Knowledge (XXG)

Niobium capacitor

Source 📝

843:. The solution found by R. L. Taylor and H. E. Haring of the Bell Labs was based on experience with ceramics. They ground down tantalum to a powder, pressed this powder into a cylindrical form and then sintered the powder particles into a pellet ("slug") at high temperatures, between 1500 and 2000 °C, under vacuum conditions. These first sintered tantalum capacitors used a non-solid electrolyte not consistent with the concept of solid state electronics. 1952 a targeted search in the Bell Labs for a solid electrolyte by D. A. McLean and F. S. Power led to the invention of manganese dioxide as a solid electrolyte for a sintered tantalum capacitor. 401: 389: 1072:, load life or useful life of electrolytic capacitors is a special characteristic of non-solid electrolytic capacitors, especially non-solid aluminum electrolytic capacitors. Their liquid electrolyte can evaporate over time, leading to wear-out failures. Solid niobium capacitors with manganese dioxide electrolyte have no wear-out mechanism, so the constant failure rate lasts up to the point when all capacitors have failed. They don't have a life time specification like non-solid aluminum electrolytic capacitors. 413: 857: 33: 1340: 1195: 205: 201:
in the West, with major capacitor manufacturers taking interest in the late 1990s. The materials and processes used to produce niobium capacitors are essentially the same as for tantalum capacitors. Rising tantalum prices in 2000 and 2001 encouraged the development of niobium electrolytic capacitors with manganese dioxide and polymer electrolytes, which have been available since 2002.
166: 980: 836:) used this phenomenon for an idea of a polarized "Electric liquid capacitor with aluminum electrodes". In 1896 Pollak obtained a patent for the first electrolytic capacitor. The first tantalum electrolytic capacitors with wound tantalum foils and non-solid electrolyte were developed in 1930 by Tansitor Electronics Inc., USA, and used for military purposes. 141:(NbO) as anode material. Niobium oxide is a hard ceramic material characterized by high metallic conductivity. Niobium oxide powder can be prepared in a similar structure to that of tantalum powder and can be processed in a similar way to produce capacitors. It also can be oxidized by anodic oxidation ( 1075:
However, solid polymer niobium electrolytic capacitors do have a life time specification. The electrolyte deteriorates by a thermal degradation mechanism of the conductive polymer. The electrical conductivity decreases, as a function of time, in agreement with a granular structure, in which aging is
1029:
The surge voltage indicates the maximum peak voltage value that may be applied to electrolytic capacitors during their application for a limited number of cycles. The surge voltage is standardized in IEC/EN 60384-1. For niobium electrolytic capacitors the surge voltage shall be not higher than
1006:
The voltage proof of electrolytic capacitors decreases with increasing temperature. For some applications it is important to use a higher temperature range. Lowering the voltage applied at a higher temperature maintains safety margins. For some capacitor types therefore the IEC standard specifies a
200:
In the 1960s, the higher availability of niobium ore compared with tantalum ore prompted research into niobium electrolytic capacitors in the Soviet Union. Here they served the same purpose as tantalum capacitors in the West. With the collapse of the Iron Curtain, the technology became better-known
118:
Niobium is a sister metal to tantalum. Niobium has a similar melting point (2744 °C) to tantalum and exhibits similar chemical properties. The materials and processes used to produce niobium-dielectric capacitors are essentially the same as for existing tantalum-dielectric capacitors. However,
1347:
Niobium capacitors are in general polarized components, with distinctly marked positive terminals. When subjected to reversed polarity (even briefly), the capacitor depolarizes and the dielectric oxide layer breaks down, which can cause it to fail even when later operated with correct polarity. If
927:
The electrical characteristics of niobium electrolytic capacitors depend on structure of the anode and the type of electrolyte. The capacitance value of the capacitor depends on measuring frequency and temperature. The rated capacitance value or nominal value is specified in the data sheets of the
281:
The niobium anode material is manufactured from a powder sintered into a pellet with a rough surface structure intended to increase the electrode surface area A compared to a smooth surface with the same footprint. This increase in surface area can increase the capacitance by a factor of up to 200
1257:
dielectric breaks down and the capacitor exhibits a thermal runaway failure. In comparison to solid tantalum capacitors the thermal runaway of niobium anodes will occur at about three times higher power than of tantalum anodes. This gives a significant reduction (95%) of the ignition failure mode
864:
Niobium electrolytic capacitors as discrete components are not ideal capacitors, they have losses and parasitic inductive parts. All properties can be defined and specified by a series equivalent circuit composed out of an idealized capacitance and additional electrical components which model all
566:
Tantalum and niobium electrolytic capacitors with solid electrolyte as surface-mountable chip capacitors are mainly used in electronic devices in which little space is available or a low profile is required. They operate reliably over a wide temperature range without large parameter deviations.
1277:
in tantalum capacitors and therefore grows thicker per applied volt and so operates at lower field strength for a given voltage rating with the lower electrical stress the dielectric. In combination with niobium oxide anodes, which are more stable against oxygen diffusion that results in lower
575:
In order to compare the different characteristics of the different electrolytic chip capacitor types, specimens with the same dimensions and of comparable capacitance and voltage are compared in the following table. In such a comparison the values for ESR and ripple current load are the most
1084:
The different types of electrolytic capacitors show different behaviors in long-term stability, inherent failure modes and their self-healing mechanisms. Application rules for types with an inherent failure mode are specified to ensure capacitors high reliability and long life.
