Knowledge

Neutralizing antibody

Source πŸ“

232:, signaling that it has been targeted, after which the particle is processed and consequently destroyed by recruited immune cells. Neutralizing antibodies on the other hand can neutralize the biological effects of the antigen without a need for immune cells. In some cases, non-neutralizing antibodies, or an insufficient amount of neutralizing antibodies binding to viral particles, can be utilized by some species of virus to facilitate uptake into their host cells. This mechanism is known as 483:. By understanding the binding sites and structure of neutralizing antibodies in a natural immune response a vaccine can be rationally designed such that it stimulates the immune system to produce neutralizing antibodies and not binding antibodies. Introducing a weakened form of a virus through vaccination allows for the production of neutralizing antibodies by 166: 40: 551:
specificity to the old strain can no longer bind to the new virus strain. This immune evasion strategy prevents the immune system from developing immunological memory against the pathogen. Broadly neutralizing antibodies (bNAbs), on the other hand, have the special ability to bind and neutralize multiple strains of a virus species.
182:. Neutralizing antibodies can inhibit infectivity by binding to the pathogen and blocking the molecules needed for cell entry. This can be due to the antibodies statically interfering with the pathogens, or toxins attaching to host cell receptors. In case of a viral infection, NAbs can bind to glycoproteins of 2118:
Simek, MD; Rida, W; Priddy, FH; Pung, P; Carrow, E; Laufer, DS; Lehrman, JK; Boaz, M; Tarragona-Fiol, T; Miiro, G; Birungi, J; Pozniak, A; McPhee, DA; Manigart, O; Karita, E; Inwoley, A; Jaoko, W; Dehovitz, J; Bekker, LG; Pitisuttithum, P; Paris, R; Walker, LM; Poignard, P; Wrin, T; Fast, PE; Burton,
388:
against the infectious agent. This showed that antibodies could be used as an effective treatment for viral infections and toxins. Antiserum is a very crude therapy, because antibodies in the plasma are not purified or standardized and the blood plasma could be rejected by the donor. As it relies on
1529:
Shen, Chenguang; Wang, Zhaoqin; Zhao, Fang; Yang, Yang; Li, Jinxiu; Yuan, Jing; Wang, Fuxiang; Li, Delin; Yang, Minghui; Xing, Li; Wei, Jinli; Xiao, Haixia; Yang, Yan; Qu, Jiuxin; Qing, Ling; Chen, Li; Xu, Zhixiang; Peng, Ling; Li, Yanjie; Zheng, Haixia; Chen, Feng; Huang, Kun; Jiang, Yujing; Liu,
1451:
Hung, I. F.; To, K. K.; Lee, C.-K.; Lee, K.-L.; Chan, K.; Yan, W.-W.; Liu, R.; Watt, C.-L.; Chan, W.-M.; Lai, K.-Y.; Koo, C.-K.; Buckley, T.; Chow, F.-L.; Wong, K.-K.; Chan, H.-S.; Ching, C.-K.; Tang, B. S.; Lau, C. C.; Li, I. W.; Liu, S.-H.; Chan, K.-H.; Lin, C.-K.; Yuen, K.-Y. (19 January 2011).
491:
that produce antibodies specific to the virus. An effective vaccine induces the production of antibodies that are able to neutralize the majority of variants of a virus, although virus mutation resulting in antibody evasion may require vaccines to be updated in response. Some viruses evolve faster
227:
Not all antibodies that bind to a pathogenic particle are neutralizing. Non-neutralizing antibodies, or binding antibodies, bind specifically to the pathogen, but do not interfere with their infectivity. That might be because they do not bind to the right region. Non-neutralizing antibodies can be
558:
screening study showed that only 1% of all patients develop bNAbs against HIV. bNABs can neutralize a wide range of virus strains by binding to conserved regions of the virus surface proteins that are unable to mutate because they are functionally essential for the virus replication. Most binding
346:
during the course of an immune response, thereby improving recognition of viral particles. Conserved parts of viral proteins that play a central role in viral function are less likely to evolve over time, and therefore are more vulnerable to antibody binding. However, viruses have evolved certain
550:
Most of the neutralizing antibodies produced by the immune system are very specific for a single virus strain due to affinity maturation by B cells. Some pathogens with high genetic variability, such as HIV, constantly change their surface structure such that neutralizing antibodies with high
628:
Mike Recher; Karl S Lang; Lukas Hunziker; Stefan Freigang; Bruno Eschli; Nicola L Harris; Alexander Navarini; Beatrice M Senn; Katja Fink; Marius LΓΆtscher; Lars Hangartner; RaphaΓ«l Zellweger; Martin Hersberger; Alexandre Theocharides; Hans Hengartner; Rolf M Zinkernagel (8 August 2004).
286:. A strong diversity in the antibody repertoire allows the immune system to recognize a plethora of pathogens which can come in all different forms and sizes. During an infection only antibodies that bind to the pathogenic antigen with high affinity are produced. This is achieved by 428:. Polyclonal antibodies are obtained from human donors or animals that have been exposed to the antigen. The antigen injected into the animal donors can be designed in such a way to preferably produce neutralizing antibodies. Polyclonal antibodies have been used as treatment for 594:
Preliminary research is conducted to identify and test bNAbs against HIV-1. bNAbs are used in research to rationally design vaccines to stimulate production of bNAbs and immunity against viruses. No antigen that triggers bNAb production in animal models or humans is known.
