Knowledge (XXG)

Noctilucent cloud

Source 📝

392:. It remains unclear whether their appearance had anything to do with the volcanic eruption or whether their discovery was due to more people observing the spectacular sunsets caused by the volcanic debris in the atmosphere. Studies have shown that noctilucent clouds are not caused solely by volcanic activity, although dust and water vapour could be injected into the upper atmosphere by eruptions and contribute to their formation. Scientists at the time assumed the clouds were another manifestation of volcanic ash, but after the ash had settled out of the atmosphere, the noctilucent clouds persisted. Finally, the theory that the clouds were composed of volcanic dust was disproved by Malzev in 1926. In the years following their discovery, the clouds were studied extensively by Otto Jesse of 584:
This indicates that control of polar mesospheric clouds is determined by geographical rather than geomagnetic factors. The brightness of polar mesospheric clouds and noctilucent clouds appears to be consistent at the latitudes where both are observed, but polar mesospheric clouds near the pole are much brighter than noctilucent clouds, even taking into account the lower sky background seen from space. Polar mesospheric cloud observations have revealed that the well-known phenomenon of the northward shifting with latitude of date of peak noctilucent cloud occurrence is partly due to the increased number of hours of noctilucent cloud visibility with latitude and partly due to an actual northward retreat of the boundary towards the end of the season.
576:
satellite, was the first to trace noctilucent-like cloud layers across the polar cap. The very bright scattering layer was seen in full daylight conditions, and was identified as the poleward extension of noctilucent clouds. In the early 1980s, the layer was observed again from a satellite, the Solar Mesospheric Explorer (SME). On board this satellite was an ultraviolet spectrometer, which mapped the distributions of clouds over the time period 1981 to 1986. The experiment measured the altitude profile of scattering from clouds at two spectral channels (primarily) 265 nm and 296 nm. This phenomenon is now known as Polar Mesospheric Clouds.
536: 181: 648: 580:
summer solstice and ends about two months afterwards. Since there are no biases due to such factors as changing number of hours of visibility, weather conditions, etc. this is a ‘true’ behaviour. It is believed to be a result of the fact that summertime mesopause region becomes coldest during this period causing water-ice to form, in contrast to most other regions of the atmosphere which are warmest in summer. Temperatures at latitudes equatorward of the boundary of detection never get low enough for water-ice to form.
396:, who was the first to photograph them, in 1887, and seems to have been the one to coin the term "noctilucent cloud". His notes provide evidence that noctilucent clouds first appeared in 1885. He had been doing detailed observations of the unusual sunsets caused by the Krakatoa eruption the previous year and firmly believed that, if the clouds had been visible then, he would undoubtedly have noticed them. Systematic photographic observations of the clouds were organized in 1887 by Jesse, 752: 548: 42: 528: 706:. They are best seen when the Sun is between 6° and 16° below the horizon. Although noctilucent clouds occur in both hemispheres, they have been observed thousands of times in the northern hemisphere, but fewer than 100 times in the southern. Southern hemisphere noctilucent clouds are fainter and occur less frequently; additionally the southern hemisphere has a lower population and less land area from which to make observations. 236: 415:'s conjecture, that they were composed of water ice, was later shown to be correct. Study was limited to ground-based observations and scientists had very little knowledge of the mesosphere until the 1960s, when direct rocket measurements began. These showed for the first time that the clouds' occurrence coincided with very low temperatures in the mesosphere. 568:
interference from the very bright Earth about a degree beneath the cloud layer. It is a much more difficult task to observe the clouds against the bright background of the illuminated Earth, although this has been achieved in the ultraviolet in the 200 to 300 nm spectral region, because of the very small albedo of the earth in this part of spectrum.
324:, and is extremely thin, the ice crystals can form only at temperatures below about −120 Â°C (−184 Â°F). This means that noctilucent clouds form predominantly during summer when, counterintuitively, the mesosphere is coldest as a result of seasonally varying vertical winds, leading to cold summertime conditions in the upper mesosphere ( 560:. This holds true for both hemispheres. Great variability in scattering is observed from day-to-day and year-to- year, but averaging over large time and space scales reveals a basic underlying symmetry and pattern. The long- term behaviour of polar mesospheric cloud frequency has been found to vary inversely with solar activity. 455:) satellite was launched on 25 April 2007. It was the first satellite dedicated to studying noctilucent clouds, and made its first observations a month later (25 May). Images taken by the satellite show shapes in the clouds that are similar to shapes in tropospheric clouds, hinting at similarities in their dynamics. 583:
Polar mesospheric clouds generally increase in brightness and occurrence frequency with increasing latitude, from about 60 degrees to the highest latitudes observed (85 degrees). So far, no apparent dependence on longitude has been found, nor is there any evidence of a dependence on auroral activity.
575:
Satellite observations allow the very coldest parts of the polar mesosphere to be observed, all the way to the geographic pole. In the early 1970s, visible airglow photometers first scanned the atmospheric horizon throughout the summer polar mesospause region. This experiment, which flew on the OGO-6
312:
region in little over a day, although the exact mechanism of this very high-speed transfer is unknown. As the water migrates northward, it falls from the thermosphere into the colder mesosphere, which occupies the region of the atmosphere just below. Although this mechanism is the cause of individual
579:
The general seasonal characteristics of polar mesospheric clouds are well established from the five years of continuous SME data. Over that period, data for four cloud ‘seasons’ in the north, and five ‘seasons’ in the south were recorded. In both hemispheres, the season begins about one month before
567:
When mesospheric clouds are viewed above the atmosphere, the geometrical limitations of observing from the ground are significantly reduced. They may be observed ‘edge-on’ against the comparatively dark sky background, even in full daylight. The photometer field of view must be well baffled to avoid
344:
because the Sun is never low enough under the horizon at this season at these latitudes. Noctilucent clouds form mostly near the polar regions, because the mesosphere is coldest there. Clouds in the southern hemisphere are about 1 km (3,300 ft) higher than those in the northern hemisphere.
698:), and closer to the poles it does not get dark enough for the clouds to become visible. They occur during summer, from mid-May to mid-August in the northern hemisphere and between mid-November and mid-February in the southern hemisphere. They are very faint and tenuous, and may be observed only in 571:
American and Soviet astronauts observed the phenomenon from space as early as 1970. Most observations are reported from the night side of the orbit and the observer is looking towards the twilight sector. At this time the observer's eye is dark-adapted and polar mesospheric clouds would appear with
379:
and settle into a layer just above the altitude of noctilucent clouds, and measurements have shown that these elements are severely depleted when the clouds are present. Other experiments have demonstrated that, at the extremely cold temperatures of a noctilucent cloud, sodium vapour can rapidly be
506:
to create an artificial noctilucent cloud. The cloud was to be observed over a period of weeks or months by ground instruments and the Spatial Heterodyne IMager for MEsospheric Radicals (SHIMMER) instrument on the NRL/STP STPSat-1 spacecraft. The rocket's exhaust plume was observed and reported to
355:
and satellites have been tracking the decrease in brightness of the clouds with the increase of ultraviolet radiation for the last two solar cycles. It has been found that changes in the clouds follow changes in the intensity of ultraviolet rays by about a year, but the reason for this long lag is
844:
Robinson made a series of interesting observations between 1849 and 1852, and two of his entries in May 1850 may describe noctilucent clouds. On 1 May 1850, he notes ‘strange luminous clouds in NW, not auroral'. This does seem like NLCs even though early May is outside the typical NLC 'window';
563:
PMC's have four major types based on physical structure and appearance. Type I veils are very tenuous and lack well-defined structure, somewhat like cirrostratus or poorly defined cirrus. Type II bands are long streaks that often occur in groups arranged roughly parallel to each other. They are
518:
A 2018 experiment briefly created noctilucent clouds over Alaska, allowing ground-based measurements and experiments aimed at verifying computer simulations of the phenomenon. A suborbital NASA rocket was launched on 26 January 2018 by University of Alaska professor Richard Collins. It carried
666:
in the path of the sunlight illuminating the noctilucent cloud. They can appear as featureless bands, but frequently show distinctive patterns such as streaks, wave-like undulations, and whirls. They are considered a "beautiful natural phenomenon". Noctilucent clouds may be confused with
564:
usually more widely spaced than the bands or elements seen with cirrocumulus clouds. Type III billows are arrangements of closely spaced, roughly parallel short streaks that mostly resemble cirrus. Type IV whirls are partial or, more rarely, complete rings of cloud with dark centres.