462:
The combination of anode materials for niobium and tantalum electrolytic capacitors and the electrolytes used has formed a wide variety of capacitor types with different properties. An outline of the main characteristics of the different types is shown in the table below.
130:) into the niobium anode metal is very high, resulting in leakage current instability or even capacitor failures. There are two possible ways to reduce oxygen diffusion and improve leakage current stability – either by doping metallic niobium powders with nitride into 196:
This property of niobium was known since the beginning of the 20th century. Although niobium is more abundant in nature and less expensive than tantalum, its high melting point of 2744 °C hindered the development of niobium electrolytic capacitors.
1076:
due to the shrinking of the conductive polymer grains. The life time of polymer electrolytic capacitors is specified in similar terms like non-solid e-caps but its life time calculation follows other rules leading to much longer operational life times.
827:
The phenomenon that can electrochemically form an oxide layer on aluminum and metals like tantalum or niobium, blocking an electric current in one direction but allowing it to flow in the other direction, was discovered in 1875 by the French researcher
400: 1718:
E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. A. Choulis, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics, Volume 10, Issue 1, February 2009, Pages 61–66,
943:
The percentage of allowed deviation of the measured capacitance from the rated value is called capacitance tolerance. Electrolytic capacitors are available in different tolerance series, whose values are specified in the
576:
important parameters for the use of electrolytic capacitors in modern electronic equipment. The lower the ESR the higher the ripple current per volume, thus the better the functionality of the capacitor in the circuit.
98:
Like most electrolytic capacitors, niobium capacitors are polarized components. Reverse voltages or ripple currents higher than specified tolerances can destroy the dielectric and thus the capacitor; the resulting
277:
per volt. This very thin dielectric layer, combined with a sufficiently high dielectric strength, allows niobium electrolytic capacitors to achieve a high volumetric capacitance comparable to tantalum capacitors.
145:, forming) to generate the insulating dielectric layer. Thus two types of niobium electrolytic capacitors are marketed, those using a passivated niobium anode and those using a niobium oxide anode. Both types use 119:
niobium as a raw material is much more abundant in nature than tantalum and is less expensive. The characteristics of niobium electrolytic capacitors and tantalum electrolytic capacitors are roughly comparable.
388: 373:
The higher permittivity and lower breakdown voltage of niobium pentoxide relative to tantalum pentoxide results in niobium capacitors and tantalum capacitors having similar sizes for a given capacitance.
1018:
Lower voltage applied may have positive influences for tantalum (and niobium) electrolytic capacitors. Lowering the voltage applied increases the reliability and reduces the expected failure rate.
1230:
but much lower than a short. In case of faults or impurities in the dielectric which evokes a partial dielectric breakdown the conducting channel would be effectively isolated by reduction of Nb
936:. The standardized measuring condition for electrolytic capacitors is an AC measuring method with a frequency of 100/120 Hz. The AC measuring voltage shall not exceed 0,5  V  AC- 268: 1202:
A rare failure in solid electrolytic capacitors is breakdown of the dielectric caused by faults or impurities. In niobium electrolytic capacitors the dielectric is niobium pentoxide (Nb
1011:". The category voltage is the maximum DC voltage or peak pulse voltage that may be applied continuously to a capacitor at any temperature within the category temperature range T 839:
The development of solid electrolyte tantalum capacitors began in the early 1950s as a miniaturized, more reliable low-voltage support capacitor to complement the newly invented
412: 1038:
Like other electrolytic capacitors, niobium electrolytic capacitors are polarized and require the anode electrode voltage to be positive relative to the cathode voltage.
110:
in the 1960s. Since 2002 they have been commercially available in the West, taking advantage of the lower cost and better availability of niobium relative to tantalum.
1376:. The definition of the characteristics and the procedure of the test methods for capacitors for use in electronic equipment are set out in the generic specification: 1680: 1030:
round 1.3 times of the rated voltage, rounded off to the nearest volt. The surge voltage applied to niobium capacitors may influence the capacitors failure rate.
1365: 916: 1661:
D. F. Tailor, Tantalum and Tantalum Compounds, Fansteel Inc., Encyclopedia of Chemical Technology, Vol. 19, 2nd ed. 1969 John Wiley & sons, Inc.
1315: 1308: 1477: 169:
Diagram illustrating anodic oxidation, in which a metallic anode in an electrolyte forms an oxide layer in response to the application of voltage.
1950:
D. Bach, Dissertation, 2009-06-05, Universität Karlsruhe (TH), EELS investigations of stoichiometric niobium oxides and niobium-based capacitors
1348:
the failure is a short circuit (the most common occurrence), and current is not limited to a safe value, catastrophic thermal runaway may occur.
