Knowledge (XXG)

Niobium capacitor

Source 📝

832:. The solution found by R. L. Taylor and H. E. Haring of the Bell Labs was based on experience with ceramics. They ground down tantalum to a powder, pressed this powder into a cylindrical form and then sintered the powder particles into a pellet ("slug") at high temperatures, between 1500 and 2000 °C, under vacuum conditions. These first sintered tantalum capacitors used a non-solid electrolyte not consistent with the concept of solid state electronics. 1952 a targeted search in the Bell Labs for a solid electrolyte by D. A. McLean and F. S. Power led to the invention of manganese dioxide as a solid electrolyte for a sintered tantalum capacitor. 390: 378: 1061:, load life or useful life of electrolytic capacitors is a special characteristic of non-solid electrolytic capacitors, especially non-solid aluminum electrolytic capacitors. Their liquid electrolyte can evaporate over time, leading to wear-out failures. Solid niobium capacitors with manganese dioxide electrolyte have no wear-out mechanism, so the constant failure rate lasts up to the point when all capacitors have failed. They don't have a life time specification like non-solid aluminum electrolytic capacitors. 402: 846: 22: 1329: 1184: 194: 190:
in the West, with major capacitor manufacturers taking interest in the late 1990s. The materials and processes used to produce niobium capacitors are essentially the same as for tantalum capacitors. Rising tantalum prices in 2000 and 2001 encouraged the development of niobium electrolytic capacitors with manganese dioxide and polymer electrolytes, which have been available since 2002.
155: 969: 825:) used this phenomenon for an idea of a polarized "Electric liquid capacitor with aluminum electrodes". In 1896 Pollak obtained a patent for the first electrolytic capacitor. The first tantalum electrolytic capacitors with wound tantalum foils and non-solid electrolyte were developed in 1930 by Tansitor Electronics Inc., USA, and used for military purposes. 130:(NbO) as anode material. Niobium oxide is a hard ceramic material characterized by high metallic conductivity. Niobium oxide powder can be prepared in a similar structure to that of tantalum powder and can be processed in a similar way to produce capacitors. It also can be oxidized by anodic oxidation ( 1064:
However, solid polymer niobium electrolytic capacitors do have a life time specification. The electrolyte deteriorates by a thermal degradation mechanism of the conductive polymer. The electrical conductivity decreases, as a function of time, in agreement with a granular structure, in which aging is
1018:
The surge voltage indicates the maximum peak voltage value that may be applied to electrolytic capacitors during their application for a limited number of cycles. The surge voltage is standardized in IEC/EN 60384-1. For niobium electrolytic capacitors the surge voltage shall be not higher than
995:
The voltage proof of electrolytic capacitors decreases with increasing temperature. For some applications it is important to use a higher temperature range. Lowering the voltage applied at a higher temperature maintains safety margins. For some capacitor types therefore the IEC standard specifies a
189:
In the 1960s, the higher availability of niobium ore compared with tantalum ore prompted research into niobium electrolytic capacitors in the Soviet Union. Here they served the same purpose as tantalum capacitors in the West. With the collapse of the Iron Curtain, the technology became better-known
107:
Niobium is a sister metal to tantalum. Niobium has a similar melting point (2744 °C) to tantalum and exhibits similar chemical properties. The materials and processes used to produce niobium-dielectric capacitors are essentially the same as for existing tantalum-dielectric capacitors. However,
1336:
Niobium capacitors are in general polarized components, with distinctly marked positive terminals. When subjected to reversed polarity (even briefly), the capacitor depolarizes and the dielectric oxide layer breaks down, which can cause it to fail even when later operated with correct polarity. If
916:
The electrical characteristics of niobium electrolytic capacitors depend on structure of the anode and the type of electrolyte. The capacitance value of the capacitor depends on measuring frequency and temperature. The rated capacitance value or nominal value is specified in the data sheets of the
270:
The niobium anode material is manufactured from a powder sintered into a pellet with a rough surface structure intended to increase the electrode surface area A compared to a smooth surface with the same footprint. This increase in surface area can increase the capacitance by a factor of up to 200
1246:
dielectric breaks down and the capacitor exhibits a thermal runaway failure. In comparison to solid tantalum capacitors the thermal runaway of niobium anodes will occur at about three times higher power than of tantalum anodes. This gives a significant reduction (95%) of the ignition failure mode
853:
Niobium electrolytic capacitors as discrete components are not ideal capacitors, they have losses and parasitic inductive parts. All properties can be defined and specified by a series equivalent circuit composed out of an idealized capacitance and additional electrical components which model all
555:
Tantalum and niobium electrolytic capacitors with solid electrolyte as surface-mountable chip capacitors are mainly used in electronic devices in which little space is available or a low profile is required. They operate reliably over a wide temperature range without large parameter deviations.
1266:
in tantalum capacitors and therefore grows thicker per applied volt and so operates at lower field strength for a given voltage rating with the lower electrical stress the dielectric. In combination with niobium oxide anodes, which are more stable against oxygen diffusion that results in lower
564:
In order to compare the different characteristics of the different electrolytic chip capacitor types, specimens with the same dimensions and of comparable capacitance and voltage are compared in the following table. In such a comparison the values for ESR and ripple current load are the most
1073:
The different types of electrolytic capacitors show different behaviors in long-term stability, inherent failure modes and their self-healing mechanisms. Application rules for types with an inherent failure mode are specified to ensure capacitors high reliability and long life.