466:–crystal clouds on Mars that extended to 100 km (330,000 ft) above the planet's surface. These are the highest clouds discovered over the surface of a rocky planet. Like noctilucent clouds on Earth, they can be observed only when the Sun is below the horizon. 519:
water-filled canisters, which were released at about 53 mi (85 km) above the Earth. Since the naturally-occurring clouds only appear in summer, this experiment was conducted in mid-winter to assure that its results would not be mixed with a natural event.
2361: 721:
The clouds may show a large variety of different patterns and forms. An identification scheme was developed by Fogle in 1970 that classified five different forms. These classifications have since been modified and subdivided. As a result of recent research, the
1783: 555:
Observed from the ground, this phenomenon is known as noctilucent clouds. From satellites, PMCs are most frequently observed above 70–75° in latitude and have a season of 60 to 80 days duration centered about a peak which occurs about 20 days after the
227:
in diameter and exist at a height of about 76 to 85 km (249,000 to 279,000 ft), higher than any other clouds in Earth's atmosphere. Clouds in the Earth's lower atmosphere form when water collects on particles, but
2365: 1482:
Hervig, Mark; Thompson, Robert E.; McHugh, Martin; Gordley, Larry L.; Russel, James M.; Summers, Michael E. (March 2001). "First Confirmation that Water Ice is the Primary Component of Polar Mesospheric Clouds".
615:
in five days. The giant balloon was loaded with cameras, which captured six million high-resolution images filling up 120 terabytes of data storage, aiming to study the PMCs which are affected by the atmospheric
671:, but appear sharper under magnification. Those caused by rocket exhausts tend to show colours other than silver or blue, because of iridescence caused by the uniform size of the water droplets produced. 662:
Noctilucent clouds are generally colourless or pale blue, although occasionally other colours including red and green have been observed. The characteristic blue colour comes from absorption by
434:, even when they were not visible to the naked eye. The first physical confirmation that water ice is indeed the primary component of noctilucent clouds came from the HALOE instrument on the 2640: 203:. There are now doubts concerning Robinson's out-of-season records, partly as a result of observations, from several points around high northern latitudes, of NLC-like phenomena after the 620:, resulted from air being pushed up by mountain ranges all the way up to the mesosphere. These images would aid in studying turbulence in the atmosphere, and consequently better 925: 1283:
Murray, B.J.; Plane, J.M.C. (2005). "Uptake of Fe, Na and K atoms on low-temperature ice: implications for metal atom scavenging in the vicinity of polar mesospheric clouds".
968: 422:-6 satellite in 1972. The OGO-6 observations of a bright scattering layer over the polar caps were identified as poleward extensions of these clouds. A later satellite, the 161:
emissions produce additional water vapor through chemical reactions once the methane molecules reach the mesosphere – creating, or reinforcing existing, noctilucent clouds.
713:. Also, some noctilucent clouds are made of smaller crystals, 30 nm or less, which are invisible to observers on the ground because they do not scatter enough light. 2025: 247:
satellite suggests that noctilucent clouds require water vapour, dust, and very cold temperatures to form. The sources of both the dust and the water vapour in the
572:
maximum contrast against a comparatively dark background. Soviet astronauts have reported sightings of mesospheric clouds even when the Sun is above the horizon.
351:
from the Sun breaks water molecules apart, reducing the amount of water available to form noctilucent clouds. The radiation is known to vary cyclically with the
733:
Type II bands are long streaks that often occur in roughly parallel groups, usually more widely spaced than the bands or elements seen with cirrocumulus clouds.
1071: 2606: 367:
to 1.3 GHz. This behaviour is not well understood but a possible explanation is that the ice grains become coated with a thin metal film composed of
375:, which makes the cloud far more reflective to radar, although this explanation remains controversial. Sodium and iron atoms are stripped from incoming 3263: 1330: 290:
at a height of about 46 km (151,000 ft), was found to generate minuscule individual clouds. About half of the vapour was released into the
1972:
Thomas, G. E.; Olivero, J. J. (20 October 1989). "Climatology of polar mesospheric clouds: 2. Further analysis of solar mesosphere explorer data".
481: 831: 3628: 1621: 2662: 2503: 1567: 1672:"Two-dimensional turbulence, space shuttle plume transport in the thermosphere, and a possible relation to the Great Siberian Impact Event" 1034: 2273: 485: 435: 2043:
Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell III, J. M. (11 January 2018).
1157: 1453: 492: 287: 1186: 2682: 1594: 770: 723: 628: 452: 244: 3551: 2490: 1105: 863: 535: 702:
around sunrise and sunset when the clouds of the lower atmosphere are in shadow, but the noctilucent cloud is illuminated by the
426:, mapped the distribution of the clouds between 1981 and 1986 with its ultraviolet spectrometer. The clouds were detected with a 419: 3374: 2007: 448:
performed spectral analyses on the clouds, and produced daily global maps that revealed large patterns in their distribution.
1937:
Thomas, Gary E (September 1984). "Solar Mesosphere Explorer measurements of polar mesospheric clouds (noctilucent clouds)".
1742: 195:
No confirmed record of their observation exists before 1885, although they may have been observed a few decades earlier by
3026: 1142: 1212: 1138: 3520: 923:
Murray, B.J.; Jensen, E.J. (2000). "Homogeneous nucleation of amorphous solid water particles in the upper mesosphere".
211:
entry of February 2013 (outside the NLC season) that were actually stratospheric dust reflections visible after sunset.
2208:
Hultgren, K.; et al. (2011). "What caused the exceptional mid-latitudinal Noctilucent Cloud event in July 2009?".
2044: 3525: 3379: 3073: 3036: 2173: 2045:"Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery" 886: 411:
In the decades after Otto Jesse's death in 1901, there were few new insights into the nature of noctilucent clouds.
3510: 3389: 3384: 730:
Type I veils are very tenuous and lack well-defined structure, somewhat like cirrostratus or poorly defined cirrus.
2529: 631:
satellite to study these noctilucent clouds, which always occur during the summer season near the poles. However,
3259: 2930: 2925: 2782: 2763: 2655: 787: 423: 389: 2556: 1922: 1897: 736:
Type III billows are arrangements of closely spaced, roughly parallel short streaks that mostly resemble cirrus.