1301: 224:
Every electrolytic capacitor can be thought of as a "plate capacitor" whose capacitance increases with the electrode area (A) and the dielectric
1627: 1456: 406:
Schematic representation of the structure of a sintered niobium electrolytic capacitor with solid electrolyte and the cathode contacting layers
1089:
Long-term electrical behavior, failure modes, self-healing mechanism, and application rules of the different types of electrolytic capacitors
1956: 999:
is the maximum DC voltage or peak pulse voltage that may be applied continuously at any temperature within the rated temperature range T
1945: 948:
specified in IEC 60063. For abbreviated marking in tight spaces, a letter code for each tolerance is specified in IEC 60062.
1638: 1586: 1573:
Ch. Schnitter, A. Michaelis, U. Merker, H. C. Starck, Bayer, New Niobium Based Materials for Solid Electrolyte Capacitors, Carts 2002
181:
bath and applying a positive voltage to it forms a layer of electrically insulating oxide whose thickness corresponds to the applied
122:
Niobium electrolytic capacitors can be made with high purity niobium as the anode but the diffusion of oxygen from the dielectric (Nb
1746: 1942: 865:
losses and inductive parameters of a capacitor. In this series-equivalent circuit the electrical characteristics are defined by:
1626:
Y. Pozdeev-Freeman, P. Maden, Vishay, Solid-Electrolyte Niobium Capacitors Exhibit Similar Performance to Tantalum, 2002-02-01,
1388: 1920: 1408:
Niobium capacitors are available in SMD style, that makes them suitable for all portable electronic systems with flat design
1815: 1558: 1510: 1679:
E. K. Reed, Jet Propulsion Laboratory, Characterization of Tantalum Polymer Capacitors, NEPP Task 1.21.5, Phase 1, FY05]
1670:
R. L. Taylor and H. E. Haring, "A metal semi-conductor capacitor," J. Electrochem. Soc., vol. 103, p. 611, November, 1956.
960: 953: 945: 1703: 908: 895: 234: 1650: 1465: 987:
Referring to IEC/EN 60384-1 standard the allowed operating voltage for niobium capacitors is called "rated voltage U
1015:. The relation between both voltages and temperatures is given in the picture right (or above, on mobile devices). 1782:
T. Zednicek, AVX, A Study of Field Crystallization in Tantalum Capacitors and its effect on DCL and Reliability,
1414:
Niobium capacitors are available with solid electrolyte for low ESR applications and stable electrical parameters
84: 1764: 1554:
T. Zednicek, S. Sita, C. McCracken, W. A. Millman, J. Gill, AVX, Niobium Oxide Technology Roadmap, CARTS 2002
1046:
General information to impedance, ESR, dissipation factor tan δ, ripple current, and leakage current see
394:
The capacitor cell of a niobium electrolytic capacitor consists of sintered niobium or niobium monoxide powder
1369: 822: 131: 1615: 1731: 1373: 1058: 1047: 190: 49: 882: 1448: 1380:
IEC 60384-1, Fixed capacitors for use in electronic equipment – Part 1: Generic specification
1854:
Radovan Faltus, AVX, Advanced capacitors ensure long-term control-circuit stability, 2012-02-07, EDT
1720: 1536: 580:
Comparison of the most important characteristics of different types of electrolytic chip capacitors
1983: 1962: 1598: 1506: 32: 1427: 286: 88: 1614:
T. Kárník, AVX, Niobium oxide for capacitor manufacturing, Metal 2008, 2008-05-13 – 2008-05-15,
1339: 1124:
Thermally induced insulating of faults in the dielectric by decomposition of the electrolyte MnO
829: 1384:
Until now (2014) no IEC detail specification for niobium electrolytic capacitors is available.
1314: 1307: 856: 1938: 1194: 444: 436: 146: 92: 65: 17: 1153:
Insulating of faults in the dielectric by oxidation or evaporation of the polymer electrolyte
1783: 1469: 1300: 937: 424: 91:
chip capacitors in certain voltage and capacitance ratings. They are available with a solid
61: 915:
Using a series equivalent circuit instead of a parallel equivalent circuit is specified by
1768: 1750: 1707: 1562: 1540: 1211: 273:
The dielectric thickness of niobium electrolytic capacitors is very thin, in the range of
204: 134: 1699:
Ch. Reynolds, AVX, Technical Information, Reliability Management of Tantalum Capacitors,
1343:
Niobium electrolytic chip capacitors are marked with a bar at the positive component side
208:
A dielectric material is placed between two conducting plates (electrodes), each of area
1743: 1245:
As more energy is applied to a faulty solid niobium eventually either the high ohmic NbO
418:
Construction of a typical SMD niobium electrolytic chip capacitor with solid electrolyte
1955:
Ch. Schnitter: The taming of niobium. In: Bayer research, Bayer AG, 2004 (2007-02-11),
911:
which is the effective self-inductance of the capacitor, usually abbreviated as "ESL".