451:
The combination of anode materials for niobium and tantalum electrolytic capacitors and the electrolytes used has formed a wide variety of capacitor types with different properties. An outline of the main characteristics of the different types is shown in the table below.
119:) into the niobium anode metal is very high, resulting in leakage current instability or even capacitor failures. There are two possible ways to reduce oxygen diffusion and improve leakage current stability – either by doping metallic niobium powders with nitride into 185:
This property of niobium was known since the beginning of the 20th century. Although niobium is more abundant in nature and less expensive than tantalum, its high melting point of 2744 °C hindered the development of niobium electrolytic capacitors.
1065:
due to the shrinking of the conductive polymer grains. The life time of polymer electrolytic capacitors is specified in similar terms like non-solid e-caps but its life time calculation follows other rules leading to much longer operational life times.
816:
The phenomenon that can electrochemically form an oxide layer on aluminum and metals like tantalum or niobium, blocking an electric current in one direction but allowing it to flow in the other direction, was discovered in 1875 by the French researcher
389: 1707:
E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. A. Choulis, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics, Volume 10, Issue 1, February 2009, Pages 61–66,
932:
The percentage of allowed deviation of the measured capacitance from the rated value is called capacitance tolerance. Electrolytic capacitors are available in different tolerance series, whose values are specified in the
565:
important parameters for the use of electrolytic capacitors in modern electronic equipment. The lower the ESR the higher the ripple current per volume, thus the better the functionality of the capacitor in the circuit.
87:
Like most electrolytic capacitors, niobium capacitors are polarized components. Reverse voltages or ripple currents higher than specified tolerances can destroy the dielectric and thus the capacitor; the resulting
266:
per volt. This very thin dielectric layer, combined with a sufficiently high dielectric strength, allows niobium electrolytic capacitors to achieve a high volumetric capacitance comparable to tantalum capacitors.
134:, forming) to generate the insulating dielectric layer. Thus two types of niobium electrolytic capacitors are marketed, those using a passivated niobium anode and those using a niobium oxide anode. Both types use 108:
niobium as a raw material is much more abundant in nature than tantalum and is less expensive. The characteristics of niobium electrolytic capacitors and tantalum electrolytic capacitors are roughly comparable.
377: 362:
The higher permittivity and lower breakdown voltage of niobium pentoxide relative to tantalum pentoxide results in niobium capacitors and tantalum capacitors having similar sizes for a given capacitance.
1007:
Lower voltage applied may have positive influences for tantalum (and niobium) electrolytic capacitors. Lowering the voltage applied increases the reliability and reduces the expected failure rate.
1219:
but much lower than a short. In case of faults or impurities in the dielectric which evokes a partial dielectric breakdown the conducting channel would be effectively isolated by reduction of Nb
925:. The standardized measuring condition for electrolytic capacitors is an AC measuring method with a frequency of 100/120 Hz. The AC measuring voltage shall not exceed 0,5  V  AC- 257: 1191:
A rare failure in solid electrolytic capacitors is breakdown of the dielectric caused by faults or impurities. In niobium electrolytic capacitors the dielectric is niobium pentoxide (Nb
1000:". The category voltage is the maximum DC voltage or peak pulse voltage that may be applied continuously to a capacitor at any temperature within the category temperature range T 828:
The development of solid electrolyte tantalum capacitors began in the early 1950s as a miniaturized, more reliable low-voltage support capacitor to complement the newly invented
401: 1027:
Like other electrolytic capacitors, niobium electrolytic capacitors are polarized and require the anode electrode voltage to be positive relative to the cathode voltage.
99:
in the 1960s. Since 2002 they have been commercially available in the West, taking advantage of the lower cost and better availability of niobium relative to tantalum.
1365:. The definition of the characteristics and the procedure of the test methods for capacitors for use in electronic equipment are set out in the generic specification: 1669: 1019:
round 1.3 times of the rated voltage, rounded off to the nearest volt. The surge voltage applied to niobium capacitors may influence the capacitors failure rate.
1354: 905: 1650:
D. F. Tailor, Tantalum and Tantalum Compounds, Fansteel Inc., Encyclopedia of Chemical Technology, Vol. 19, 2nd ed. 1969 John Wiley & sons, Inc.
1304: 1297: 1466: 158:
Diagram illustrating anodic oxidation, in which a metallic anode in an electrolyte forms an oxide layer in response to the application of voltage.
1939:
D. Bach, Dissertation, 2009-06-05, Universität Karlsruhe (TH), EELS investigations of stoichiometric niobium oxides and niobium-based capacitors
1337:
the failure is a short circuit (the most common occurrence), and current is not limited to a safe value, catastrophic thermal runaway may occur.