3285: 3046: 2915: 2843: 2603: 1079: 180: 3394: 3255: 3249: 3151: 2336: 2307: 647: 503: 397: 1334: 1187:"Caltech Scientist Proposes Explanation for Puzzling Property of Night-Shining Clouds at the Edge of Space" 3505: 3500: 2966: 2858: 1244:"Comment on 'Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity' by P. M. Bellan" 817: 196: 2128:
Gadsen, M. (October–December 1975). "Observations of the colour and polarization of noctilucent clouds".
3399: 3244: 2961: 2879: 678:
of 50° to 65°. They seldom occur at lower latitudes (although there have been sightings as far south as
431: 348: 126: 2441: 1853: 3623: 3449: 3337: 2920: 2863: 2648: 2544: 2323: 2217: 2137: 2056: 1981: 1946: 1909: 1898:"Free Access Noctilucent Clouds in Daytime: Circumpolar Particulate Layers Near the Summer Mesopause" 1683: 1542: 1527: 1492: 1411: 1292: 1255: 934: 499: 496: 2463: 1875: 3591: 3357: 3195: 3146: 3051: 3031: 2674: 2635: 2598: 2419: 1831: 1625: 901: 797: 751: 621: 286:, in use between 1981 and 2011, which was almost entirely water vapour after the detachment of the 158: 110: 2397: 1809: 3454: 3173: 3127: 3100: 3083: 2944: 2898: 2884: 2625: 1720: 1571: 1508: 995: 488: 401: 204: 1712: 1648: 547: 1038: 3541: 3495: 3321: 3065: 3009: 2499: 1308: 777: 337: 329: 313:
noctilucent clouds, it is not thought to be a major contributor to the phenomenon as a whole.
150: 41: 2281: 1768: 294:, usually at altitudes of 103 to 114 km (338,000 to 374,000 ft). In August 2014, a 3465: 3201: 3041: 2552: 2331: 2225: 2064: 1989: 1954: 1917: 1691: 1500: 1357: 1300: 1263: 942: 782: 302: 272: 248: 1461: 1161: 527: 3546: 3515: 3440: 3280: 2848: 2630: 2610: 1190: 792: 710: 557: 1526:
Karlsson, B.; Gumbel, J.; Stegman, J.; Lautier, N.; Murtagh, D.P.; The Odin Team (2004).
1109: 871: 2548: 2509: 2327: 2247: 2221: 2141: 2060: 1985: 1950: 1913: 1687: 1598: 1546: 1496: 1296: 1259: 938: 635:
analyses of AIM satellite indicate that there is a spatial negative correlation between
320:
contains very little moisture, approximately one hundred millionth that of air from the
149:, they are visible only when the observer and the lower layers of the atmosphere are in 3556: 2853: 1059: 973: 818:"Noctilucent clouds: What are they and when can you see them? | Royal Observatory" 757: 474: 463: 445: 412: 117:, detectable as a diffuse scattering layer of water ice crystals near the summer polar 845:
however it is still possible as NLCs can form at Armagh's latitude within this period.
739:
Type IV whirls are partial or, more rarely, complete rings of cloud with dark centres.
551:
These images show measurements of polar mesospheric clouds over the course of one day.
388:
Noctilucent clouds are first known to have been observed in 1885, two years after the
3617: 3561: 3366: 3316: 3308: 3299: 3239: 3231: 3220: 3138: 3018: 2953: 2907: 2835: 2745: 2678: 2243: 1958: 1593:
NASA/Goddard Space Flight Center Scientific Visualization Studio (10 December 2007).
617: 512: 405: 283: 232:
clouds may form directly from water vapour in addition to forming on dust particles.
3459: 3427: 2826: 2808: 1713:"A mystery solved: Space shuttle shows 1908 Tunguska explosion was caused by comet" 1512: 1407: 668: 600: 459: 400:, and Stolze and, after that year, continuous observations were carried out at the 341: 291: 276: 122: 2620: 2588: 2362:"First Antarctic ground-satellite view of ice aerosol clouds at the edge of space" 17: 3421: 2691: 2616:
NASA Astronomy Picture of the Day: Noctilucent Clouds Over Sweden (18 July 2006)
2229: 1746: 946: 352: 333: 260: 87: 2177: 2026:"NASA balloon captures electric blue clouds during weather forecasting mission" 3178: 3167: 2578: 747: 632: 508: 317: 264: 229: 169: 2094: 1220: 1021: 3206: 1993: 376: 340:). Therefore, they cannot be observed (even if they are present) inside the 325: 224: 118: 2636:
Time-lapse videos playlist of noctilucent clouds observed in Samara, Russia
2615: 1312: 404:. During this research, the height of the clouds was first determined, via 235: 1037:(Press release). Naval Research Laboratories. 6 March 2003. Archived from 418:
Noctilucent clouds were first detected from space by an instrument on the
2069: 1696: 1671: 1504: 1268: 1243: 765: 709:
These clouds may be studied from the ground, from space, and directly by
699: 675: 652: 298: 263:
are also possibilities. The moisture could be lifted through gaps in the
154: 146: 142: 608: 592: 393: 268: 256: 185: 51: 2530:"Otto Jesse and the Investigation of Noctilucent Clouds 115 Years Ago" 172:
at altitudes of around 76 to 85 km (249,000 to 279,000 ft).
1304: 691: 656: 636: 612: 604: 596: 473:
in June 2009 suggests that noctilucent clouds observed following the
442: 368: 321: 309: 295: 252: 208: 200: 189: 138: 1784:"To Study Night-shining Clouds, NASA Used Its "Super-Soaker" Rocket" 832:"Climate Change Is Responsible for These Rare High-Latitude Clouds" 3566: 2671: 2626:
CNN Article - Rocket launch prompts calls of strange lights in sky
695: 687: 679: 663: 646: 546: 534: 526: 427: 364: 360: 234: 179: 165: 134: 106: 77: 47: 2677:
and selected species, supplementary features, and other airborne
1896:
Donahue, T. M.; Guenther, B.; Blamont, J. E. (1 September 1972).
1360:. German Commission on History of Geophysics and Cosmical Physics 1060:
11 Aug 2014 SpaceX Falcon 9 caused spectacular noctilucent clouds
1075: 1072:"Study Finds Space Shuttle Exhaust Creates Night-shining Clouds" 1035:"Study Finds Space Shuttle Exhaust Creates Night-Shining Clouds" 867: 683: 588: 372: 251:
are not known with certainty. The dust is believed to come from
2644: 3342: 2319: 1743:"Night Time Artificial Cloud Study Using NASA Sounding Rocket" 703: 540: 220: 3260:
Cumulus castellanus (unofficial alternative name for Cu con))
1622:"NASA Satellite Captures First View of 'Night-Shining Clouds" 495:(CARE) on September 19, 2009, using exhaust particles from a 239:
Noctilucent clouds during arctic dawn seen from high altitude
2498:. International Association of Geomagnetism & Aeronomy. 477:
of 1908 are evidence that the impact was caused by a comet.
2792:
No differentiated sub-types; tends to resemble cirrostratus
2604:
Southern Noctilucent Clouds observed at Punta Arenas, Chile
2593: 2583: 2557:
10.1175/1520-0477(2001)082<2457:OJATIO>2.3.CO;2
1923:
10.1175/1520-0469(1972)029<1205:NCIDCP>2.0.CO;2
1189:(Press release). Caltech. 25 September 2008. Archived from 887:"Strange clouds spotted at the edge of Earth's atmosphere" 726:
now recognizes four major forms that can be subdivided.
