 1661: 1651: 1608: 1605:Neurosurgery 1604: 1593: 1542: 1538: 1528: 1503: 1499: 1465:. Retrieved 1461: 1451: 1397: 1393: 1357:(1): 16–54. 1354: 1350: 1339: 1317:(1): 71–78. 1314: 1310: 1304: 1267: 1263: 1231: 1197: 1193: 1187: 1159: 1130: 1124: 1099: 1095: 1089: 1004: 996: 992: 983: 907: 894: 846: 834: 825: 803: 787: 762: 750: 741: 738:Microsystems 725: 708:Fiber optics 704:optogenetics 689: 671: 642:Neuroimaging 640: 632: 610: 598: 586: 563:neuroscience 554: 520: 517:Neuroscience 511: 508:Fundamentals 476: 472: 469: 454: 447: 435:pathological 424: 416:augmentation 413: 370: 355: 351: 350: 335: 317: 308: 295:copy editing 293:may require 292: 264: 256: 226: 217: 207: 200: 193: 186: 174: 162:Please help 157:verification 154: 124: 115: 96: 68: 61: 55: 54:Please help 51: 3480:Neuroethics 3327:Neurotology 3010:Wikiproject 2765:and Control 2755:Information 2579:Biomaterial 2509:Bioresource 2500:/Bioprocess 2498:Biochemical 2450:Electronics 2221:Specialties 2191:Engineering 1960:(1): 5–28. 1668:(3): 1365. 1030:Cybernetics 946:Fibronectin 940:(GDNF) and 928:(NT-3) and 551:Engineering 498:Montpellier 393:cybernetics 110:introducing 3641:Neurotoxin 3342:Psychiatry 2929:Glossaries 2750:Industrial 2730:Facilities 2725:Explosives 2650:Biomedical 2645:Automation 2594:Metallurgy 2504:Biological 2455:Microwaves 2415:Electrical 2360:Automotive 2342:Mechanical 2315:Structural 2280:Geological 2268:Ecological 2258:Earthquake 1811:(1): 1–3. 1751:2017-06-09 1467:2017-06-09 1081:References 970:N-cadherin 849:autologous 656:(PET) and 494:California 303:editing it 190:newspapers 93:references 57:improve it 3586:Neurochip 3352:Cognitive 3277:Neurology 2888:Doctorate 2802:Packaging 2772:Logistics 2745:Geomatics 2706:/graphics 2599:Molecular 2589:Corrosion 2571:Materials 2551:Petroleum 2541:Molecular 2423:Broadcast 2405:Tribology 2355:Aerospace 2290:Hydraulic 1974:0278-940X 1929:1741-2560 1692:1941-6016 1625:0148-396X 1567:0935-9648 1139:837182279 1035:Cyberware 962:L1 family 873:submucosa 865:xenogenic 861:allogenic 490:San Diego 377:neurology 118:June 2015 63:talk page 3693:Category 3665:Category 3549:Concepts 3495:Neurolaw 3227:Clinical 2990:Category 2919:Engineer 2827:Software 2822:Security 2797:Ontology 2787:Military 2777:Robotics 2740:Forensic 2660:Clinical 2619:Surfaces 2609:Polymers 2584:Ceramics 2561:Reaction 2490:Chemical 2428:Computer 2350:Acoustic 2305:Offshore 2273:Sanitary 2151:Archived 2114:26089775 1982:21488812 1945:17476077 1937:18756031 1891:19213196 1883:17347744 1854:21967303 1825:21488811 1791:12075994 1727:11352091 1643:28899065 1585:24956442 1520:14527315 1414:15797591 1373:21672819 1331:19811784 1296:20700384 1214:18641101 1133:. IEEE. 1116:18756032 1014:See also 960:such as 936:(CNTF), 924:(BDNF), 648:(fMRI), 502:Shanghai 389:robotics 367:Overview 311:May 2024 267:May 2024 220:May 2024 3677:Commons 3090:science 3078:History 3073:Outline 3000:Commons 2842:Textile 2837:Systems 2807:Privacy 2792:Nuclear 2556:Process 2514:Genetic 2460:Optical 2440:Control 2433:outline 2400:Thermal 2390:Railway 2330:Railway 2325:Traffic 2248:Coastal 2207:Outline 2202:History 2105:4453481 2088:: 202. 