1290: 213:
Every electrolytic capacitor can be thought of as a "plate capacitor" whose capacitance increases with the electrode area (A) and the dielectric
1616: 1445: 395:
Schematic representation of the structure of a sintered niobium electrolytic capacitor with solid electrolyte and the cathode contacting layers
1078:
Long-term electrical behavior, failure modes, self-healing mechanism, and application rules of the different types of electrolytic capacitors
1945: 988:
is the maximum DC voltage or peak pulse voltage that may be applied continuously at any temperature within the rated temperature range T
1934: 937:
specified in IEC 60063. For abbreviated marking in tight spaces, a letter code for each tolerance is specified in IEC 60062.
1627: 1575: 1562:
Ch. Schnitter, A. Michaelis, U. Merker, H. C. Starck, Bayer, New Niobium Based Materials for Solid Electrolyte Capacitors, Carts 2002
170:
bath and applying a positive voltage to it forms a layer of electrically insulating oxide whose thickness corresponds to the applied
111:
Niobium electrolytic capacitors can be made with high purity niobium as the anode but the diffusion of oxygen from the dielectric (Nb
1735: 1931: 854:
losses and inductive parameters of a capacitor. In this series-equivalent circuit the electrical characteristics are defined by:
1615:
Y. Pozdeev-Freeman, P. Maden, Vishay, Solid-Electrolyte Niobium Capacitors Exhibit Similar Performance to Tantalum, 2002-02-01,
1377: 1909: 1397:
Niobium capacitors are available in SMD style, that makes them suitable for all portable electronic systems with flat design
1804: 1547: 1499: 1668:
E. K. Reed, Jet Propulsion Laboratory, Characterization of Tantalum Polymer Capacitors, NEPP Task 1.21.5, Phase 1, FY05]
1659:
R. L. Taylor and H. E. Haring, "A metal semi-conductor capacitor," J. Electrochem. Soc., vol. 103, p. 611, November, 1956.
949: 942: 934: 1692: 897: 884: 223: 1639: 1454: 976:
Referring to IEC/EN 60384-1 standard the allowed operating voltage for niobium capacitors is called "rated voltage U
1004:. The relation between both voltages and temperatures is given in the picture right (or above, on mobile devices). 1771:
T. Zednicek, AVX, A Study of Field Crystallization in Tantalum Capacitors and its effect on DCL and Reliability,
1403:
Niobium capacitors are available with solid electrolyte for low ESR applications and stable electrical parameters
73: 1753: 1543:
T. Zednicek, S. Sita, C. McCracken, W. A. Millman, J. Gill, AVX, Niobium Oxide Technology Roadmap, CARTS 2002
1035:
General information to impedance, ESR, dissipation factor tan δ, ripple current, and leakage current see
383:
The capacitor cell of a niobium electrolytic capacitor consists of sintered niobium or niobium monoxide powder
1358: 811: 120: 1604: 1720: 1362: 1047: 1036: 179: 38: 871: 1437: 1369:
IEC 60384-1, Fixed capacitors for use in electronic equipment – Part 1: Generic specification
1843:
Radovan Faltus, AVX, Advanced capacitors ensure long-term control-circuit stability, 2012-02-07, EDT
1709: 1525: 569:
Comparison of the most important characteristics of different types of electrolytic chip capacitors
1972: 1951: 1587: 1495: 21: 1416: 275: 77: 1603:
T. Kárník, AVX, Niobium oxide for capacitor manufacturing, Metal 2008, 2008-05-13 – 2008-05-15,
1328: 1113:
Thermally induced insulating of faults in the dielectric by decomposition of the electrolyte MnO
818: 1373:
Until now (2014) no IEC detail specification for niobium electrolytic capacitors is available.
1303: 1296: 845: 1927: 1183: 433: 425: 135: 81: 54: 1142:
Insulating of faults in the dielectric by oxidation or evaporation of the polymer electrolyte
1772: 1458: 1289: 926: 413: 80:
chip capacitors in certain voltage and capacitance ratings. They are available with a solid
50: 904:
Using a series equivalent circuit instead of a parallel equivalent circuit is specified by
1757: 1739: 1696: 1551: 1529: 1200: 262:
The dielectric thickness of niobium electrolytic capacitors is very thin, in the range of
193: 123: 1688:
Ch. Reynolds, AVX, Technical Information, Reliability Management of Tantalum Capacitors,
1332:
Niobium electrolytic chip capacitors are marked with a bar at the positive component side
197:
A dielectric material is placed between two conducting plates (electrodes), each of area
1732: 1234:
As more energy is applied to a faulty solid niobium eventually either the high ohmic NbO
407:
Construction of a typical SMD niobium electrolytic chip capacitor with solid electrolyte
1944:
Ch. Schnitter: The taming of niobium. In: Bayer research, Bayer AG, 2004 (2007-02-11),
900:
which is the effective self-inductance of the capacitor, usually abbreviated as "ESL".