2337:
10.1175/1520-0493(1933)61<228:NANC>2.0.CO;2
969:"First Mission to Explore Those Wisps in the Night Sky" 1769:"Rocket launch prompts calls of strange lights in sky" 1670:
Kelly, M.C.; C.E. Seyler; M.F. Larsen (22 June 2009).
2114: 2112: 1528:"Studies of Noctilucent Clouds by the Odin Satellite" 1439: 1437: 27:
Cloud-like phenomena in the upper atmosphere of Earth
3266:
term for Cu con and "Cu cas" is Towering cumulus ))
2210:
Journal of Atmospheric and Solar-Terrestrial Physics
2008:"NASA Balloon Mission Captures Electric Blue Clouds" 926:
Journal of Atmospheric and Solar-Terrestrial Physics
219:
Noctilucent clouds are composed of tiny crystals of
3575: 3534: 3488: 3479: 3437: 3412: 3365: 3356: 3330: 3307: 3298: 3273: 3230: 3219: 3188: 3160: 3137: 3126: 3117: 3093: 3082: 3064: 3017: 3008: 2999: 2979: 2952: 2943: 2906: 2897: 2872: 2834: 2825: 2816: 2807: 2781: 2762: 2753: 2744: 2708: 2699: 2690: 2589:
BBC News Article - Mission to Target Highest Clouds
539:Polar mesospheric clouds illuminated by the rising 86: 76: 66: 58: 34: 3587:(Mother cloud)+mutatus (e.g. cumulomutatus (cumut) 3584:(Mother cloud)+genitus (e.g. cumulogenitus (cugen) 996:"Appearance of night-shining clouds has increased" 1595:"The First Season of Noctilucent Clouds from AIM" 1358:"On the Diurnal Variation of Noctilucent Clouds" 902:"Mysterious noctilucent clouds span the heavens" 502:suborbital sounding rocket launched from NASA's 153:, but while these very high clouds are still in 2537:Bulletin of the American Meteorological Society 2462:World Meteorological Organization, ed. (2017). 2440:World Meteorological Organization, ed. (2017). 2418:World Meteorological Organization, ed. (2017). 2396:World Meteorological Organization, ed. (2017). 2364:. Australian Antarctic Division. Archived from 1874:World Meteorological Organization, ed. (2017). 1852:World Meteorological Organization, ed. (2017). 1830:World Meteorological Organization, ed. (2017). 1808:World Meteorological Organization, ed. (2017). 145:between ±50° and ±70°. Too faint to be seen in 2631:BBC News - Audio slideshow: Noctilucent clouds 2621:BBC Article - Spacecraft Chases Highest Clouds 2049:Journal of Geophysical Research: Space Physics 1939:Journal of Atmospheric and Terrestrial Physics 1771:. Cable News Network (CNN). 20 September 2009. 1331:"History of Observation of Noctilucent Clouds" 363:reflectivity, in a frequency range of 50  2656: 2442:"Type III Billows, International Cloud Atlas" 1854:"Type III Billows, International Cloud Atlas" 507:news organizations in the United States from 359:Noctilucent clouds are known to exhibit high 8: 2599:Solar Occultation for Ice Experiment (SOFIE) 2088: 2086: 2084: 2082: 2080: 1974:Journal of Geophysical Research: Atmospheres 1213:"Project Studies Night Clouds, Radar Echoes" 1099: 1097: 531:Polar mesospheric clouds over the north pole 125:and from the ground are only visible during 2464:"Type IV Whirls, International Cloud Atlas" 2360:A. Klekociuk; R. Morris; J. French (2008). 1876:"Type IV Whirls, International Cloud Atlas" 1017: 1015: 1013: 3485: 3362: 3304: 3227: 3134: 3123: 3090: 3014: 3005: 2949: 2903: 2831: 2822: 2813: 2759: 2750: 2705: 2696: 2663: 2649: 2641: 2420:"Type II Bands, International Cloud Atlas" 1832:"Type II Bands, International Cloud Atlas" 1568:"Launch of AIM Aboard a Pegasus XL Rocket" 1324: 1322: 1181: 1179: 857: 855: 853: 851: 458:In the previous year, scientists with the 267:, as well as forming from the reaction of 137:. They are most often observed during the 113:. When viewed from space, they are called 40: 2764:Nacreous polar stratospheric clouds (PSC) 2398:"Type I Veils, International Cloud Atlas" 2335: 2068: 1921: 1810:"Type I Veils, International Cloud Atlas" 1695: 1267: 462:mission had announced their discovery of 408:. That project was discontinued in 1896. 2685:Latin terminology except where indicated 2301: 2299: 157:. Recent studies suggest that increased 2988:Mutatus non-height specific (see below) 1133: 1131: 1129: 1127: 809: 482:United States Naval Research Laboratory 1649:"Mars Clouds Higher Than Any On Earth" 308:The exhaust can be transported to the 168:in Earth's atmosphere, located in the 31: 2594:Noctilucent Cloud Observers' Homepage 962: 960: 958: 956: 864:"Strange Clouds at the Edge of Space" 7: 2528:Schröder, Wilfried (November 2001). 2489:Gadsden, M.; Parviainen, P. (1995). 2274:"Noctilucent clouds from Calar Alto" 2272:Calar Alto Observatory (July 2012). 2176:. Atmospheric Optics. Archived from 1782:Gamilla, Elizabeth (10 March 2021). 1329:Bergman, Jennifer (17 August 2004). 1022:About NLCs, Polar Mesospheric Clouds 301:also caused noctilucent clouds over 3390:Stratocumulus stratiformis (Sc str) 3385:Stratocumulus lenticularis (Sc len) 1902:Journal of the Atmospheric Sciences 1620:O'Carroll, Cynthia (28 June 2007). 1104:Phillips, Tony (19 February 2003). 486:United States Department of Defense 436:Upper Atmosphere Research Satellite 3375:Stratocumulus castellanus (Sc cas) 2931:Cirrocumulus stratiformis (Cc str) 2926:Cirrocumulus lenticularis (Cc len) 1647:SPACE.com staff (28 August 2006). 862:Phillips, Tony (August 25, 2008). 