389:
the donation from recovered patients it cannot be easily scaled up. However, serum therapy is today still used as the first line of defence during an outbreak as it can relatively quickly obtained. Serum therapy was shown to reduce mortality in patients during the
949:
Dejnirattisai, Wanwisa; Supasa, Piyada; Wongwiwat, Wiyada; Rouvinski, Alexander; Barba-Spaeth, Giovanna; Duangchinda, Thaneeya; Sakuntabhai, Anavaj; Cao-Lormeau, Van-Mai; Malasit, Prida; Rey, Felix A; Mongkolsapaya, Juthathip; Screaton, Gavin R (23 June 2016).
456:. By treating with antibodies binding multiple epitopes, the treatment is still effective even if the virus mutates and one of the epitopes changes in structure. However, because of the nature of the production, treatment with polyclonal antibodies has 195:
of viral proteins that mediate the membrane fusion needed for entry into the host cell. In some cases, the virus is unable to infect even after the antibody dissociates. The pathogen-antibody complex is eventually taken up and degraded by macrophages.
1700:
Multi-National PREVAIL II Study Team, Davey RT Jr, Dodd L, Proschan MA, Neaton J, Neuhaus Nordwall J, Koopmeiners JS, Beigel J, Tierney J, Lane HC, Fauci AS, Massaquoi MBF, Sahr F, Malvy D, et al. (PREVAIL II Writing Group) (13 October 2016).
468:, which allows the production of mAbs in large quantities. mAbs against infections stop working when virus mutates the epitope that is targeted by the mAbs or multiple strain are circulating. Example of drugs that use monoclonal antibodies include 351:
access of an antibody to these regions, making binding difficult. Viruses with a low density of surface structural proteins are more difficult for antibodies to bind to. Some viral glycoproteins are heavily glycosylated by N- and O- linked
2335:
Durham, ND; Agrawal, A; Waltari, E; Croote, D; Zanini, F; Fouch, M; Davidson, E; Smith, O; Carabajal, E; Pak, JE; Doranz, BJ; Robinson, M; Sanz, AM; Albornoz, LL; Rosso, F; Einav, S; Quake, SR; McCutcheon, KM; Goo, L (10 December 2019).
511:
administered to the body which would otherwise treat multiple sclerosis. Recombinant protein drugs, especially those derived from animals, are commonly targeted by neutralizing antibodies. A few examples are Rebif, Betaseron and Avonex.
2121:"Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm" 190:
of non-enveloped viruses. Furthermore, neutralizing antibodies can act by preventing particles from undergoing structural changes often needed for successful cell entry. For example, neutralizing antibodies can prevent
169:
Covering a pathogen's antigen in antibodies make the pathogen less infectious and less pathogenic. In the image on the right, virus entry to the cell is prevented by neutralizing antibodies binding to the
1400:
Schmidt, Rebecca; Beltzig, Lea C.; Sawatsky, Bevan; Dolnik, Olga; Dietzel, Erik; KrΓ€hling, Verena; Volz, Asisa; Sutter, Gerd; Becker, Stephan; von Messling, Veronika (5 October 2018).
207:. Neutralizing antibodies are not effective against extracellular bacteria, as the binding of antibodies does not prevent bacteria from replicating. Here, the immune system uses other 129:
or infectious particle by neutralizing any effect it has biologically. Neutralization renders the particle no longer infectious or pathogenic. Neutralizing antibodies are part of the
1635:
Bregenholt, S; Jensen, A; Lantto, J; Hyldig, S; Haurum, JS (2006). "Recombinant human polyclonal antibodies: A new class of therapeutic antibodies against viral infections".
2387:
Goo, L; Debbink, K; Kose, N; Sapparapu, G; Doyle, MP; Wessel, AW; Richner, JM; Burgomaster, KE; Larman, BC; Dowd, KA; Diamond, MS; Crowe JE, Jr; Pierson, TC (January 2019).
302:
on their cell surface, which is just the antibody anchored to the cell membrane. When the B-cell receptor binds to its cognate antigen with high affinity, an intracellular
96: 322:. Plasma cells then secrete the antigen-specific antibody in large quantities. After a first encounter of the antigen by vaccination or natural infection, 2284:
Colbert, MD; Flyak, AI; Ogega, CO; Kinchen, VJ; Massaccesi, G; Hernandez, M; Davidson, E; Doranz, BJ; Cox, AL; Crowe JE, Jr; Bailey, JR (15 July 2019).
174:
In order to enter cells, pathogens, such as circulating viral particles or extracellular bacteria, use molecules on their surfaces to interact with the
342:
that allow viruses to evade a neutralizing antibody will be selected for, and hence prevail. Conversely, antibodies also simultaneously evolve by
376:, and can be used for patients even if they do not have a healthy immune system. In the early 20th century, infected patients were injected with 1051: 863: 812: 545: 521: 394: 199:
Neutralizing antibodies are also important in neutralizing the toxic effects of bacterial toxins. An example of a neutralizing antibody is
524:(which compares counts of virus plaques in control wells with those in inoculated cultures), microneutralization (which is performed in 1678: 356:, creating a so-called glycan shield, which may decrease antibody binding affinity and facilitate evasion of neutralizing antibodies. 788: 318:
response of the immune system against the pathogen. Once a B cell is fully activated, it rapidly proliferates and differentiates into
879:
Schmaljohn, AL (July 2013). "Protective antiviral antibodies that lack neutralizing activity: precedents and evolution of concepts".
1947: 568: 520:
Neutralization assays are capable of being performed and measured in different ways, including the use of techniques such as
233: 492:
than others, which can require the need for vaccines to be updated in response. A well known example is the vaccine for the
464:. Monoclonal antibodies, on the other hand, all bind the same epitope with high specificity. They can be produced with the 89: 1454:"Convalescent Plasma Treatment Reduced Mortality in Patients With Severe Pandemic Influenza A (H1N1) 2009 Virus Infection" 424:(mAb) can be used. Polyclonal antibodies are collection of antibodies that target the same pathogen but bind to different 2389:"A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions" 445: 82: 1504: 559:
sites of bNAbs against HIV are on HIV's exposed surface antigen, the envelope (Env) protein (a trimer composed of
571:
HIV Databases is a comprehensive resource that has a wealth of information about HIV sequences, bNAbs, and more.