1977: 1961:
Niobium Powder for Electrolytic Capacitor, JFE Technical Report No. 6 (October 2005)
1855: 1822: 1597:
Niobium Powder for Electrolytic Capacitor, JFE Technical Report No. 6 (October 2005)
138: 100: 1269:
of solid niobium electrolytic capacitors has a lower breakdown voltage proof than Ta
1946:
9781259007316 – Capacitors : Technology and Trends by R P Deshpande - AbeBooks
1585:
J. Moore, Kemet, Nb capacitors compared to Ta capacitors a less costly alternative
1069: 1065: 833: 225: 107: 1530:
Tantalum-Niobium International Study Center, Tantalum and Niobium – Early History
1395:
EIA-717-A Surface Mount Niobium and Tantalum Capacitor Qualification Specification
1826: 1555: 1502: 1361: 898:
which summarizes all ohmic losses of the capacitor, usually abbreviated as "ESR"
447: 178: 174: 73: 1007:"temperature derated voltage" for a higher temperature, the "category voltage U 165: 1903:"Beuth Verlag – Normen, Standards & Fachliteratur kaufen | seit 1924" 1797: 1700: 1637:
Rutronik, Tantalum & Niobium Capacitors, Technical Standards and Benefits
1357: 1188:
niobium anode: voltage derating 50% niobium oxide anode: voltage derating 20%
1021:
Applying a higher voltage than specified may destroy electrolytic capacitors.
983:
Relation between rated and category voltage and rated and category temperature
967: 840: 440: 186: 69: 467:
Overview of the key features of niobium and tantalum electrolytic capacitors
1278:
voltage derating rules compared with passivated niobium or tantalum anodes.
979: 428: 274: 142: 1198:
Self-healing in solid niobium capacitors with manganese dioxide electrolyte
1174:
Thermally induced insulation of faults in the dielectric by reduction of Nb
571:
Comparison of electrical parameters of niobium and tantalum capacitor types
423:
A typical niobium capacitor is a chip capacitor and consists of niobium or
282:
for solid niobium electrolytic capacitors, depending on the rated voltage.
1417:
Niobium capacitors have a limited number of manufacturers (AVX and Vishay)
285:
The properties of the niobium pentoxide dielectric layer, compared with a
832:. He coined the term "valve metal" for such metals. Charles Pollak (born 1761: 1464:(4). Fansteel Metallurgical Corporation, North Chicago, Illinois, USA: 451: 182: 77: 57: 1473: 1042:
Impedance, ESR and dissipation factor, ripple current, leakage current
1921:"G. Roos, Digi-Key, Niobium Capacitors Slow to Take Hold, 2012-11-20" 1884: 1649:
Charles Pollack: D.R.P. 92564, filed 1896-01-14, granted 1897-05-19
1364:
components and related technologies follows the rules given by the
1210:). Besides this pentoxide there is an additional niobium suboxide, 293:
Characteristics of the different tantalum and niobium oxide layers
1816:"Voltage derating rules for solid Tantalum and Niobium capacitors" 1449:"An Investigation of Columbium as an Electrolytic Capacitor Metal" 1338: 1193: 978: 855: 432: 203: 164: 53: 31: 1951: 1690:
D. A. McLean, F. S. Power, Proc. Inst. Radio Engrs. 44 (1956) 872
1405:
Niobium capacitors serve as a replacement for tantalum capacitors
1222:
is a semi-conducting material with a higher conductivity than Nb
458:
Comparison of niobium and tantalum electrolytic capacitor types
106:
Niobium capacitors were developed in the United States and the
1968: 1866: 1391:
publish a standard for niobium and tantalum chip capacitors:
1501:
Folster, J. H. D.; Holley, E. E.; Whitman, A. (1964-06-26).
1057:
For general information on reliability and failure rate see
173:
Niobium, similarly to tantalum and aluminum, is a so-called
76:
on the surface of the oxide layer serves as the capacitor's
1730:
Nichicon, Technical Guide, Calculation Formula of Lifetime
1080:
Failure modes, self-healing mechanism and application rules
378:
Basic construction of solid niobium electrolytic capacitors
1902: 1534: 1531: 1503:"Production engineering measure for Columbium capacitors" 1387:
For electronics manufacturers in the United States the