674:Noctilucent clouds may be seen at 493:Charged Aerosol Release Experiment 469:Research published in the journal 25: 3047:Altocumulus stratiformis (Ac str) 3042:Altocumulus lenticularis (Ac len) 2916:Cirrocumulus castellanus (Cc cas) 2308:"Nacreous and Noctilucent Clouds" 771:Aeronomy of Ice in the Mesosphere 724:World Meteorological Organization 453:Aeronomy of Ice in the Mesosphere 245:Aeronomy of Ice in the Mesosphere 133:roughly means "night shining" in 3152:Cumulonimbus capillatus (Cb cap) 3027:Altocumulus castellanus (Ac cas) 2785:polar stratospheric clouds (PSC) 885:Hsu, Jeremy (3 September 2008). 750: 3331:St-only genitus cloud and other 2967:Cirrostratus nebulosus (Cs neb) 1535:35th COSPAR Scientific Assembly 1242:Rapp, M.; Lubken, F.J. (2009). 1156:Cole, Stephen (14 March 2007). 967:Chang, Kenneth (24 July 2007). 380:deposited onto an ice surface. 115:polar mesospheric clouds (PMCs) 3400:Stratocumulus volutus (Sc vol) 3380:Stratocumulus floccus (Sc flo) 3161:Cb-only supplementary features 2962:Cirrostratus fibratus (Cs fib) 1219:: 3. Fall 2003. Archived from 998:. Science Daily. 11 April 2014 591:launched a giant balloon from 1: 3629:Atmospheric optical phenomena 3338:Stratus silvagenitus (St sil) 3196:Cumulonimbus flumen ((Cb flu) 3189:Cb-only accessories and other 3037:Altocumulus lacunosus (Ac la) 2921:Cirrocumulus floccus (Cc flo) 1143:Australian Antarctic Division 1078:. 3 June 2003. Archived from 255:, although particulates from 109:-like phenomena in the upper 3147:Cumulonimbus calvus (Cb cal) 3052:Altocumulus volutus (Ac vol) 3032:Altocumulus floccus (Ac flo) 2726:Noctilucent type III billows 2492:Observing Noctilucent Clouds 2482:General and cited references 1959:10.1016/0021-9169(84)90062-X 1676:Geophysical Research Letters 1485:Geophysical Research Letters 900:Simons, Paul (12 May 2008). 471:Geophysical Research Letters 3101:Nimbostratus virga (Ns vir) 2844:Cirrus castellanus (Ci cas) 2230:10.1016/j.jastp.2010.12.008 947:10.1016/j.jastp.2009.10.007 639:and wave‐induced altitude. 599:which traveled through the 523:Description from satellites 384:Discovery and investigation 3645: 3322:Stratus nebulosus (St neb) 3256:Cumulus congestus (Cu con) 3250:Cumulus mediocris (Cu med) 2885:Cirrus vertebratus (Ci ve) 2729:Noctilucent type IV whirls 2095:"Noctilucent Clouds, NLCs" 1741:NASA (19 September 2009). 1158:"AIM at the Edge of Space" 332:) and wintertime heating ( 3179:Cumulonimbus murus ((mur) 3168:Cumulonimbus cauda ((cau) 2859:Cirrus spissatus (Ci spa) 2723:Noctilucent type II bands 2386:Gadsden (1995), pp. 9–10. 2252:The World At Night (TWAN) 1711:Ju, Anne (24 June 2009). 1024:, from Atmospheric optics 788:Polar stratospheric cloud 424:Solar Mesosphere Explorer 390:1883 eruption of Krakatoa 99:Noctilucent clouds (NLCs) 39: 3317:Stratus fractus (St fra) 3245:Cumulus humilis (Cu hum) 3224:Variable vertical extent 3174:Cumulonimbus incus (inc) 2849:Cirrus fibratus (Ci fib) 2720:Noctilucent type I veils 2714:Polar mesospheric clouds 2154:Gadsden (1995), pp.8–10. 1431:Schröder (2001), p. 2464 1387:Schröder (2001), p. 2459 1378:Schröder (2001), p. 2457 184:Noctilucent clouds over 46:Noctilucent clouds over 3395:Stratocumulus Undulatus 2880:Cirrus intortus (Ci in) 2864:Cirrus uncinus (Ci unc) 2854:Cirrus floccus (Ci flo) 1994:10.1029/JD094iD12p14673 1396:Schröder (2001), p.2460 504:Wallops Flight Facility 72:(250,000 to 280,000 ft) 3535:Supplementary features 3415:supplementary features 2350:Gadsden (1995), p. 11. 2312:Monthly Weather Review 2278:Calar Alto Observatory 2130:Annales de GĂ©ophysique 2118:Gadsden (1995), p. 13. 1745:. NASA. Archived from 1597:. NASA. Archived from 1570:. NASA. Archived from 1443:Gadsden (1995), p. 18. 1285:Phys. Chem. Chem. Phys 1160:. NASA. Archived from 1108:. NASA. Archived from 659: 651:Noctilucent clouds in 552: 544: 532: 240: 197:Thomas Romney Robinson 192: 3578:and human-made clouds 3074:Altostratus undulatus 2783:Nitric acid and water 2584:AIM satellite mission 2579:NLC time-lapse movies 2198:Gadsden (1995), p. 8. 2163:Gadsden (1995), p. 9. 650: 550: 538: 530: 432:Utah State University 349:Ultraviolet radiation 238: 183: 164:They are the highest 127:astronomical twilight 2306:Giles, Bill (1933). 2216:(14–15): 2125–2131. 2097:. Atmospheric Optics 2070:10.1002/2017JA024481 2032:. 22 September 2018. 2014:. 20 September 2018. 1980:(D12): 14673–14681. 1788:Smithsonian Magazine 1697:10.1029/2009GL038362 1505:10.1029/2000GL012104 1412:University of Albany 1408:"Noctilucent Clouds" 1356:Schröder, Wilfried. 1269:10.1029/2008JD011323 1193:on 29 September 2008 1145:. 28 September 2020. 1139:"Noctilucent clouds" 1041:on 17 September 2008 874:on February 1, 2010. 834:. Smithsonian. 2018. 491:(STP) conducted the 288:Solid Rocket Booster 103:night shining clouds 3596:Homomutatus (homut) 3592:Homogenitus (hogen) 3562:Praecipitatio (pra) 2774:Lenticular nacreous 2549:2001BAMS...82.2457S 2368:on 25 February 2012 2328:1933MWRv...61..228H 2222:2011JASTP..73.2125H 2142:1975AnG....31..507G 2061:2018JGRA..123..955H 1986:1989JGR....9414673T 1951:1984JATP...46..819T 1914:1972JAtS...29.1205D 1688:2009GeoRL..3614103K 1547:2004cosp...35.1921K 1497:2001GeoRL..28..971H 1297:2005PCCP....7.3970M 1260:2009JGRD..11411204R 1164:on 27 November 2016 1082:on 27 November 2016 939:2010JASTP..72...51M 798:Twilight phenomenon 622:weather forecasting 159:atmospheric methane 111:atmosphere of Earth 3358:Stratocumulus (Sc) 3345:(Fg) Surface level 3286:Trade wind cumulus 2771:Cirriform nacreous 2609:2020-08-05 at the 2515:on 31 October 2008 2322:Weather: 228–229. 