1778:"Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity" 1078:"Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity" 1752: 279: 1505:"WHO | Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease" 390: 402: 315: 134: 2338:"Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics" 533: 421: 417: 385: 326:
allows for a more rapid production of neutralizing antibodies following the next exposure to the virus.
267: 192: 175: 952:"Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus" 2084: 829: 465: 449: 373: 323: 295: 200: 487:. After a second exposure, the neutralizing antibody response is more rapid due to the existence of 153:) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its 2498: 508: 343: 271: 142: 496:
virus, which must be updated annually to account for the recent circulating strains of the virus.
1918: 704: 658: 500: 2286:"Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2" 2475: 2457: 2418: 2369: 2317: 2266: 2203: 2152: 2100: 2057: 2003: 1943: 1910: 1902: 1864: 1809: 1734: 1652: 1614: 1563: 1485: 1433: 1382: 1331: 1287: 1231: 1213: 1172: 1154: 1115: 1097: 1047: 1022: 981: 931: 914:
Tirado, SM; Yoon, KJ (2003). "Antibody-dependent enhancement of virus infection and disease".
896: 859: 808: 784: 759: 650: 604: 433: 410: 216: 179: 1937: 2465: 2449: 2408: 2400: 2359: 2349: 2307: 2297: 2256: 2248: 2193: 2183: 2142: 2132: 2092: 2047: 2037: 1993: 1983: 1894: 1854: 1844: 1799: 1789: 1724: 1714: 1670: 1644: 1604: 1594: 1553: 1543: 1475: 1465: 1423: 1413: 1372: 1362: 1321: 1277: 1267: 1221: 1203: 1162: 1146: 1105: 1089: 1012: 971: 963: 923: 888: 837: 749: 739: 642: 609: 525: 453: 406: 287: 204: 130: 1828: 1150: 583: 429: 357: 299: 187: 146: 2235:
Corti, D; Cameroni, E; Guarino, B; Kallewaard, NL; Zhu, Q; Lanzavecchia, A (June 2017).
2088: 2470: 2437: 2413: 2388: 2364: 2337: 2312: 2285: 2261: 2236: 2198: 2171: 2147: 2120: 2052: 2025: 1998: 1971: 1859: 1832: 1804: 1777: 1729: 1702: 1609: 1582: 1558: 1531: 1480: 1453: 1428: 1401: 1377: 1350: 1282: 1255: 1226: 1191: 1167: 1134: 1110: 1077: 976: 951: 754: 727: 461: 348: 303: 183: 154: 122: 17: 1017: 1000: 2492: 728:"Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives" 529: 488: 441: 311: 306:
is triggered. In addition to binding to an antigen, B cells need to be stimulated by
290:
of a single B cell clone: B cells are recruited to the site of infection by sensing
1922: 682: 662: 631:"Deliberate removal of T cell help improves virus-neutralizing antibody production" 457: 437: 237: 229: 212: 2438:"Broadly neutralizing antibodies as treatment: effects on virus and immune system" 2096: 554:
bNAbs have been initially found in HIV patients. However, they are quite rare: an
282:. Therefore, every B cell produces antibodies that bind specifically to different 274:), which results in every mature B cell producing antibodies that differ in their 2252: 2188: 892: 334:
Viruses use a variety of mechanisms to evade neutralizing antibodies. Viral
1849: 1833:"Rational Design of Vaccines to Elicit Broadly Neutralizing Antibodies to HIV-1" 683:"Neutralizing Antibodies and Disease-Modifying Therapies for Multiple Sclerosis" 575: 567:
subunits). These site include the CD4 binding site or the gp41-gp120 interface.
480: 473: 381: 319: 263: 1648: 1532:"Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma" 1351:"Treatment of Ebola Virus Infection with Antibodies from Reconvalescent Donors" 1254:
Salazar, Georgina; Zhang, Ningyan; Fu, Tong-Ming; An, Zhiqiang (10 July 2017).
927: 405:, which uses a mixture of antibodies obtained from healthy people, is given to 2453: 2404: 1418: 1272: 504: 291: 275: 241: 2461: 2042: 1906: 1217: 1158: 1101: 841: 493: 377: 2479: 2422: 2373: 2321: 2270: 2207: 2156: 2104: 2061: 2007: 1914: 1868: 1813: 1776:
VanBlargan, Laura A.; Goo, Leslie; Pierson, Theodore C. (26 October 2016).
1738: 1656: 1618: 1567: 1548: 1489: 1437: 1386: 1367: 1335: 1291: 1235: 1176: 1119: 1026: 985: 935: 900: 763: 654: 630: 574:
Additionally, bNAbs have been found for other viruses including influenza,
536:(which depend on biomarkers indicating metabolic inhibition of the virus). 2170:
Haynes, Barton F.; Burton, Dennis R.; Mascola, John R. (30 October 2019).
1988: 1794: 1719: 1208: 1093: 744: 2302: 2137: 1470: 1256:"Antibody therapies for the prevention and treatment of viral infections" 1192:"Innate Immune Evasion Strategies by Human Immunodeficiency Virus Type 1" 425: 398: 361: 339: 307: 208: 178:
of their target cell which allows them to enter the cell and start their
126: 118: 2354: 2221: 476:
against RSV. Many mABs against other infections are in clinical trials.
165: 1326: 1309: 283: 150: 1599: 579: 484: 353: 335: 259: 253: 967: 39: 2026:"Broadly neutralizing antibodies in HIV-1 treatment and prevention" 2024:
Kumar, R; Qureshi, H; Deshpande, S; Bhattacharya, J (August 2018).