860:
Series-equivalent circuit model of a tantalum capacitor
810:(1) 100 μF/10 V, unless otherwise specified, 813:(2) calculated for a capacitor 100 μF/10 V, 228:(ε), and decreases with the dielectric thickness (d). 1809: 1807: 1805: 1742:
Estimating of Lifetime Fujitsu Media Devices Limited
237: 1937:
R. P. Deshpande, Capacitors: Technology and Trends,
1762:
NIC Technical Guide, Calculation Formula of Lifetime
1411:
Niobium capacitors have no inrush current limitation
534:
Niobium oxide electrolytic capacitor, sintered anode
1139:Voltage derating 50% Series resistance 3 Ω/V 263:{\displaystyle C=\varepsilon \cdot {\frac {A}{d}}} 262: 36:SMD chip style of niobium electrolytic capacitors 489:Tantalum electrolytic capacitor, sintered anode 103:can cause a fire or explosion in larger units. 383:Construction of a solid niobium chip capacitor 8: 1147:Deterioration of conductivity, ESR increases 1778: 1776: 1505:(report). North Adams, Massachusetts, USA: 1087: 923:Capacitance standard values and tolerances 465: 435:of the capacitor, with the oxide layer of 177:. Placing such a metal in contact with an 1850: 1848: 1846: 1792: 1790: 1550: 1548: 1366:International Electrotechnical Commission 1144:Tantalum e-caps solid polymer electrolyte 289:layer, are given in the following table: 250: 236: 1610: 1608: 1606: 789:Aluminum capacitors, Polymer electrolyte 769:Aluminum capacitors, Polymer electrolyte 673:Tantalum capacitors, Multianode, polymer 653:Tantalum capacitors, Polymer electrolyte 600:Max. Leakage current after 2 Min. (μA) 597:Max. Ripple current 85/105 °C (mA) 578: 291: 1581: 1579: 1439: 1258:compared to solid tantalum capacitors. 1092: 594:Max. ESR 100 kHz, 20 °C (mΩ) 470: 381: 1457:Journal of the Electrochemical Society 970:, tolerance ±10%, letter code "K" 963:, tolerance ±20%, letter code "M" 956:, tolerance ±20%, letter code "M" 823:Electrolytic capacitors § History 7: 1814:Zedníček, Tomáš; Gill, John (2003). 1447:Shtasel, A.; Knight, H. T. (1961) . 629:Tantalum capacitors, Multianode, MnO 83:Niobium capacitors are available in 721:Niobium capacitors, Multianode, MnO 1136:if current availability is limited 928:manufacturers and is symbolized C 881:, the resistance representing the 872:, the capacitance of the capacitor 313:Dielectric layer thickness (nm/V) 25: 1796:Vishay, DC Leakage Failure Mode, 1372:, non-governmental international 1313: 1306: 1299: 1094:Type of electrolytic capacitors 745:Niobium-caps Polymer electrolyte 411: 399: 387: 1513:from the original on 2022-06-21 1483:from the original on 2022-06-21 1097:Long-term electrical behavior 185:. This oxide layer acts as the 1292:Electrolytic capacitor symbols 585:Electrolytic capacitor family 472:Electrolytic capacitor family 42:niobium electrolytic capacitor 18:Niobium electrolytic capacitor 1: 1885:"Welcome to the IEC Webstore" 1533:and Applications for Niobium 1356:The standardization for all 909:equivalent series inductance 896:equivalent series resistance 1967:Introduction to capacitors 1466:The Electrochemical Society 157:) as the dielectric layer. 87:packaging and compete with 2000: 975:Rated and category voltage 847:Electrical characteristics 820: 591:Dimension DxL, WxHxL (mm) 56:(+) is made of passivated 1161:Niobium e-caps, solid MnO 1111:Tantalum e-caps solid MnO 1053:Reliability and life time 852:Series-equivalent circuit 533: 488: 310:Breakdown voltage (V/μm) 214:and with a separation of 64:, on which an insulating 605:Tantalum capacitors, MnO 537:Solid, manganese dioxide 506:Solid, manganese dioxide 492:Non-solid, sulfuric acid 345:Niobium or Niobium oxide 1328:Electrolytic capacitor 1261:The dielectric layer Nb 1103:Self-healing mechanism 1003:(IEC/EN 60384-1). 991:" or "nominal voltage U 772:Panasonic SP-UE 180/6.3 697:Niobium capacitors, MnO 481:Max. rated voltage (V) 478:Capacitance range (μF) 1374:standards organization 1344: 1325:Electrolytic capacitor 1322:Electrolytic capacitor 1282:Additional information 1242:if energy is limited. 