1966: 1950:
Niobium Powder for Electrolytic Capacitor, JFE Technical Report No. 6 (October 2005)
1844: 1811: 1586:
Niobium Powder for Electrolytic Capacitor, JFE Technical Report No. 6 (October 2005)
127: 89: 1258:
of solid niobium electrolytic capacitors has a lower breakdown voltage proof than Ta
1935:
9781259007316 – Capacitors : Technology and Trends by R P Deshpande - AbeBooks
1574:
J. Moore, Kemet, Nb capacitors compared to Ta capacitors a less costly alternative
1058: 1054: 822: 214: 96: 1519:
Tantalum-Niobium International Study Center, Tantalum and Niobium – Early History
1384:
EIA-717-A Surface Mount Niobium and Tantalum Capacitor Qualification Specification
1815: 1544: 1491: 1350: 887:
which summarizes all ohmic losses of the capacitor, usually abbreviated as "ESR"
436: 167: 163: 62: 996:"temperature derated voltage" for a higher temperature, the "category voltage U 154: 1892:"Beuth Verlag – Normen, Standards & Fachliteratur kaufen | seit 1924" 1786: 1689: 1626:
Rutronik, Tantalum & Niobium Capacitors, Technical Standards and Benefits
1346: 1177:
niobium anode: voltage derating 50% niobium oxide anode: voltage derating 20%
1010:
Applying a higher voltage than specified may destroy electrolytic capacitors.
972:
Relation between rated and category voltage and rated and category temperature
956: 829: 429: 175: 58: 456:
Overview of the key features of niobium and tantalum electrolytic capacitors
1267:
voltage derating rules compared with passivated niobium or tantalum anodes.
968: 417: 263: 131: 1187:
Self-healing in solid niobium capacitors with manganese dioxide electrolyte
1163:
Thermally induced insulation of faults in the dielectric by reduction of Nb
560:
Comparison of electrical parameters of niobium and tantalum capacitor types
412:
A typical niobium capacitor is a chip capacitor and consists of niobium or
271:
for solid niobium electrolytic capacitors, depending on the rated voltage.
1406:
Niobium capacitors have a limited number of manufacturers (AVX and Vishay)
274:
The properties of the niobium pentoxide dielectric layer, compared with a
821:. He coined the term "valve metal" for such metals. Charles Pollak (born 1750: 1453:(4). Fansteel Metallurgical Corporation, North Chicago, Illinois, USA: 440: 171: 66: 46: 1462: 1031:
Impedance, ESR and dissipation factor, ripple current, leakage current
1910:"G. Roos, Digi-Key, Niobium Capacitors Slow to Take Hold, 2012-11-20" 1873: 1638:
Charles Pollack: D.R.P. 92564, filed 1896-01-14, granted 1897-05-19
1353:
components and related technologies follows the rules given by the
1199:). Besides this pentoxide there is an additional niobium suboxide, 282:
Characteristics of the different tantalum and niobium oxide layers
1805:"Voltage derating rules for solid Tantalum and Niobium capacitors" 1438:"An Investigation of Columbium as an Electrolytic Capacitor Metal" 1327: 1182: 967: 844: 421: 192: 153: 42: 20: 1940: 1679:
D. A. McLean, F. S. Power, Proc. Inst. Radio Engrs. 44 (1956) 872
1394:
Niobium capacitors serve as a replacement for tantalum capacitors
1211:
is a semi-conducting material with a higher conductivity than Nb
447:
Comparison of niobium and tantalum electrolytic capacitor types
95:
Niobium capacitors were developed in the United States and the
1957: 1855: 1380:
publish a standard for niobium and tantalum chip capacitors:
1490:
Folster, J. H. D.; Holley, E. E.; Whitman, A. (1964-06-26).
1046:
For general information on reliability and failure rate see
162:
Niobium, similarly to tantalum and aluminum, is a so-called
65:
on the surface of the oxide layer serves as the capacitor's
1719:
Nichicon, Technical Guide, Calculation Formula of Lifetime
1069:
Failure modes, self-healing mechanism and application rules
367:
Basic construction of solid niobium electrolytic capacitors
1891: 1523: 1520: 1492:"Production engineering measure for Columbium capacitors" 1376:
For electronics manufacturers in the United States the