1898: 1703:"A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection" 646: 516:
Methods for detection and quantification of neutralizing antibodies
479:
Neutralizing antibodies also play a role in active immunisation by
1402:"Generation of therapeutic antisera for emerging viral infections" 560: 469: 164: 138: 223:
Difference between neutralizing antibodies and binding antibodies
1530:
Dongjing; Zhang, Zheng; Liu, Yingxia; Liu, Lei (27 March 2020).
1076:
VanBlargan, Laura A.; Goo, Leslie; Pierson, Theodore C. (2016).
564: 1885:
Burton, Dennis R. (2002). "Antibodies, viruses and vaccines".
1133:
Crispin, Max; Ward, Andrew B.; Wilson, Ian A. (20 May 2018).
1936:
Kaslow, R. A.; Stanberry, L.R.; Le Duc, J. W., eds. (2014).
1308:
Casadevall, A; Dadachova, E; Pirofski, LA (September 2004).
1135:"Structure and Immune Recognition of the HIV Glycan Shield" 1581:
Casadevall, Arturo; Pirofski, Liise-anne (13 March 2020).
805:
Principles of Virology, Volume 2: Pathogenesis and Control
503:. Although this type of antibody has the ability to fight 384:
of a previously infected and recovered patient containing
2237:"Tackling influenza with broadly neutralizing antibodies" 1071: 1069: 1067: 1065: 1063: 1046:(8th ed.). Garland Science. 2012. pp. 389–404. 499:
Neutralizing antibodies may also assist the treatment of
2172:"Multiple roles for HIV broadly neutralizing antibodies" 1753:"Label - Palivizumab (Synagis), Medimmune, Incorporated" 294:
that are released by the infected cells as part of the
1583:"The convalescent sera option for containing COVID-19" 266:, the genes that encode the antibodies undergo random 2436:
Bhiman, Jinal N.; Lynch, Rebecca M. (27 March 2017).
1972:"HIV-1 Genetic Variability and Clinical Implications" 1939:
Viral Infections of Humans: Epidemiology and Control
858:(8th ed.). Garland Science. 2012. p. 388. 397:. It is also being tested as possible treatment for 781:
Principles of Virology, Volume 1: Molecular Biology
416:For a more specific and robust treatment, purified 70: 62: 54: 49: 2030:Therapeutic Advances in Vaccines and Immunotherapy 1310:"Passive antibody therapy for infectious diseases" 1630: 1628: 1303: 1301: 203:, which can neutralize the biological effects of 149:. By binding specifically to surface structures ( 1038: 1036: 1880: 1878: 1677:. Centers for Disease Control and Prevention. 1249: 1247: 1245: 999:Jung, David; Alt, Frederick W (January 2004). 807:(4th ed.). ASM Press. 2015. p. 125. 783:(4th ed.). ASM Press. 2015. p. 31. 90: 8: 2019: 2017: 676: 674: 672: 32: 1837:Cold Spring Harbor Perspectives in Medicine 452:contains polyclonal antibodies against the 1782:Microbiology and Molecular Biology Reviews 1082:Microbiology and Molecular Biology Reviews 97: 83: 2469: 2412: 2363: 2353: 2311: 2301: 2260: 2197: 2187: 2146: 2136: 2051: 2041: 1997: 1987: 1858: 1848: 1803: 1793: 1728: 1718: 1608: 1598: 1557: 1547: 1479: 1469: 1427: 1417: 1376: 1366: 1325: 1281: 1271: 1225: 1207: 1190:Guha, Debjani; Ayyavoo, Velpandi (2013). 1166: 1109: 1016: 975: 753: 743: 330:Virus evasion of neutralizing antibodies 258:Antibodies are produced and secreted by 620: 368:Medical uses of neutralizing antibodies 1942:(5th ed.). Springer. p. 56. 775: 773: 31: 2075:Cohen, J. (2013). "Bound for Glory". 1681:from the original on 16 December 2016 1151:10.1146/annurev-biophys-060414-034156 546:Broadly neutralizing HIV-1 antibodies 507:infections, in some cases it attacks 372:Neutralizing antibodies are used for 7: 681:Stachowiak, Julie (15 August 2008). 395:Western African Ebola virus epidemic 262:. When B cells are produced in the 1831:; Nabel, G. J. (1 September 2011). 228:important to flag the particle for 726:Klasse, P. J. (9 September 2014). 413:patients to fight off infections. 219:activation, to kill the bacteria. 25: 2224:. Los Alamos National Laboratory. 1587:Journal of Clinical Investigation 364:, uses both of these mechanisms. 1675:Infectious Diseases Laboratories 1001:"Unraveling V(D)J Recombination" 569:Los Alamos National Laboratory's 44:Standard antibody representation 38: 1970:Santoro, MM; Perno, CF (2013). 