1199: 1171:no unique determinable 1059:electrolytic capacitor 1048:electrolytic capacitor 995:". The rated voltage U 984: 861: 484:Max. temperature (°C) 304:Relative permittivity 264: 221: 191:electrolytic capacitor 170: 50:electrolytic capacitor 37: 27:Electrolytic capacitor 1342: 1197: 1156:Voltage derating 20% 1150:Field crystallization 1121:Field crystallization 982: 859: 431:into a pellet as the 321:Tantalum pentoxide Ta 265: 207: 168: 35: 348:Niobium pentoxide Nb 235: 1507:Sprague Electric Co 1238:into high ohmic NbO 1182:into insulating NbO 1090: 966:rated capacitance, 959:rated capacitance, 952:rated capacitance, 581: 468: 427:powder pressed and 294: 46:Columbium capacitor 44:(historically also 1767:2013-09-15 at the 1749:2013-12-24 at the 1706:2013-08-06 at the 1561:2014-02-24 at the 1539:2016-02-13 at the 1428:Types of capacitor 1345: 1200: 1128:into insulating Mn 1106:Application rules 1088: 985: 862: 579: 466: 292: 287:tantalum pentoxide 260: 222: 171: 38: 1474:10.1149/1.2428084 1332: 1331: 1287:Capacitor symbols 1249:channel or the Nb 1192: 1191: 808: 807: 804:40 (0.04CV) 792:Kemet A700 100/10 784:100 (0.1CV) 760:20 (0.02CV) 740:20 (0.02CV) 716:20 (0.02CV) 688:100 (0.1CV) 676:Kemet T530 150/10 668:100 (0.1CV) 656:Kemet T543 330/10 648:10 (0.01CV) 636:Kemet T510 330/10 624:10 (0.01CV) 612:Kemet T494 330/10 564: 563: 445:manganese dioxide 437:niobium pentoxide 371: 370: 258: 147:niobium pentoxide 114:Basic information 93:manganese dioxide 66:niobium pentoxide 16:(Redirected from 1991: 1925: 1924: 1917: 1911: 1910: 1899: 1893: 1892: 1881: 1875: 1874: 1863: 1857: 1852: 1841: 1840: 1838: 1837: 1831: 1825:. Archived from 1820: 1811: 1800: 1794: 1785: 1780: 1771: 1759: 1753: 1740: 1734: 1728: 1722: 1716: 1710: 1697: 1691: 1688: 1682: 1677: 1671: 1668: 1662: 1659: 1653: 1647: 1641: 1635: 1629: 1624: 1618: 1612: 1601: 1595: 1589: 1583: 1574: 1571: 1565: 1552: 1543: 1528: 1522: 1521: 1519: 1518: 1498: 1492: 1491: 1489: 1488: 1482: 1468:(ECS): 343–347. 1453: 1444: 1335:Polarity marking 1317: 1310: 1303: 1296: 1295: 1091: 885:of the capacitor 728:AVX, NBM 220/6.3 704:AVX, NOS 220/6,3 582: 469: 415: 403: 391: 307:Oxide structure 295: 269: 267: 266: 261: 259: 251: 161:Anodic oxidation 68:layer acts as a 62:niobium monoxide 21: 1999: 1998: 1994: 1993: 1992: 1990: 1989: 1988: 1974: 1973: 1957:Wayback Machine 1934: 1932:Further reading 1929: 1928: 1919: 1918: 1914: 1901: 1900: 1896: 1889:webstore.iec.ch 1883: 1882: 1878: 1865: 1864: 1860: 1853: 1844: 1835: 1833: 1829: 1818: 1813: 1812: 1803: 1795: 1788: 1781: 1774: 1769:Wayback Machine 1760: 1756: 1751:Wayback Machine 1741: 1737: 1729: 1725: 1717: 1713: 1708:Wayback Machine 1698: 1694: 1689: 1685: 1678: 1674: 1669: 1665: 1660: 1656: 1648: 1644: 1636: 1632: 1625: 1621: 1613: 1604: 1596: 1592: 1584: 1577: 1572: 1568: 1563:Wayback Machine 1553: 1546: 1541:Wayback Machine 1529: 1525: 1516: 1514: 1500: 1499: 1495: 1486: 1484: 1480: 1451: 1446: 1445: 1441: 1436: 1424: 1402: 1354: 1352:Standardization 1337: 1289: 1284: 1276: 1272: 1268: 1264: 1256: 1252: 1248: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1212:niobium dioxide 1209: 1205: 1185: 1181: 1177: 1164: 1135: 1131: 1127: 1114: 1082: 1055: 1044: 1036: 1034:Reverse voltage 1027: 1014: 1010: 1002: 998: 994: 990: 977: 935: 931: 925: 906: 893: 883:leakage current 880: 854: 849: 830:Eugène Ducretet 825: 819: 748:NEC, NMC 100/10 724: 700: 632: 608: 573: 460: 419: 416: 407: 404: 395: 392: 380: 355: 351: 328: 324: 298:Anode material 233: 232: 163: 156: 152: 135:niobium nitride 129: 125: 116: 28: 23: 22: 15: 12: 11: 5: 1997: 1995: 1987: 1986: 1976: 1975: 1972: 1971: 1965: 1959: 1953: 1948: 1933: 1930: 1927: 1926: 1912: 1894: 1876: 1858: 1842: 1801: 1786: 1772: 1754: 1735: 1723: 1711: 1692: 1683: 1672: 1663: 1654: 1642: 1630: 1619: 1602: 1590: 1575: 1566: 1544: 1523: 1493: 1438: 1437: 1435: 1432: 1431: 1430: 1423: 1420: 1419: 1418: 