1990:5712065 1909:Bibcode 1670:Bibcode 1634:6937092 1576:4159433 1547:Bibcode 1445:YouTube 1287:2914529 920:(NGF), 652:(MRI), 523:Neurons 466:History 427:sensory 257:updated 204:scholar 106:improve 3413:fields 3020:Portal 2817:Survey 2812:Safety 2699:Design 2519:Tissue 2395:Sports 2380:Marine 2370:Energy 2295:Mining 2112:  2102:  2069:  2059:  2049:  2039:  2029:  2019:  2005:  1988:  1980:  1972:  1943:  1935:  1927:  1889:  1881:  1852:  1823:  1789:  1725:  1690:  1641:  1631:  1623:  1583:  1573:  1565:  1518:  1412:  1371:  1329:  1294:  1284:  1238:  1212:  1175:  1137:  1114:  968:, and 885:AxoGen 843:Grafts 486:Mexico 482:CancĂşn 407:, and 206:  199:  192:  185:  177:  95:, but 3088:Basic 2640:Audio 2628:Other 2546:Paper 2465:Power 2310:River 2235:Civil 1986:S2CID 1941:S2CID 1887:S2CID 1441:Video 1194:Chest 712:proxy 578:Scope 431:motor 211:JSTOR 197:books 2735:Fire 2536:Food 2110:PMID 2067:ISBN 2057:ISBN 2047:ISBN 2037:ISBN 2027:ISBN 2017:ISBN 2003:ISBN 1978:PMID 1970:ISSN 1933:PMID 1925:ISSN 1879:PMID 1850:PMID 1821:PMID 1787:PMID 1723:PMID 1688:ISSN 1639:PMID 1621:ISSN 1581:PMID 1563:ISSN 1516:PMID 1462:Home 1410:PMID 1369:PMID 1327:PMID 1292:PMID 1236:ISBN 1210:PMID 1173:ISBN 1135:OCLC 1112:PMID 966:NCAM 813:and 702:and 621:and 475:and 441:and 429:and 383:and 183:news 2945:M–Z 2940:A–L 2687:MEP 2223:and 2100:PMC 2090:doi 1962:doi 1917:doi 1871:doi 1842:doi 1813:doi 1779:doi 1715:doi 1678:doi 1629:PMC 1613:doi 1571:PMC 1555:doi 1508:doi 1443:on 1402:doi 1359:doi 1319:doi 1282:PMC 1272:doi 1202:doi 1198:134 1165:doi 1104:doi 912:. 863:or 166:by 3695:: 2108:. 2098:. 2084:. 2080:. 1984:. 1976:. 1968:. 1958:39 1956:. 1939:. 1931:. 1923:. 1915:. 1903:. 1885:. 1877:. 1867:46 1865:. 1848:. 1838:39 1836:. 1819:. 1809:39 1807:. 1785:. 1775:11 1773:. 1760:^ 1743:. 1721:. 1711:22 1709:. 1686:. 1676:. 1664:. 1660:. 1637:. 1627:. 1619:. 1609:64 1607:. 1603:. 1579:. 1569:. 1561:. 1553:. 1543:26 1541:. 1537:. 1514:. 1502:. 1476:^ 1460:. 1422:^ 1408:. 1398:38 1396:. 1381:^ 1367:. 1355:47 1353:. 1349:. 1325:. 1315:43 1313:. 1290:. 1280:. 1270:. 1266:. 1262:. 1250:^ 1222:^ 1208:. 1196:. 1171:. 1147:^ 1110:. 1098:. 964:, 879:. 504:. 492:, 484:, 445:. 422:. 411:. 403:, 399:, 395:, 391:, 379:, 66:. 3054:e 3047:t 3040:v 2183:e 2176:t 2169:v 2116:. 2092:: 2086:9 2011:. 1992:. 1964:: 1947:. 1919:: 1911:: 1905:5 1893:. 1873:: 1856:. 1844:: 1827:. 1815:: 1793:. 1781:: 1754:. 1729:. 1717:: 1694:. 1680:: 1672:: 1666:3 1645:. 1615:: 1587:. 1557:: 1549:: 1522:. 1510:: 1504:5 1470:. 1416:. 1404:: 1375:. 1361:: 1333:. 1321:: 1298:. 1274:: 1268:4 1244:. 1216:. 1204:: 1181:. 1167:: 1141:. 1118:. 1106:: 1100:5 342:) 336:( 324:) 318:( 313:) 309:( 305:. 299:. 269:) 265:( 259:. 233:) 227:( 222:) 218:( 208:· 201:· 194:· 187:· 160:. 131:) 125:( 120:) 116:( 102:. 73:) 69:( 34:. 20:)

Index

Neuroengineering
Neurocybernetics
improve it
talk page
Learn how and when to remove these messages
references
inline citations
improve
introducing
Learn how and when to remove this message

verification
improve this article
adding citations to reliable sources
"Neural engineering"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
copy editing
editing it
Learn how and when to remove this message
Learn how and when to remove this message
biomedical engineering
computational neuroscience
neurology
electrical engineering
signal processing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