1707:New England Journal of Medicine 1349:Kreil, Thomas R. (March 2015). 540:Broadly neutralizing antibodies 2176:Science Translational Medicine 234:antibody-dependent enhancement 1: 2097:10.1126/science.341.6151.1168 1637:Current Pharmaceutical Design 1018:10.1016/S0092-8674(04)00039-X 528:filled with small amounts of 157:it might infect and destroy. 2253:10.1016/j.coviro.2017.03.002 2189:10.1126/scitranslmed.aaz2686 1458:Clinical Infectious Diseases 1355:Emerging Infectious Diseases 1314:Nature Reviews. Microbiology 893:10.2174/1570162x113116660057 2241:Current Opinion in Virology 1850:10.1101/cshperspect.a007278 1503:World Health Organization. 1139:Annual Review of Biophysics 828:Treffers, Henry P. (2014). 446:respiratory syncytial virus 236:. It has been observed for 2515: 2119:DR; Koff, WC (July 2009). 1649:10.2174/138161206777442173 928:10.1089/088282403763635465 543: 251: 66:Neutralization of antigens 2454:10.1007/s11904-017-0352-1 2405:10.1038/s41564-018-0283-7 1887:Nature Reviews Immunology 1419:10.1038/s41541-018-0082-4 1273:10.1038/s41541-017-0019-3 78: 37: 2442:Current HIV/AIDS Reports 2043:10.1177/2515135518800689 842:10.1036/1097-8542.450600 458:batch to batch variation 1044:Janeway's immunobiology 856:Janeway's immunobiology 830:"Neutralizing antibody" 705:"Neutralizing antibody" 391:2009 swine flu pandemic 338:mutate at a high rate. 33:Neutralizing antibodies 18:Neutralising antibodies 1549:10.1001/jama.2020.4783 1368:10.3201/eid2103.141838 707:. Biology-Online. 2008 403:Immunoglobulin therapy 296:innate immune response 280:antigen-binding region 193:conformational changes 176:cell surface receptors 171: 135:adaptive immune system 1795:10.1128/MMBR.00024-15 1720:10.1056/NEJMoa1604330 1094:10.1128/MMBR.00024-15 422:monoclonal antibodies 386:polyclonal antibodies 360:, the cause of human 347:mechanisms to hinder 268:genetic recombination 168: 111:neutralizing antibody 2303:10.1128/JVI.02070-18 2138:10.1128/JVI.00110-09 881:Current HIV Research 466:Hybridoma technology 450:Diphtheria antitoxin 374:passive immunisation 324:immunological memory 211:of antibodies, like 201:diphtheria antitoxin 2393:Nature Microbiology 2355:10.7554/eLife.52384 2290:Journal of Virology 2125:Journal of Virology 2089:2013Sci...341.1168C 2083:(6151): 1168–1171. 1989:10.1155/2013/481314 1209:10.1155/2013/954806 745:10.1155/2014/157895 732:Advances in Biology 534:colorimetric assays 344:affinity maturation 272:V(D)J recombination 34: 1471:10.1093/cid/ciq106 1327:10.1038/nrmicro974 501:multiple sclerosis 472:against Ebola and 304:signalling cascade 298:. B cells display 172: 2182:(516): eaaz2686. 1976:ISRN Microbiology 1713:(15): 1448–1456. 1600:10.1172/JCI138003 1542:(16): 1582–1589. 1053:978-0-8153-4243-4 956:Nature Immunology 865:978-0-8153-4243-4 814:978-1-555-81951-4 635:Nature Immunology 605:Blocking antibody 526:microtiter plates 434:hepatitis b virus 184:enveloped viruses 180:replication cycle 107: 106: 16:(Redirected from 2506: 2484: 2483: 2473: 2433: 2427: 2426: 2416: 2384: 2378: 2377: 2367: 2357: 2332: 2326: 2325: 2315: 2305: 2281: 2275: 2274: 2264: 2232: 2226: 2225: 2218: 2212: 2211: 2201: 2191: 2167: 2161: 2160: 2150: 2140: 2115: 2109: 2108: 2072: 2066: 2065: 2055: 2045: 2021: 2012: 2011: 2001: 1991: 1967: 1961: 1960: 1958: 1956: 1933: 1927: 1926: 1882: 1873: 1872: 1862: 1852: 1824: 1818: 1817: 1807: 1797: 1773: 1767: 1766: 1764: 1762: 1757: 1749: 1743: 1742: 1732: 1722: 1697: 1691: 1690: 1688: 1686: 1667: 1661: 1660: 1632: 1623: 1622: 1612: 1602: 1593:(4): 1545–1548. 1578: 1572: 1571: 1561: 1551: 1526: 1520: 1519: 1517: 1515: 1500: 1494: 1493: 1483: 1473: 1448: 1442: 1441: 1431: 1421: 1397: 1391: 1390: 1380: 1370: 1346: 1340: 1339: 1329: 1305: 1296: 1295: 1285: 1275: 1251: 1240: 1239: 1229: 1211: 1187: 1181: 1180: 1170: 1130: 1124: 1123: 1113: 1073: 1058: 1057: 1040: 1031: 1030: 1020: 996: 990: 989: 979: 962:(9): 1102–1108. 