1415: 1412: 1409: 1406: 1401: 1398: 1397: 1396: 1382: 1381: 1353: 1350: 1336: 1333: 1330: 1329: 1326: 1323: 1319: 1318: 1311: 1304: 1288: 1285: 1283: 1280: 1274: 1270: 1266: 1262: 1254: 1250: 1246: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1207: 1203: 1190: 1189: 1186: 1183: 1179: 1175: 1172: 1169: 1166: 1162: 1158: 1157: 1154: 1151: 1148: 1145: 1141: 1140: 1137: 1133: 1129: 1125: 1122: 1119: 1116: 1112: 1108: 1107: 1104: 1101: 1100:Failure modes 1098: 1095: 1081: 1078: 1054: 1051: 1043: 1040: 1035: 1032: 1026: 1023: 1012: 1008: 1000: 996: 992: 988: 976: 973: 972: 971: 964: 957: 933: 929: 924: 921: 913: 912: 904: 899: 891: 886: 878: 873: 853: 850: 848: 845: 818: 815: 806: 805: 802: 799: 796: 793: 790: 786: 785: 782: 779: 776: 773: 770: 766: 765: 762: 761: 758: 755: 752: 749: 746: 742: 741: 738: 735: 732: 729: 726: 722: 718: 717: 714: 711: 708: 705: 702: 698: 694: 693: 690: 689: 686: 683: 680: 677: 674: 670: 669: 666: 663: 660: 657: 654: 650: 649: 646: 643: 640: 637: 634: 630: 626: 625: 622: 619: 616: 613: 610: 606: 602: 601: 598: 595: 592: 589: 586: 572: 569: 562: 561: 558: 555: 552: 551:Solid, polymer 548: 547: 544: 541: 538: 535: 531: 530: 527: 524: 521: 520:Solid, polymer 517: 516: 513: 510: 507: 503: 502: 499: 496: 493: 490: 486: 485: 482: 479: 476: 473: 459: 456: 443:, and a solid 421: 420: 417: 410: 408: 405: 398: 396: 393: 386: 384: 379: 376: 369: 368: 365: 362: 359: 356: 353: 349: 346: 342: 341: 338: 335: 332: 329: 326: 322: 319: 315: 314: 311: 308: 305: 302: 299: 271: 270: 257: 254: 249: 246: 243: 240: 162: 159: 154: 150: 127: 123: 115: 112: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1996: 1985: 1982: 1981: 1979: 1970: 1966: 1964: 1960: 1958: 1954: 1952: 1949: 1947: 1944: 1940: 1936: 1935: 1931: 1922: 1916: 1913: 1908: 1904: 1898: 1895: 1890: 1886: 1880: 1877: 1872: 1868: 1862: 1859: 1856: 1851: 1849: 1847: 1843: 1832:on 2013-08-06 1828: 1824: 1817: 1810: 1808: 1806: 1802: 1799: 1793: 1791: 1787: 1784: 1779: 1777: 1773: 1770: 1766: 1763: 1758: 1755: 1752: 1748: 1745: 1739: 1736: 1733: 1727: 1724: 1721: 1715: 1712: 1709: 1705: 1702: 1696: 1693: 1687: 1684: 1681: 1676: 1673: 1667: 1664: 1658: 1655: 1652: 1646: 1643: 1640: 1634: 1631: 1628: 1623: 1620: 1617: 1611: 1609: 1607: 1603: 1600: 1594: 1591: 1588: 1582: 1580: 1576: 1570: 1567: 1564: 1560: 1557: 1551: 1549: 1545: 1542: 1538: 1535: 1532: 1527: 1524: 1512: 1508: 1504: 1497: 1494: 1479: 1475: 1471: 1467: 1463: 1459: 1458: 1450: 1443: 1440: 1433: 1429: 1426: 1425: 1421: 1416: 1413: 1410: 1407: 1404: 1403: 1399: 1394: 1393: 1392: 1390: 1385: 1379: 1378: 1377: 1375: 1371: 1367: 1363: 1359: 1351: 1349: 1341: 1334: 1327: 1324: 1321: 1320: 1316: 1312: 1309: 1305: 1302: 1298: 1297: 1294: 1293: 1286: 1281: 1279: 1259: 1243: 1213: 1196: 1187: 1173: 1170: 1167: 1160: 1159: 1155: 1152: 1149: 1146: 1143: 1142: 1138: 1123: 1120: 1117: 1110: 1109: 1105: 1102: 1099: 1096: 1093: 1086: 1079: 1077: 1073: 1071: 1067: 1062: 1060: 1052: 1050: 1049: 1041: 1039: 1033: 1031: 1025:Surge Voltage 1024: 1022: 1019: 1016: 1004: 981: 974: 969: 965: 962: 958: 955: 951: 950: 949: 947: 941: 939: 922: 920: 919:/EN 60384-1. 918: 910: 903: 900: 897: 890: 887: 884: 877: 874: 871: 868: 867: 866: 858: 851: 846: 844: 842: 837: 835: 831: 824: 816: 814: 811: 803: 800: 797: 794: 791: 788: 787: 783: 780: 777: 774: 771: 768: 767: 764: 763: 759: 756: 753: 750: 747: 744: 743: 739: 736: 733: 730: 727: 720: 719: 715: 712: 709: 706: 703: 696: 695: 692: 691: 687: 684: 681: 678: 675: 672: 671: 667: 664: 661: 658: 655: 652: 651: 647: 644: 641: 638: 635: 628: 627: 623: 620: 617: 614: 611: 604: 603: 599: 596: 593: 590: 587: 584: 583: 577: 570: 568: 559: 556: 553: 550: 549: 545: 542: 539: 536: 532: 528: 525: 522: 519: 518: 514: 511: 508: 505: 504: 500: 497: 494: 491: 487: 483: 480: 477: 474: 471: 464: 457: 455: 453: 449: 446: 442: 438: 434: 430: 426: 425:niobium oxide 414: 409: 402: 397: 390: 385: 382: 377: 375: 366: 363: 360: 357: 347: 344: 343: 339: 336: 333: 330: 320: 317: 316: 312: 309: 306: 303: 300: 297: 296: 290: 288: 283: 279: 276: 255: 252: 247: 244: 241: 238: 231: 230: 229: 227: 219: 218: 213: 212: 206: 202: 198: 194: 192: 188: 184: 180: 176: 167: 160: 158: 148: 144: 140: 139:niobium oxide 136: 133: 120: 113: 111: 109: 104: 102: 101:short circuit 96: 95:electrolyte. 