849:
Series-equivalent circuit model of a tantalum capacitor
799:(1) 100 μF/10 V, unless otherwise specified, 802:(2) calculated for a capacitor 100 μF/10 V, 217:(ε), and decreases with the dielectric thickness (d). 1798: 1796: 1794: 1731:
Estimating of Lifetime Fujitsu Media Devices Limited
226: 1926:
R. P. Deshpande, Capacitors: Technology and Trends,
1751:
NIC Technical Guide, Calculation Formula of Lifetime
1400:
Niobium capacitors have no inrush current limitation
523:
Niobium oxide electrolytic capacitor, sintered anode
1128:Voltage derating 50% Series resistance 3 Ω/V 252:{\displaystyle C=\varepsilon \cdot {\frac {A}{d}}} 251: 25:SMD chip style of niobium electrolytic capacitors 478:Tantalum electrolytic capacitor, sintered anode 92:can cause a fire or explosion in larger units. 372:Construction of a solid niobium chip capacitor 8: 1136:Deterioration of conductivity, ESR increases 1767: 1765: 1494:(report). North Adams, Massachusetts, USA: 1076: 912:Capacitance standard values and tolerances 454: 424:of the capacitor, with the oxide layer of 166:. Placing such a metal in contact with an 1839: 1837: 1835: 1781: 1779: 1539: 1537: 1355:International Electrotechnical Commission 1133:Tantalum e-caps solid polymer electrolyte 278:layer, are given in the following table: 239: 225: 1599: 1597: 1595: 778:Aluminum capacitors, Polymer electrolyte 758:Aluminum capacitors, Polymer electrolyte 662:Tantalum capacitors, Multianode, polymer 642:Tantalum capacitors, Polymer electrolyte 589:Max. Leakage current after 2 Min. (μA) 586:Max. Ripple current 85/105 °C (mA) 567: 280: 1570: 1568: 1428: 1247:compared to solid tantalum capacitors. 1081: 583:Max. ESR 100 kHz, 20 °C (mΩ) 459: 370: 1446:Journal of the Electrochemical Society 959:, tolerance ±10%, letter code "K" 952:, tolerance ±20%, letter code "M" 945:, tolerance ±20%, letter code "M" 812:Electrolytic capacitors § History 7: 1803:Zedníček, Tomáš; Gill, John (2003). 1436:Shtasel, A.; Knight, H. T. (1961) . 618:Tantalum capacitors, Multianode, MnO 72:Niobium capacitors are available in 710:Niobium capacitors, Multianode, MnO 1125:if current availability is limited 917:manufacturers and is symbolized C 870:, the resistance representing the 861:, the capacitance of the capacitor 302:Dielectric layer thickness (nm/V) 14: 1785:Vishay, DC Leakage Failure Mode, 1361:, non-governmental international 1302: 1295: 1288: 1083:Type of electrolytic capacitors 734:Niobium-caps Polymer electrolyte 400: 388: 376: 1502:from the original on 2022-06-21 1472:from the original on 2022-06-21 1086:Long-term electrical behavior 174:. This oxide layer acts as the 1281:Electrolytic capacitor symbols 574:Electrolytic capacitor family 461:Electrolytic capacitor family 31:niobium electrolytic capacitor 1: 1874:"Welcome to the IEC Webstore" 1522:and Applications for Niobium 1345:The standardization for all 898:equivalent series inductance 885:equivalent series resistance 1956:Introduction to capacitors 1455:The Electrochemical Society 146:) as the dielectric layer. 76:packaging and compete with 1989: 964:Rated and category voltage 836:Electrical characteristics 809: 580:Dimension DxL, WxHxL (mm) 45:(+) is made of passivated 1150:Niobium e-caps, solid MnO 1100:Tantalum e-caps solid MnO 1042:Reliability and life time 841:Series-equivalent circuit 522: 477: 299:Breakdown voltage (V/μm) 203:and with a separation of 53:, on which an insulating 594:Tantalum capacitors, MnO 526:Solid, manganese dioxide 495:Solid, manganese dioxide 481:Non-solid, sulfuric acid 334:Niobium or Niobium oxide 1317:Electrolytic capacitor 1250:The dielectric layer Nb 1092:Self-healing mechanism 992:(IEC/EN 60384-1). 980:" or "nominal voltage U 761:Panasonic SP-UE 180/6.3 686:Niobium capacitors, MnO 470:Max. rated voltage (V) 467:Capacitance range (μF) 1363:standards organization 1333: 1314:Electrolytic capacitor 1311:Electrolytic capacitor 1271:Additional information 1231:if energy is limited. 