946: 940: 939: 916:Viral Immunology 911: 905: 904: 876: 870: 869: 852: 846: 845: 825: 819: 818: 801: 795: 794: 777: 768: 767: 757: 747: 723: 717: 716: 714: 712: 701: 695: 694: 692: 690: 678: 667: 666: 625: 610:Humoral immunity 522:plaque reduction 454:diphtheria toxin 411:immunosuppressed 300:B-cell receptors 288:clonal selection 278:sequence in the 205:diphtheria toxin 133:response of the 99: 92: 85: 42: 35: 27:Type of antibody 21: 2514: 2513: 2509: 2508: 2507: 2505: 2504: 2503: 2489: 2488: 2487: 2435: 2434: 2430: 2386: 2385: 2381: 2334: 2333: 2329: 2283: 2282: 2278: 2234: 2233: 2229: 2222:"HIV Databases" 2220: 2219: 2215: 2169: 2168: 2164: 2131:(14): 7337–48. 2117: 2116: 2112: 2074: 2073: 2069: 2023: 2022: 2015: 1969: 1968: 1964: 1954: 1952: 1950: 1935: 1934: 1930: 1884: 1883: 1876: 1826: 1825: 1821: 1788:(4): 989–1010. 1775: 1774: 1770: 1760: 1758: 1755: 1751: 1750: 1746: 1699: 1698: 1694: 1684: 1682: 1671:"Our Formulary" 1669: 1668: 1664: 1643:(16): 2007–15. 1634: 1633: 1626: 1580: 1579: 1575: 1528: 1527: 1523: 1513: 1511: 1502: 1501: 1497: 1450: 1449: 1445: 1399: 1398: 1394: 1348: 1347: 1343: 1307: 1306: 1299: 1253: 1252: 1243: 1189: 1188: 1184: 1132: 1131: 1127: 1088:(4): 989–1010. 1075: 1074: 1061: 1054: 1042: 1041: 1034: 998: 997: 993: 968:10.1038/ni.3515 948: 947: 943: 913: 912: 908: 878: 877: 873: 866: 854: 853: 849: 836:. McGraw-Hill. 827: 826: 822: 815: 803: 802: 798: 791: 779: 778: 771: 725: 724: 720: 710: 708: 703: 702: 698: 688: 686: 680: 679: 670: 627: 626: 622: 618: 601: 592: 584:West Nile virus 548: 542: 518: 509:pharmaceuticals 462:antibody titers 430:cytomegalovirus 407:immunodeficient 380:, which is the 370: 332: 314:as part of the 256: 250: 225: 188:capsid proteins 163: 147:microbial toxin 121:that defends a 103: 45: 28: 23: 22: 15: 12: 11: 5: 2512: 2510: 2502: 2501: 2491: 2490: 2486: 2485: 2428: 2379: 2327: 2276: 2227: 2213: 2162: 2110: 2067: 2013: 1962: 1948: 1928: 1899:10.1038/nri891 1893:(9): 706–713. 1874: 1843:(1): a007278. 1829:Mascola, J. R. 1827:Kwong, P. D.; 1819: 1768: 1744: 1692: 1662: 1624: 1573: 1521: 1495: 1464:(4): 447–456. 1443: 1392: 1361:(3): 521–523. 1341: 1320:(9): 695–703. 1297: 1241: 1182: 1145:(1): 499–523. 1125: 1059: 1052: 1032: 1011:(2): 299–311. 991: 941: 906: 871: 864: 847: 820: 813: 796: 790:978-1555819330 789: 769: 718: 696: 668: 647:10.1038/ni1102 641:(9): 934–942. 619: 617: 614: 613: 612: 607: 600: 597: 591: 588: 541: 538: 517: 514: 489:memory B cells 369: 366: 331: 328: 312:T helper cells 249: 246: 224: 221: 162: 159: 105: 104: 102: 101: 94: 87: 79: 76: 75: 72: 68: 67: 64: 60: 59: 56: 52: 51: 47: 46: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2511: 2500: 2497: 2496: 2494: 2481: 2477: 2472: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2432: 2429: 2424: 2420: 2415: 2410: 2406: 2402: 2398: 2394: 2390: 2383: 2380: 2375: 2371: 2366: 2361: 2356: 2351: 2347: 2343: 2339: 2331: 2328: 2323: 2319: 2314: 2309: 2304: 2299: 2295: 2291: 2287: 2280: 2277: 2272: 2268: 2263: 2258: 2254: 2250: 2246: 2242: 2238: 2231: 2228: 2223: 2217: 2214: 2209: 2205: 2200: 2195: 2190: 2185: 2181: 2177: 2173: 2166: 2163: 2158: 2154: 2149: 2144: 2139: 2134: 2130: 2126: 2122: 2114: 2111: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2071: 2068: 2063: 2059: 2054: 2049: 2044: 2039: 2035: 2031: 2027: 2020: 2018: 2014: 2009: 2005: 2000: 1995: 1990: 1985: 1981: 1977: 1973: 1966: 1963: 1951: 1949:9781489974488 1945: 1941: 1940: 1932: 1929: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1881: 1879: 1875: 1870: 1866: 1861: 1856: 1851: 1846: 1842: 1838: 1834: 1830: 1823: 1820: 1815: 1811: 1806: 1801: 1796: 1791: 1787: 1783: 1779: 1772: 1769: 1754: 1748: 1745: 1740: 1736: 1731: 1726: 1721: 1716: 1712: 1708: 1704: 1696: 1693: 1680: 1676: 1672: 1666: 1663: 1658: 1654: 1650: 1646: 1642: 1638: 1631: 1629: 1625: 1620: 1616: 1611: 1606: 1601: 1596: 1592: 1588: 1584: 1577: 1574: 1569: 1565: 1560: 1555: 1550: 1545: 1541: 1537: 1533: 1525: 1522: 1510: 1506: 1499: 1496: 1491: 1487: 1482: 1477: 1472: 1467: 1463: 1459: 1455: 1447: 1444: 1439: 1435: 1430: 1425: 1420: 1415: 1411: 1407: 1403: 1396: 1393: 1388: 1384: 1379: 1374: 1369: 1364: 1360: 1356: 1352: 1345: 1342: 1337: 1333: 1328: 1323: 1319: 1315: 1311: 1304: 1302: 1298: 1293: 1289: 1284: 1279: 1274: 1269: 1265: 1261: 1257: 1250: 1248: 1246: 1242: 1237: 1233: 1228: 1223: 1219: 1215: 1210: 1205: 1201: 1197: 1193: 1186: 1183: 1178: 1174: 1169: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1129: 1126: 1121: 1117: 1112: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1070: 1068: 1066: 1064: 1060: 1055: 1049: 1045: 1039: 1037: 1033: 1028: 1024: 1019: 1014: 1010: 1006: 1002: 995: 992: 987: 983: 978: 973: 969: 965: 961: 957: 953: 945: 942: 937: 933: 929: 925: 921: 917: 910: 907: 902: 898: 894: 890: 887:(5): 345–53. 