94: 90: 86: 81: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 34: 30: 19: 1969:CapSite 2023 1943:1-25900731-6 1915: 1907:www.beuth.de 1906: 1897: 1888: 1879: 1870: 1861: 1834:. Retrieved 1827:the original 1757: 1738: 1726: 1714: 1695: 1686: 1675: 1666: 1657: 1651:D.R.P. 92564 1645: 1633: 1622: 1593: 1569: 1526: 1515:. Retrieved 1496: 1485:. Retrieved 1461: 1455: 1442: 1386: 1383: 1355: 1346: 1291: 1290: 1260: 1244: 1201: 1083: 1074: 1070:service life 1063: 1056: 1045: 1037: 1028: 1020: 1017: 1005: 986: 942: 926: 914: 901: 888: 875: 869: 863: 838: 834:Karol Pollak 826: 812: 809: 574: 565: 495:0.1...18,000 475:Electrolyte 461: 422: 372: 284: 280: 272: 226:permittivity 223: 216: 215: 210: 209: 199: 195: 179:electrolytic 172: 121: 117: 108:Soviet Union 105: 97: 82: 45: 41: 39: 29: 1165:electrolyte 1115:electrolyte 795:7.3x4.3x4.0 775:7.3x4.3x4.2 751:7.3x4.3x2.8 731:7.3x4.3x4.1 725:electrolyte 707:7.3x4.3x4.1 701:electrolyte 679:7.3x4.3x4.0 659:7.3x4.3x4.0 639:7.3x4.3x4.0 633:electrolyte 615:7.3x4.3x4.0 609:electrolyte 509:0.1...3,300 448:electrolyte 301:Dielectric 175:valve metal 74:electrolyte 1984:Capacitors 1871:www.iec.ch 1867:"Homepage" 1836:2015-01-02 1517:2022-06-21 1487:2022-06-21 1434:References 1370:non-profit 1362:electronic 1358:electrical 1218:). The NbO 968:E12 series 841:transistor 821:See also: 523:10...1,500 441:dielectric 275:nanometers 187:dielectric 132:passivated 72:. A solid 70:dielectric 1368:(IEC), a 1066:life time 961:E6 series 954:E3 series 554:4.7...470 540:1...1,500 361:amorphous 334:amorphous 248:⋅ 245:ε 143:anodizing 137:or using 60:metal or 1978:Category 1765:Archived 1747:Archived 1704:Archived 1559:Archived 1537:Archived 1511:Archived 1478:Archived 1422:See also 1400:Features 946:E series 515:125/150 501:125/200 429:sintered 318:Tantalum 89:tantalum 48:) is an 879:leakage 817:History 452:cathode 450:as the 183:voltage 78:cathode 58:niobium 1941:  1168:stable 1118:stable 907:, the 894:, the 588:Type 189:in an 52:whose 1830:(PDF) 1819:(PDF) 1481:(PDF) 1452:(PDF) 433:anode 80:(−). 54:anode 1939:ISBN 1214:(NbO 1064:The 801:4700 781:3700 737:2561 713:1461 685:4970 665:4900 645:2500 621:1285 560:105 546:105 529:105 367:2.5 340:1.6 1963:PDF 1823:AVX 1798:PDF 1744:PDF 1732:PDF 1701:PDF 1639:PDF 1616:PDF 1599:PDF 1587:PDF 1556:PDF 1470:doi 1462:108 1389:EIA 938:RMS 917:IEC 905:ESL 892:ESR 618:100 512:125 498:630 439:as 364:400 337:625 149:(Nb 85:SMD 1980:: 1905:. 1887:. 1869:. 1845:^ 1821:. 1804:^ 1789:^ 1775:^ 1605:^ 1578:^ 1547:^ 1509:. 1476:. 1460:. 1454:. 1360:, 1068:, 1061:. 940:. 798:10 734:40 710:80 662:10 642:35 557:16 543:10 526:25 454:. 358:41 331:27 193:. 40:A 1923:. 1909:. 1891:. 1873:. 1839:. 1520:. 1490:. 1472:: 1275:5 1273:O 1271:2 1267:5 1265:O 1263:2 1255:5 1253:O 1251:2 1247:2 1240:2 1236:5 1234:O 1232:2 1228:5 1226:O 1224:2 1220:2 1216:2 1208:5 1206:O 1204:2 1184:2 1180:5 1178:O 1176:2 1163:2 1134:3 1132:O 1130:2 1126:2 1113:2 1013:C 1009:C 1001:R 997:R 993:N 989:R 934:N 932:C 930:R 902:L 889:R 876:R 870:C 778:7 757:- 754:- 723:2 699:2 682:5 631:2 607:2 354:5 352:O 350:2 327:5 325:O 323:2 256:d 253:A 242:= 239:C 220:. 217:d 211:A 155:5 153:O 151:2 128:5 126:O 124:2 20:)

Index

Niobium electrolytic capacitor

electrolytic capacitor
anode
niobium
niobium monoxide
niobium pentoxide
dielectric
electrolyte
cathode
SMD
tantalum
manganese dioxide
short circuit
Soviet Union
passivated
niobium nitride
niobium oxide
anodizing
niobium pentoxide

valve metal
electrolytic
voltage
dielectric
electrolytic capacitor

permittivity
nanometers
tantalum pentoxide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.