1188: 1160:no unique determinable 1048:electrolytic capacitor 1037:electrolytic capacitor 984:". The rated voltage U 973: 850: 473:Max. temperature (°C) 293:Relative permittivity 253: 210: 180:electrolytic capacitor 159: 39:electrolytic capacitor 26: 16:Electrolytic capacitor 1331: 1186: 1145:Voltage derating 20% 1139:Field crystallization 1110:Field crystallization 971: 848: 420:into a pellet as the 310:Tantalum pentoxide Ta 254: 196: 157: 24: 337:Niobium pentoxide Nb 224: 1496:Sprague Electric Co 1227:into high ohmic NbO 1171:into insulating NbO 1079: 955:rated capacitance, 948:rated capacitance, 941:rated capacitance, 570: 457: 416:powder pressed and 283: 35:Columbium capacitor 33:(historically also 1756:2013-09-15 at the 1738:2013-12-24 at the 1695:2013-08-06 at the 1550:2014-02-24 at the 1528:2016-02-13 at the 1417:Types of capacitor 1334: 1189: 1117:into insulating Mn 1095:Application rules 1077: 974: 851: 568: 455: 281: 276:tantalum pentoxide 249: 211: 160: 27: 1463:10.1149/1.2428084 1321: 1320: 1276:Capacitor symbols 1238:channel or the Nb 1181: 1180: 797: 796: 793:40 (0.04CV) 781:Kemet A700 100/10 773:100 (0.1CV) 749:20 (0.02CV) 729:20 (0.02CV) 705:20 (0.02CV) 677:100 (0.1CV) 665:Kemet T530 150/10 657:100 (0.1CV) 645:Kemet T543 330/10 637:10 (0.01CV) 625:Kemet T510 330/10 613:10 (0.01CV) 601:Kemet T494 330/10 553: 552: 434:manganese dioxide 426:niobium pentoxide 360: 359: 247: 136:niobium pentoxide 103:Basic information 82:manganese dioxide 55:niobium pentoxide 1980: 1914: 1913: 1906: 1900: 1899: 1888: 1882: 1881: 1870: 1864: 1863: 1852: 1846: 1841: 1830: 1829: 1827: 1826: 1820: 1814:. Archived from 1809: 1800: 1789: 1783: 1774: 1769: 1760: 1748: 1742: 1729: 1723: 1717: 1711: 1705: 1699: 1686: 1680: 1677: 1671: 1666: 1660: 1657: 1651: 1648: 1642: 1636: 1630: 1624: 1618: 1613: 1607: 1601: 1590: 1584: 1578: 1572: 1563: 1560: 1554: 1541: 1532: 1517: 1511: 1510: 1508: 1507: 1487: 1481: 1480: 1478: 1477: 1471: 1457:(ECS): 343–347. 1442: 1433: 1324:Polarity marking 1306: 1299: 1292: 1285: 1284: 1080: 874:of the capacitor 717:AVX, NBM 220/6.3 693:AVX, NOS 220/6,3 571: 458: 404: 392: 380: 296:Oxide structure 284: 258: 256: 255: 250: 248: 240: 150:Anodic oxidation 57:layer acts as a 51:niobium monoxide 1988: 1987: 1983: 1982: 1981: 1979: 1978: 1977: 1963: 1962: 1946:Wayback Machine 1923: 1921:Further reading 1918: 1917: 1908: 1907: 1903: 1890: 1889: 1885: 1878:webstore.iec.ch 1872: 1871: 1867: 1854: 1853: 1849: 1842: 1833: 1824: 1822: 1818: 1807: 1802: 1801: 1792: 1784: 1777: 1770: 1763: 1758:Wayback Machine 1749: 1745: 1740:Wayback Machine 1730: 1726: 1718: 1714: 1706: 1702: 1697:Wayback Machine 1687: 1683: 1678: 1674: 1667: 1663: 1658: 1654: 1649: 1645: 1637: 1633: 1625: 1621: 1614: 1610: 1602: 1593: 1585: 1581: 1573: 1566: 1561: 1557: 1552:Wayback Machine 1542: 1535: 1530:Wayback Machine 1518: 1514: 1505: 1503: 1489: 1488: 1484: 1475: 1473: 1469: 1440: 1435: 1434: 1430: 1425: 1413: 1391: 1343: 1341:Standardization 1326: 1278: 1273: 1265: 1261: 1257: 1253: 1245: 1241: 1237: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1201:niobium dioxide 1198: 1194: 1174: 1170: 1166: 1153: 1124: 1120: 1116: 1103: 1071: 1044: 1033: 1025: 1023:Reverse voltage 1016: 1003: 999: 991: 987: 983: 979: 966: 924: 920: 914: 895: 882: 872:leakage current 869: 843: 838: 819:Eugène Ducretet 814: 808: 737:NEC, NMC 100/10 713: 689: 621: 597: 562: 449: 408: 405: 396: 393: 384: 381: 369: 344: 340: 317: 313: 287:Anode material 222: 221: 152: 145: 141: 124:niobium nitride 118: 114: 105: 17: 12: 11: 5: 1986: 1984: 1976: 1975: 1965: 1964: 1961: 1960: 1954: 1948: 1942: 1937: 1922: 1919: 1916: 1915: 1901: 1883: 1865: 1847: 1831: 1790: 1775: 1761: 1743: 1724: 1712: 1700: 1681: 1672: 1661: 1652: 1643: 1631: 1619: 1608: 1591: 1579: 1564: 1555: 1533: 1512: 1482: 1427: 1426: 1424: 1421: 1420: 1419: 1412: 1409: 1408: 1407: 1404: 1401: 1398: 1395: 1390: 1387: 1386: 1385: 1371: 