886: 882: 875: 872: 867: 861: 857: 851: 848: 843: 839: 835: 834:AccessScience 831: 824: 821: 816: 810: 806: 800: 797: 792: 786: 782: 776: 774: 770: 765: 761: 756: 751: 746: 741: 737: 733: 729: 722: 719: 706: 700: 697: 684: 677: 675: 673: 669: 664: 660: 656: 652: 648: 644: 640: 636: 632: 624: 621: 615: 611: 608: 606: 603: 602: 598: 596: 589: 587: 585: 581: 577: 572: 570: 566: 562: 557: 552: 547: 539: 537: 535: 531: 527: 523: 515: 513: 510: 506: 502: 497: 495: 490: 486: 482: 477: 475: 471: 467: 463: 459: 455: 451: 447: 443: 442:measles virus 439: 435: 431: 427: 423: 419: 414: 412: 408: 404: 400: 396: 392: 387: 383: 379: 375: 367: 365: 363: 359: 355: 350: 345: 341: 337: 329: 327: 325: 321: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 255: 247: 245: 243: 239: 235: 231: 222: 220: 218: 214: 210: 206: 202: 197: 194: 189: 185: 181: 177: 167: 160: 158: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 100: 95: 93: 88: 86: 81: 80: 77: 73: 69: 65: 61: 57: 53: 48: 41: 36: 30: 19: 2448:(2): 54–62. 2445: 2441: 2431: 2399:(1): 71–77. 2396: 2392: 2382: 2345: 2341: 2330: 2293: 2289: 2279: 2244: 2240: 2230: 2216: 2179: 2175: 2165: 2128: 2124: 2113: 2080: 2076: 2070: 2036:(4): 61–68. 2033: 2029: 1979: 1975: 1965: 1953:. Retrieved 1938: 1931: 1890: 1886: 1840: 1836: 1822: 1785: 1781: 1771: 1759:. Retrieved 1747: 1710: 1706: 1695: 1683:. Retrieved 1674: 1665: 1640: 1636: 1590: 1586: 1576: 1539: 1535: 1524: 1512:. Retrieved 1508: 1498: 1461: 1457: 1446: 1409: 1406:npj Vaccines 1405: 1395: 1358: 1354: 1344: 1317: 1313: 1263: 1260:npj Vaccines 1259: 1199: 1195: 1185: 1142: 1138: 1128: 1085: 1081: 1043: 1008: 1004: 994: 959: 955: 944: 922:(1): 69–86. 919: 915: 909: 884: 880: 874: 855: 850: 833: 823: 804: 799: 780: 735: 731: 721: 709:. Retrieved 699: 687:. Retrieved 638: 634: 623: 593: 573: 555: 553: 549: 519: 498: 478: 438:rabies virus 415: 371: 333: 320:plasma cells 310:produced by 257: 238:Dengue virus 230:immune cells 226: 213:opsonisation 198: 173: 114: 110: 108: 58:Immunoglobin 55:Protein Type 29: 685:. About.com 576:hepatitis C 481:vaccination 474:Palivizumab 382:blood serum 292:interferons 264:bone marrow 2499:Antibodies 1982:: 481314. 1761:4 February 1685:9 December 1202:: 954806. 616:References 544:See also: 505:retroviral 418:polyclonal 276:amino acid 252:See also: 248:Production 242:Zika virus 217:complement 155:host cells 71:Production 50:Properties 2462:1548-3568 2247:: 60–69. 1907:1474-1733 1412:(1): 42. 1266:(1): 19. 1218:2090-939X 1196:ISRN AIDS 1159:1936-122X 1102:1092-2172 494:influenza 378:antiserum 340:Mutations 308:cytokines 209:functions 161:Mechanism 2493:Category 2480:28349376 2423:30455471 2374:31820734 2322:31068427 2271:28527859 2208:31666399 2157:19439467 2105:24030996 2062:30345419 2008:23844315 1915:12209139 1869:22229123 1814:27784796 1739:27732819 1679:Archived 1657:16787244 1619:32167489 1568:32219428 1490:21248066 1438:30323953 1387:25695274 1336:15372080 1292:29263875 1236:24052891 1177:29595997 1120:27784796 1027:14744439 986:27339099 936:12725690 901:24191933 764:27099867 738:: 1–24. 655:15300247 599:See also 590:Research 460:and low 426:epitopes 399:COVID-19 393:and the 316:cellular 284:antigens 143:bacteria 137:against 127:pathogen 119:antibody 117:) is an 63:Function 2471:5401706 2414:6435290 2365:6927745 2313:6600205 2262:7102826 2199:7171597 2148:2704778 2085:Bibcode 2077:Science 2053:6187420 1999:3703378 1955:4 April 1923:9376285 1860:3234457 1805:5116878 1730:5086427 1610:7108922 1559:7101507 1514:5 April 1481:7531589 1429:6173733 1378:4344290 1283:5627241 1227:3767209 1168:6163090 1111:5116878 977:4994874 755:4835181 689:13 June 663:1351951 556:in situ 532:), and 485:B cells 448:(RSV). 