1749:on 27 October 2009 1721:Cornell University 1628:on 20 October 2008 1248:Geophys. Res. Lett 1112:on 12 October 2008 660: 553: 545: 533: 489:Space Test Program 402:Berlin Observatory 259:and dust from the 241: 193: 121:. They consist of 70:76,000 to 85,000 m 35:Noctilucent clouds 18:Noctilucent clouds 3611: 3610: 3607: 3606: 3603: 3602: 3521:Translucidus (tr) 3475: 3474: 3408: 3407: 3352: 3351: 3294: 3293: 3215: 3214: 3131:Towering vertical 3128:Cumulonimbus (Cb) 3113: 3112: 3109: 3108: 3084:Nimbostratus (Ns) 3060: 3059: 2995: 2994: 2975: 2974: 2945:Cirrostratus (Cs) 2939: 2938: 2899:Cirrocumulus (Cc) 2893: 2892: 2873:Ci-only varieties 2803: 2802: 2799: 2798: 2740: 2739: 2736: 2735: 2543:(11): 2457–2468. 2505:978-0-9650686-0-4 1717:Cornell Chronicle 1291:(23): 3970–3979. 778:Cloud iridescence 338:adiabatic heating 330:adiabatic cooling 282:The exhaust from 273:hydroxyl radicals 96: 95: 16:(Redirected from 3636: 3486: 3466:Actinoform cloud 3363: 3305: 3228: 3202:Overshooting top 3135: 3124: 3091: 3066:Altostratus (As) 3015: 3010:Altocumulus (Ac) 3006: 2950: 2904: 2832: 2823: 2814: 2760: 2751: 2706: 2697: 2665: 2658: 2651: 2642: 2567: 2565: 2563: 2534: 2524: 2522: 2520: 2514: 2508:. Archived from 2497: 2475: 2474: 2472: 2470: 2459: 2453: 2452: 2450: 2448: 2437: 2431: 2430: 2428: 2426: 2415: 2409: 2408: 2406: 2404: 2393: 2387: 2384: 2378: 2377: 2375: 2373: 2357: 2351: 2348: 2342: 2341: 2339: 2303: 2294: 2293: 2291: 2289: 2280:. Archived from 2269: 2263: 2262: 2260: 2258: 2246:(13 July 2008). 2240: 2234: 2233: 2205: 2199: 2196: 2190: 2189: 2187: 2185: 2180:on 4 August 2008 2170: 2164: 2161: 2155: 2152: 2146: 2145: 2125: 2119: 2116: 2107: 2106: 2104: 2102: 2090: 2075: 2074: 2072: 2040: 2034: 2033: 2022: 2016: 2015: 2004: 1998: 1997: 1969: 1963: 1962: 1934: 1928: 1927: 1925: 1908:(6): 1205–1209. 1893: 1887: 1886: 1884: 1882: 1871: 1865: 1864: 1862: 1860: 1849: 1843: 1842: 1840: 1838: 1827: 1821: 1820: 1818: 1816: 1805: 1799: 1798: 1796: 1794: 1779: 1773: 1772: 1765: 1759: 1758: 1756: 1754: 1738: 1732: 1731: 1729: 1727: 1708: 1702: 1701: 1699: 1667: 1661: 1660: 1658: 1656: 1644: 1638: 1637: 1635: 1633: 1624:. Archived from 1617: 1611: 1610: 1608: 1606: 1590: 1584: 1583: 1581: 1579: 1574:on 16 March 2010 1564: 1558: 1557: 1555: 1553: 1532: 1523: 1517: 1516: 1479: 1473: 1472: 1470: 1469: 1460:. Archived from 1450: 1444: 1441: 1432: 1429: 1423: 1422: 1420: 1418: 1403: 1397: 1394: 1388: 1385: 1379: 1376: 1370: 1369: 1367: 1365: 1353: 1347: 1346: 1344: 1342: 1333:. Archived from 1326: 1317: 1316: 1305:10.1039/b508846a 1280: 1274: 1273: 1271: 1239: 1233: 1232: 1230: 1228: 1209: 1203: 1202: 1200: 1198: 1183: 1174: 1173: 1171: 1169: 1153: 1147: 1146: 1135: 1122: 1121: 1119: 1117: 1106:"Strange Clouds" 1101: 1092: 1091: 1089: 1087: 1068: 1062: 1057: 1051: 1050: 1048: 1046: 1031: 1025: 1019: 1008: 1007: 1005: 1003: 992: 986: 985: 983: 981: 964: 951: 950: 920: 914: 913: 911: 909: 897: 891: 890: 882: 876: 875: 870:. Archived from 859: 846: 842: 836: 835: 828: 822: 821: 814: 783:Iridescent cloud 760: 755: 754: 587:On 8 July 2018, 305:after a launch. 303:Orlando, Florida 249:upper atmosphere 44: 32: 21: 3644: 3643: 3639: 3638: 3637: 3635: 3634: 3633: 3614: 3613: 3612: 3599: 3588: 3577: 3571: 3542:Asperitas (asp) 3530: 3511:Perlucidus (pe) 3496:Duplicatus (du) 3481: 3471: 3468:(Stratocumulus) 3441:accessory cloud 3439: 3433: 3414: 3404: 3348: 3326: 3290: 3269: 3223: 3211: 3184: 3156: 3130: 3119: 3105: 3086: 3078: 3056: 3001: 2991: 2981: 2980:High-level-only 2971: 2935: 2889: 2868: 2818: 2795: 2784: 2777: 2755: 2754:Very high-level 2732: 2713: 2701: 2686: 2669: 2611:Wayback Machine 2575: 2570: 2561: 2559: 2532: 2527: 2518: 2516: 2512: 2506: 2495: 2488: 2484: 2479: 2478: 2468: 2466: 2461: 2460: 2456: 2446: 2444: 2439: 2438: 2434: 2424: 2422: 2417: 2416: 2412: 2402: 2400: 2395: 2394: 2390: 2385: 2381: 2371: 2369: 2359: 2358: 2354: 2349: 2345: 2305: 2304: 2297: 2287: 2285: 2284:on 25 July 2014 2271: 2270: 2266: 2256: 2254: 2242: 2241: 2237: 2207: 2206: 2202: 2197: 2193: 2183: 2181: 2174:"Rocket Trails" 2172: 2171: 2167: 2162: 2158: 2153: 2149: 2127: 2126: 2122: 2117: 2110: 2100: 2098: 2092: 2091: 2078: 2042: 2041: 2037: 2024: 2023: 2019: 2006: 2005: 2001: 1971: 1970: 1966: 1936: 1935: 1931: 1895: 1894: 1890: 1880: 1878: 1873: 1872: 1868: 1858: 1856: 1851: 1850: 1846: 1836: 1834: 1829: 1828: 1824: 1814: 1812: 1807: 1806: 1802: 1792: 1790: 1781: 1780: 1776: 1767: 1766: 1762: 1752: 1750: 1740: 1739: 1735: 1725: 1723: 1710: 1709: 1705: 1669: 1668: 1664: 1654: 1652: 1646: 1645: 1641: 1631: 1629: 1619: 1618: 1614: 1604: 1602: 1601:on 15 July 2019 1592: 1591: 1587: 1577: 1575: 1566: 1565: 1561: 1551: 1549: 1530: 1525: 1524: 1520: 1481: 1480: 1476: 1467: 1465: 1452: 1451: 1447: 1442: 1435: 1430: 1426: 1416: 1414: 1405: 1404: 1400: 1395: 1391: 1386: 1382: 1377: 1373: 1363: 1361: 1355: 1354: 1350: 1340: 1338: 1337:on 28 June 2009 1328: 1327: 1320: 1282: 1281: 1277: 1254:(D11): D11204. 1241: 1240: 1236: 1226: 1224: 1223:on 19 July 2016 1211: 1210: 1206: 1196: 1194: 1185: 1184: 1177: 1167: 1165: 1155: 1154: 1150: 1137: 1136: 1125: 1115: 1113: 1103: 1102: 1095: 1085: 1083: 1070: 1069: 1065: 1058: 1054: 1044: 1042: 1033: 1032: 1028: 1020: 1011: 1001: 999: 994: 993: 989: 979: 977: 966: 965: 954: 922: 921: 917: 907: 905: 899: 898: 894: 884: 883: 879: 861: 860: 849: 843: 839: 830: 829: 825: 816: 815: 811: 806: 793:Space jellyfish 756: 749: 746: 719: 711:sounding rocket 645: 558:summer solstice 525: 386: 356:not yet known. 