1370: 1342: 1339: 1325: 1322: 1319: 1318: 1315: 1312: 1308: 1307: 1300: 1293: 1277: 1274: 1272: 1269: 1263: 1259: 1255: 1251: 1243: 1239: 1235: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1196: 1192: 1179: 1178: 1175: 1172: 1168: 1164: 1161: 1158: 1155: 1151: 1147: 1146: 1143: 1140: 1137: 1134: 1130: 1129: 1126: 1122: 1118: 1114: 1111: 1108: 1105: 1101: 1097: 1096: 1093: 1090: 1089:Failure modes 1087: 1084: 1070: 1067: 1043: 1040: 1032: 1029: 1024: 1021: 1015: 1012: 1001: 997: 989: 985: 981: 977: 965: 962: 961: 960: 953: 946: 922: 918: 913: 910: 902: 901: 893: 888: 880: 875: 867: 862: 842: 839: 837: 834: 807: 804: 795: 794: 791: 788: 785: 782: 779: 775: 774: 771: 768: 765: 762: 759: 755: 754: 751: 750: 747: 744: 741: 738: 735: 731: 730: 727: 724: 721: 718: 715: 711: 707: 706: 703: 700: 697: 694: 691: 687: 683: 682: 679: 678: 675: 672: 669: 666: 663: 659: 658: 655: 652: 649: 646: 643: 639: 638: 635: 632: 629: 626: 623: 619: 615: 614: 611: 608: 605: 602: 599: 595: 591: 590: 587: 584: 581: 578: 575: 561: 558: 551: 550: 547: 544: 541: 540:Solid, polymer 537: 536: 533: 530: 527: 524: 520: 519: 516: 513: 510: 509:Solid, polymer 506: 505: 502: 499: 496: 492: 491: 488: 485: 482: 479: 475: 474: 471: 468: 465: 462: 448: 445: 432:, and a solid 410: 409: 406: 399: 397: 394: 387: 385: 382: 375: 373: 368: 365: 358: 357: 354: 351: 348: 345: 342: 338: 335: 331: 330: 327: 324: 321: 318: 315: 311: 308: 304: 303: 300: 297: 294: 291: 288: 260: 259: 246: 243: 238: 235: 232: 229: 151: 148: 143: 139: 116: 112: 104: 101: 15: 13: 10: 9: 6: 4: 3: 2: 1985: 1974: 1971: 1970: 1968: 1959: 1955: 1953: 1949: 1947: 1943: 1941: 1938: 1936: 1933: 1929: 1925: 1924: 1920: 1911: 1905: 1902: 1897: 1893: 1887: 1884: 1879: 1875: 1869: 1866: 1861: 1857: 1851: 1848: 1845: 1840: 1838: 1836: 1832: 1821:on 2013-08-06 1817: 1813: 1806: 1799: 1797: 1795: 1791: 1788: 1782: 1780: 1776: 1773: 1768: 1766: 1762: 1759: 1755: 1752: 1747: 1744: 1741: 1737: 1734: 1728: 1725: 1722: 1716: 1713: 1710: 1704: 1701: 1698: 1694: 1691: 1685: 1682: 1676: 1673: 1670: 1665: 1662: 1656: 1653: 1647: 1644: 1641: 1635: 1632: 1629: 1623: 1620: 1617: 1612: 1609: 1606: 1600: 1598: 1596: 1592: 1589: 1583: 1580: 1577: 1571: 1569: 1565: 1559: 1556: 1553: 1549: 1546: 1540: 1538: 1534: 1531: 1527: 1524: 1521: 1516: 1513: 1501: 1497: 1493: 1486: 1483: 1468: 1464: 1460: 1456: 1452: 1448: 1447: 1439: 1432: 1429: 1422: 1418: 1415: 1414: 1410: 1405: 1402: 1399: 1396: 1393: 1392: 1388: 1383: 1382: 1381: 1379: 1374: 1368: 1367: 1366: 1364: 1360: 1356: 1352: 1348: 1340: 1338: 1330: 1323: 1316: 1313: 1310: 1309: 1305: 1301: 1298: 1294: 1291: 1287: 1286: 1283: 1282: 1275: 1270: 1268: 1248: 1232: 1202: 1185: 1176: 1162: 1159: 1156: 1149: 1148: 1144: 1141: 1138: 1135: 1132: 1131: 1127: 1112: 1109: 1106: 1099: 1098: 1094: 1091: 1088: 1085: 1082: 1075: 1068: 1066: 1062: 1060: 1056: 1051: 1049: 1041: 1039: 1038: 1030: 1028: 1022: 1020: 1014:Surge Voltage 1013: 1011: 1008: 1005: 993: 970: 963: 958: 954: 951: 947: 944: 940: 939: 938: 936: 930: 928: 911: 909: 908:/EN 60384-1. 907: 899: 892: 889: 886: 879: 876: 873: 866: 863: 860: 857: 856: 855: 847: 840: 835: 833: 831: 826: 824: 820: 813: 805: 803: 800: 792: 789: 786: 783: 780: 777: 776: 772: 769: 766: 763: 760: 757: 756: 753: 752: 748: 745: 742: 739: 736: 733: 732: 728: 725: 722: 719: 716: 709: 708: 704: 701: 698: 695: 692: 685: 684: 681: 680: 676: 673: 670: 667: 664: 661: 660: 656: 653: 650: 647: 644: 641: 640: 636: 633: 630: 627: 624: 617: 616: 612: 609: 606: 603: 600: 593: 592: 588: 585: 582: 579: 576: 573: 572: 566: 559: 557: 548: 545: 542: 539: 538: 534: 531: 528: 525: 521: 517: 514: 511: 508: 507: 503: 500: 497: 494: 493: 489: 486: 483: 480: 476: 472: 469: 466: 463: 460: 453: 446: 444: 442: 438: 435: 431: 427: 423: 419: 415: 414:niobium oxide 403: 398: 391: 386: 379: 374: 371: 366: 364: 355: 352: 349: 346: 336: 333: 332: 328: 325: 322: 319: 309: 306: 305: 301: 298: 295: 292: 289: 286: 285: 279: 277: 272: 268: 265: 244: 241: 236: 233: 230: 227: 220: 219: 218: 216: 208: 207: 202: 201: 195: 191: 187: 183: 181: 177: 173: 169: 165: 156: 149: 147: 137: 133: 129: 128:niobium oxide 125: 122: 109: 102: 100: 98: 93: 91: 90:short circuit 85: 84:electrolyte. 