436:(HBV), 432:(CMV), 354:glycans 336:genomes 260:B cells 151:antigen 139:viruses 131:humoral 125:from a 74:B cells 2478:  2468:  2460:  2421:  2411:  2372:  2362:  2320:  2310:  2296:(14). 2269:  2259:  2206:  2196:  2155:  2145:  2103:  2060:  2050:  2006:  1996:  1946:  1921:  1913:  1905:  1867:  1857:  1812:  1802:  1737:  1727:  1655:  1617:  1607:  1566:  1556:  1488:  1478:  1436:  1426:  1385:  1375:  1334:  1290:  1280:  1234:  1224:  1216:  1175:  1165:  1157:  1118:  1108:  1100:  1050:  1025:  984:  974:  934:  899:  862:  811:  787:  762:  752:  711:4 July 661:  653:  580:dengue 444:, and 349:steric 254:B cell 170:virus. 2342:eLife 1919:S2CID 1756:(PDF) 659:S2CID 561:gp120 470:ZMapp 358:HIV-1 2476:PMID 2458:ISSN 2419:PMID 2370:PMID 2318:PMID 2267:PMID 2204:PMID 2153:PMID 2101:PMID 2058:PMID 2004:PMID 1980:2013 1957:2020 1944:ISBN 1911:PMID 1903:ISSN 1865:PMID 1810:PMID 1763:2020 1735:PMID 1687:2016 1653:PMID 1615:PMID 1564:PMID 1536:JAMA 1516:2020 1486:PMID 1434:PMID 1383:PMID 1332:PMID 1288:PMID 1232:PMID 1214:ISSN 1200:2013 1173:PMID 1155:ISSN 1116:PMID 1098:ISSN 1048:ISBN 1023:PMID 1005:Cell 982:PMID 932:PMID 897:PMID 860:ISBN 809:ISBN 785:ISBN 760:PMID 736:2014 713:2009 691:2009 651:PMID 582:and 565:gp41 563:and 530:sera 362:AIDS 240:and 215:and 145:and 123:cell 2466:PMC 2450:doi 2409:PMC 2401:doi 2360:PMC 2350:doi 2308:PMC 2298:doi 2257:PMC 2249:doi 2194:PMC 2184:doi 2143:PMC 2133:doi 2093:doi 2081:341 2048:PMC 2038:doi 1994:PMC 1984:doi 1895:doi 1855:PMC 1845:doi 1800:PMC 1790:doi 1725:PMC 1715:doi 1711:375 1645:doi 1605:PMC 1595:doi 1591:130 1554:PMC 1544:doi 1540:323 1509:WHO 1476:PMC 1466:doi 1424:PMC 1414:doi 1373:PMC 1363:doi 1322:doi 1278:PMC 1268:doi 1222:PMC 1204:doi 1163:PMC 1147:doi 1106:PMC 1090:doi 1013:doi 1009:116 972:PMC 964:doi 924:doi 889:doi 838:doi 750:PMC 740:doi 643:doi 420:or 409:or 186:or 115:NAb 2495:: 2474:. 2464:. 2456:. 2446:14 2444:. 2440:. 2417:. 2407:. 2395:. 2391:. 2368:. 2358:. 2348:. 2344:. 2340:. 2316:. 2306:. 2294:93 2292:. 2288:. 2265:. 2255:. 2245:24 2243:. 2239:. 2202:. 2192:. 2180:11 2178:. 2174:. 2151:. 2141:. 2129:83 2127:. 2123:. 2099:. 2091:. 2079:. 2056:. 2046:. 2032:. 2028:. 2016:^ 2002:. 1992:. 1978:. 1974:. 1917:. 1909:. 1901:. 1889:. 1877:^ 1863:. 1853:. 1839:. 1835:. 1808:. 1798:. 1786:80 1784:. 1780:. 1733:. 1723:. 1709:. 1705:. 1673:. 1651:. 1641:12 1639:. 1627:^ 1613:. 1603:. 1589:. 1585:. 1562:. 1552:. 1538:. 1534:. 1507:. 1484:. 1474:. 1462:52 1460:. 1456:. 1432:. 1422:. 1408:. 1404:. 1381:. 1371:. 1359:21 1357:. 1353:. 1330:. 1316:. 1312:. 1300:^ 1286:. 1276:. 1262:. 1258:. 1244:^ 1230:. 1220:. 1212:. 1198:. 1194:. 1171:. 1161:. 1153:. 1143:47 1141:. 1137:. 1114:. 1104:. 1096:. 1086:80 1084:. 1080:. 1062:^ 1035:^ 1021:. 1007:. 1003:. 980:. 970:. 960:17 958:. 954:. 930:. 920:16 918:. 895:. 885:11 883:. 832:. 772:^ 758:. 748:. 734:. 730:. 671:^ 657:. 649:. 637:. 633:. 586:. 578:, 440:, 401:. 244:. 141:, 109:A 2482:. 2452:: 2425:. 2403:: 2397:4 2376:. 2352:: 2346:8 2324:. 2300:: 2273:. 2251:: 2210:. 2186:: 2159:. 2135:: 2107:. 2095:: 2087:: 2064:. 2040:: 2034:6 2010:. 1986:: 1959:. 1925:. 1897:: 1891:2 1871:. 1847:: 1841:1 1816:. 1792:: 1765:. 1741:. 1717:: 1689:. 1659:. 1647:: 1621:. 1597:: 1570:. 1546:: 1518:. 1492:. 1468:: 1440:. 1416:: 1410:3 1389:. 1365:: 1338:. 1324:: 1318:2 1294:. 1270:: 1264:2 1238:. 1206:: 1179:. 1149:: 1122:. 1092:: 1056:. 1029:. 1015:: 988:. 966:: 938:. 926:: 903:. 891:: 868:. 844:. 840:: 817:. 793:. 766:. 742:: 715:. 693:. 665:. 645:: 639:5 270:( 113:( 98:e 91:t 84:v 20:)

Index

Neutralising antibodies

v
t
e
antibody
cell
pathogen
humoral
adaptive immune system
viruses
bacteria
microbial toxin
antigen
host cells

cell surface receptors
replication cycle
enveloped viruses
capsid proteins
conformational changes
diphtheria antitoxin
diphtheria toxin
functions
opsonisation
complement
immune cells
antibody-dependent enhancement
Dengue virus
Zika virus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