223:up to 100  217: 178: 71: 54: 28: 23: 22: 15: 12: 11: 5: 3642: 3640: 3632: 3631: 3626: 3616: 3615: 3609: 3608: 3605: 3604: 3601: 3600: 3598: 3597: 3594: 3589: 3585: 3581: 3579: 3576:Mother clouds 3573: 3572: 3570: 3569: 3564: 3559: 3554: 3549: 3544: 3538: 3536: 3532: 3531: 3529: 3528: 3526:Undulatus (un) 3523: 3518: 3513: 3508: 3503: 3501:Lacunosus (la) 3498: 3492: 3490: 3483: 3477: 3476: 3473: 3472: 3470: 3469: 3462: 3457: 3452: 3446: 3444: 3438:Low-level-only 3435: 3434: 3432: 3431: 3425: 3418: 3416: 3413:Low-level-only 3410: 3409: 3406: 3405: 3403: 3402: 3397: 3392: 3387: 3382: 3377: 3371: 3369: 3360: 3354: 3353: 3350: 3349: 3347: 3346: 3340: 3334: 3332: 3328: 3327: 3325: 3324: 3319: 3313: 3311: 3302: 3296: 3295: 3292: 3291: 3289: 3288: 3283: 3277: 3275: 3271: 3270: 3268: 3267: 3252: 3247: 3242: 3236: 3234: 3225: 3217: 3216: 3213: 3212: 3210: 3209: 3204: 3199: 3192: 3190: 3186: 3185: 3183: 3182: 3176: 3171: 3164: 3162: 3158: 3157: 3155: 3154: 3149: 3143: 3141: 3132: 3121: 3115: 3114: 3111: 3110: 3107: 3106: 3104: 3103: 3097: 3095: 3088: 3080: 3079: 3077: 3076: 3070: 3068: 3062: 3061: 3058: 3057: 3055: 3054: 3049: 3044: 3039: 3034: 3029: 3023: 3021: 3012: 3003: 2997: 2996: 2993: 2992: 2990: 2989: 2985: 2983: 2977: 2976: 2973: 2972: 2970: 2969: 2964: 2958: 2956: 2947: 2941: 2940: 2937: 2936: 2934: 2933: 2928: 2923: 2918: 2912: 2910: 2901: 2895: 2894: 2891: 2890: 2888: 2887: 2882: 2876: 2874: 2870: 2869: 2867: 2866: 2861: 2856: 2851: 2846: 2840: 2838: 2829: 2820: 2811: 2805: 2804: 2801: 2800: 2797: 2796: 2794: 2793: 2789: 2787: 2779: 2778: 2776: 2775: 2772: 2768: 2766: 2757: 2748: 2742: 2741: 2738: 2737: 2734: 2733: 2731: 2730: 2727: 2724: 2721: 2717: 2715: 2703: 2694: 2688: 2687: 2670: 2668: 2667: 2660: 2653: 2645: 2639: 2638: 2633: 2628: 2623: 2618: 2613: 2601: 2596: 2591: 2586: 2581: 2574: 2573:External links 2571: 2569: 2568: 2525: 2504: 2485: 2483: 2480: 2477: 2476: 2454: 2432: 2410: 2388: 2379: 2352: 2343: 2295: 2264: 2248:"NLC Surprise" 2235: 2200: 2191: 2165: 2156: 2147: 2120: 2108: 2076: 2055:(1): 955–973. 2035: 2017: 1999: 1964: 1945:(9): 819–824. 1929: 1888: 1866: 1844: 1822: 1800: 1774: 1760: 1733: 1703: 1682:(14): L14103. 1662: 1639: 1612: 1585: 1559: 1518: 1491:(6): 971–974. 1474: 1445: 1433: 1424: 1398: 1389: 1380: 1371: 1348: 1318: 1275: 1234: 1204: 1175: 1148: 1123: 1093: 1063: 1052: 1026: 1009: 987: 974:New York Times 952: 915: 904:. Times Online 892: 877: 847: 837: 823: 808: 807: 805: 802: 801: 800: 795: 790: 785: 780: 775: 774: 773: 762: 761: 758:Weather portal 745: 742: 741: 740: 737: 734: 731: 718: 715: 644: 641: 524: 521: 484:(NRL) and the 475:Tunguska Event 464:carbon dioxide 446:Odin satellite 385: 382: 284:Space Shuttles 243:Data from the 216: 213: 177: 174: 151:Earth's shadow 105:, are tenuous 94: 93: 90: 84: 83: 80: 78:Classification 74: 73: 68: 64: 63: 60: 56: 55: 45: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3641: 3630: 3627: 3625: 3622: 3621: 3619: 3595: 3593: 3590: 3586: 3583: 3582: 3580: 3574: 3568: 3565: 3563: 3560: 3558: 3555: 3553: 3552:Fluctus (flu) 3550: 3548: 3545: 3543: 3540: 3539: 3537: 3533: 3527: 3524: 3522: 3519: 3517: 3516:Radiatus (ra) 3514: 3512: 3509: 3507: 3504: 3502: 3499: 3497: 3494: 3493: 3491: 3487: 3484: 3478: 3467: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3447: 3445: 3442: 3436: 3430:Funnel cloud) 3429: 3426: 3423: 3420: 3419: 3417: 3411: 3401: 3398: 3396: 3393: 3391: 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3372: 3370: 3368: 3364: 3361: 3359: 3355: 3344: 3341: 3339: 3336: 3335: 3333: 3329: 3323: 3320: 3318: 3315: 3314: 3312: 3310: 3306: 3303: 3301: 3297: 3287: 3284: 3282: 3279: 3278: 3276: 3272: 3265: 3261: 3257: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3237: 3235: 3233: 3229: 3226: 3222: 3218: 3208: 3205: 3203: 3200: 3197: 3194: 3193: 3191: 3187: 3180: 3177: 3175: 3172: 3169: 3166: 3165: 3163: 3159: 3153: 3150: 3148: 3145: 3144: 3142: 3140: 3136: 3133: 3129: 3125: 3122: 3116: 3102: 3099: 3098: 3096: 3092: 3089: 3085: 3081: 3075: 3072: 3071: 3069: 3067: 3063: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3025: 3024: 3022: 3020: 3016: 3013: 3011: 3007: 3004: 2998: 2987: 2986: 2984: 2982:mutatus cloud 2978: 2968: 2965: 2963: 2960: 2959: 2957: 2955: 2951: 2948: 2946: 2942: 2932: 2929: 2927: 2924: 2922: 2919: 2917: 2914: 2913: 2911: 2909: 2905: 2902: 2900: 2896: 2886: 2883: 2881: 2878: 2877: 2875: 2871: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2841: 2839: 2837: 2833: 2830: 2828: 2824: 2821: 2815: 2812: 2810: 2806: 2791: 2790: 2788: 2786: 2780: 2773: 2770: 2769: 2767: 2765: 2761: 2758: 2752: 2749: 2747: 2746:Stratospheric 2743: 2728: 2725: 2722: 2719: 2718: 2716: 2711: 2707: 2704: 2700:Extreme-level 2698: 2695: 2693: 2689: 2684: 2680: 2676: 2673: 2666: 2661: 2659: 2654: 2652: 2647: 2646: 2643: 2637: 2634: 2632: 2629: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2608: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2576: 2572: 2558: 2554: 2550: 2546: 2542: 2538: 2531: 2526: 2511: 2507: 2501: 2494: 2493: 2487: 2486: 2481: 2465: 2458: 2455: 2443: 2436: 2433: 2421: 2414: 2411: 2399: 2392: 2389: 2383: 2380: 2367: 2363: 2356: 2353: 2347: 2344: 