83: 79: 75: 70: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 23: 19: 1958:CapSite 2023 1932:1-25900731-6 1904: 1896:www.beuth.de 1895: 1886: 1877: 1868: 1859: 1850: 1823:. Retrieved 1816:the original 1746: 1727: 1715: 1703: 1684: 1675: 1664: 1655: 1646: 1640:D.R.P. 92564 1634: 1622: 1611: 1582: 1558: 1515: 1504:. Retrieved 1485: 1474:. Retrieved 1450: 1444: 1431: 1375: 1372: 1344: 1335: 1280: 1279: 1249: 1233: 1190: 1072: 1063: 1059:service life 1052: 1045: 1034: 1026: 1017: 1009: 1006: 994: 975: 931: 915: 903: 890: 877: 864: 858: 852: 827: 823:Karol Pollak 815: 801: 798: 563: 554: 484:0.1...18,000 464:Electrolyte 450: 411: 361: 273: 269: 261: 215:permittivity 212: 205: 204: 199: 198: 188: 184: 168:electrolytic 161: 110: 106: 97:Soviet Union 94: 86: 71: 34: 30: 28: 18: 1154:electrolyte 1104:electrolyte 784:7.3x4.3x4.0 764:7.3x4.3x4.2 740:7.3x4.3x2.8 720:7.3x4.3x4.1 714:electrolyte 696:7.3x4.3x4.1 690:electrolyte 668:7.3x4.3x4.0 648:7.3x4.3x4.0 628:7.3x4.3x4.0 622:electrolyte 604:7.3x4.3x4.0 598:electrolyte 498:0.1...3,300 437:electrolyte 290:Dielectric 164:valve metal 63:electrolyte 1973:Capacitors 1860:www.iec.ch 1856:"Homepage" 1825:2015-01-02 1506:2022-06-21 1476:2022-06-21 1423:References 1359:non-profit 1351:electronic 1347:electrical 1207:). The NbO 957:E12 series 830:transistor 810:See also: 512:10...1,500 430:dielectric 264:nanometers 176:dielectric 121:passivated 61:. A solid 59:dielectric 1357:(IEC), a 1055:life time 950:E6 series 943:E3 series 543:4.7...470 529:1...1,500 350:amorphous 323:amorphous 237:⋅ 234:ε 132:anodizing 126:or using 49:metal or 1967:Category 1754:Archived 1736:Archived 1693:Archived 1548:Archived 1526:Archived 1500:Archived 1467:Archived 1411:See also 1389:Features 935:E series 504:125/150 490:125/200 418:sintered 307:Tantalum 78:tantalum 37:) is an 868:leakage 806:History 441:cathode 439:as the 172:voltage 67:cathode 47:niobium 1930:  1157:stable 1107:stable 896:, the 883:, the 577:Type 178:in an 41:whose 1819:(PDF) 1808:(PDF) 1470:(PDF) 1441:(PDF) 422:anode 69:(−). 43:anode 1928:ISBN 1203:(NbO 1053:The 790:4700 770:3700 726:2561 702:1461 674:4970 654:4900 634:2500 610:1285 549:105 535:105 518:105 356:2.5 329:1.6 1952:PDF 1812:AVX 1787:PDF 1733:PDF 1721:PDF 1690:PDF 1628:PDF 1605:PDF 1588:PDF 1576:PDF 1545:PDF 1459:doi 1451:108 1378:EIA 927:RMS 906:IEC 894:ESL 881:ESR 607:100 501:125 487:630 428:as 353:400 326:625 138:(Nb 74:SMD 1969:: 1894:. 1876:. 1858:. 1834:^ 1810:. 1793:^ 1778:^ 1764:^ 1594:^ 1567:^ 1536:^ 1498:. 1465:. 1449:. 1443:. 1349:, 1057:, 1050:. 929:. 787:10 723:40 699:80 651:10 631:35 546:16 532:10 515:25 443:. 347:41 320:27 182:. 29:A 1912:. 1898:. 1880:. 1862:. 1828:. 1509:. 1479:. 1461:: 1264:5 1262:O 1260:2 1256:5 1254:O 1252:2 1244:5 1242:O 1240:2 1236:2 1229:2 1225:5 1223:O 1221:2 1217:5 1215:O 1213:2 1209:2 1205:2 1197:5 1195:O 1193:2 1173:2 1169:5 1167:O 1165:2 1152:2 1123:3 1121:O 1119:2 1115:2 1102:2 1002:C 998:C 990:R 986:R 982:N 978:R 923:N 921:C 919:R 891:L 878:R 865:R 859:C 767:7 746:- 743:- 712:2 688:2 671:5 620:2 596:2 343:5 341:O 339:2 316:5 314:O 312:2 245:d 242:A 231:= 228:C 209:. 206:d 200:A 144:5 142:O 140:2 117:5 115:O 113:2

Index


electrolytic capacitor
anode
niobium
niobium monoxide
niobium pentoxide
dielectric
electrolyte
cathode
SMD
tantalum
manganese dioxide
short circuit
Soviet Union
passivated
niobium nitride
niobium oxide
anodizing
niobium pentoxide

valve metal
electrolytic
voltage
dielectric
electrolytic capacitor

permittivity
nanometers
tantalum pentoxide
The capacitor cell of a niobium electrolytic capacitor consists of sintered niobium or niobium monoxide powder

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.