2338: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2302: 2300: 2296: 2283: 2279: 2275: 2268: 2265: 2253: 2249: 2245: 2239: 2236: 2231: 2227: 2223: 2219: 2215: 2211: 2204: 2201: 2195: 2192: 2179: 2175: 2169: 2166: 2160: 2157: 2151: 2148: 2143: 2139: 2135: 2131: 2124: 2121: 2115: 2113: 2109: 2096: 2093:Cowley, Les. 2089: 2087: 2085: 2083: 2081: 2077: 2071: 2066: 2062: 2058: 2054: 2050: 2046: 2039: 2036: 2031: 2027: 2021: 2018: 2013: 2009: 2003: 2000: 1995: 1991: 1987: 1983: 1979: 1975: 1968: 1965: 1960: 1956: 1952: 1948: 1944: 1940: 1933: 1930: 1924: 1919: 1915: 1911: 1907: 1903: 1899: 1892: 1889: 1877: 1870: 1867: 1855: 1848: 1845: 1833: 1826: 1823: 1811: 1804: 1801: 1789: 1785: 1778: 1775: 1770: 1764: 1761: 1748: 1744: 1737: 1734: 1722: 1718: 1714: 1707: 1704: 1698: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1663: 1650: 1643: 1640: 1627: 1623: 1616: 1613: 1600: 1596: 1589: 1586: 1573: 1569: 1563: 1560: 1548: 1544: 1540: 1536: 1529: 1522: 1519: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1478: 1475: 1464:on 2012-09-20 1463: 1459: 1455: 1449: 1446: 1440: 1438: 1434: 1428: 1425: 1413: 1409: 1406:Keesee, Bob. 1402: 1399: 1393: 1390: 1384: 1381: 1375: 1372: 1359: 1352: 1349: 1336: 1332: 1325: 1323: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1276: 1270: 1265: 1261: 1257: 1253: 1249: 1245: 1238: 1235: 1222: 1218: 1214: 1208: 1205: 1192: 1188: 1182: 1180: 1176: 1163: 1159: 1152: 1149: 1144: 1140: 1134: 1132: 1130: 1128: 1124: 1111: 1107: 1100: 1098: 1094: 1081: 1077: 1073: 1067: 1064: 1061: 1056: 1053: 1040: 1036: 1030: 1027: 1023: 1018: 1016: 1014: 1010: 997: 991: 988: 976: 975: 970: 963: 961: 959: 957: 953: 948: 944: 940: 936: 932: 928: 927: 919: 916: 903: 896: 893: 888: 881: 878: 873: 869: 865: 858: 856: 854: 852: 848: 841: 838: 833: 827: 824: 819: 813: 810: 803: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 772: 769: 768: 767: 764: 763: 759: 753: 748: 743: 738: 735: 732: 729: 728: 727: 725: 716: 714: 712: 707: 705: 701: 697: 693: 689: 685: 681: 677: 672: 670: 669:cirrus clouds 665: 658: 654: 649: 642: 640: 638: 634: 630: 625: 623: 619: 618:gravity waves 614: 610: 606: 602: 598: 594: 590: 585: 581: 577: 573: 569: 565: 561: 559: 549: 542: 537: 529: 522: 520: 516: 514: 513:Massachusetts 510: 505: 501: 498: 494: 490: 487: 483: 478: 476: 472: 467: 465: 461: 456: 454: 449: 447: 444: 441:In 2001, the 439: 437: 433: 429: 425: 421: 416: 414: 409: 407: 406:triangulation 403: 399: 395: 391: 383: 381: 378: 374: 370: 366: 362: 357: 354: 350: 346: 343: 342:Polar circles 339: 335: 331: 327: 323: 319: 314: 311: 306: 304: 300: 297: 293: 289: 285: 280: 278: 274: 270: 266: 262: 258: 254: 250: 246: 237: 233: 231: 226: 222: 214: 212: 210: 206: 202: 198: 191: 187: 182: 175: 173: 171: 167: 162: 160: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 91: 89: 88:Precipitation 85: 81: 79: 75: 69: 65: 61: 57: 53: 49: 43: 38: 33: 30: 19: 3460:Pannus (pan) 3450:Pileus (pil) 3422:Arcus ((arc) 3300:Stratus (St) 3221:Cumulus (Cu) 3198:Beaver tail) 3000:Medium-level 2809:Tropospheric 2709: 2679:hydrometeors 2560:. Retrieved 2540: 2536: 2517:. Retrieved 2510:the original 2491: 2467:. Retrieved 2457: 2445:. Retrieved 2435: 2423:. Retrieved 2413: 2401:. Retrieved 2391: 2382: 2370:. Retrieved 2366:the original 2355: 2346: 2315: 2311: 2286:. Retrieved 2282:the original 2277: 2267: 2255:. Retrieved 2251: 2238: 2213: 2209: 2203: 2194: 2182:. Retrieved 2178:the original 2168: 2159: 2150: 2133: 2129: 2123: 2099:. Retrieved 2052: 2048: 2038: 2029: 2020: 2011: 2002: 1977: 1973: 1967: 1942: 1938: 1932: 1905: 1901: 1891: 1879:. Retrieved 1869: 1857:. Retrieved 1847: 1835:. Retrieved 1825: 1813:. Retrieved 1803: 1791:. Retrieved 1787: 1777: 1763: 1753:20 September 1751:. Retrieved 1747:the original 1736: 1724:. Retrieved 1716: 1706: 1679: 1675: 1665: 1653:. Retrieved 1642: 1630:. Retrieved 1626:the original 1615: 1603:. Retrieved 1599:the original 1588: 1576:. Retrieved 1572:the original 1562: 1550:. Retrieved 1538: 1534: 1521: 1488: 1484: 1477: 1466:. Retrieved 1462:the original 1457: 1448: 1427: 1415:. Retrieved 1401: 1392: 1383: 1374: 1362:. Retrieved 1351: 1339:. Retrieved 1335:the original 1288: 1284: 1278: 1251: 1247: 1237: 1225:. Retrieved 1221:the original 1216: 1207: 1195:. Retrieved 1191:the original 1166:. Retrieved 1162:the original 1151: 1114:. Retrieved 1110:the original 1084:. Retrieved 1080:the original 1066: 1055: 1043:. Retrieved 1039:the original 1029: 1000:. Retrieved 990: 978:. Retrieved 972: 933:(1): 51–61. 930: 924: 918: 906:. Retrieved 895: 889:. USA Today. 880: 872:the original 840: 826: 812: 720: 708: 673: 661: 626: 601:stratosphere 586: 582: 578: 574: 570: 566: 562: 554: 517: 479: 470: 468: 460:Mars Express 457: 450: 440: 417: 410: 387: 377:micrometeors 358: 347: 315: 307: 292:thermosphere 281: 277:stratosphere 253:micrometeors 242: 218: 194: 163: 141:months from 130: 123:ice crystals 114: 102: 98: 97: 59:Abbreviation 29: 3624:Cloud types 3567:Virga (vir) 3557:Mamma (mam) 3547:Cavum (cav) 3506:Opacus (op) 3455:Velum (vel) 3428:Tuba ((tub) 3181:Wall cloud) 3170:Tail cloud) 3087:Multi-level 2827:Cirrus (Ci) 2710:Noctilucent 2692:Mesospheric 2136:: 507–516. 1651:. SPACE.com 643:Observation 633:tomographic 607:to Western 603:across the 497:Black Brant 430:in 1995 at 353:solar cycle 334:downwelling 261:troposphere 230:mesospheric 205:Chelyabinsk 131:Noctilucent 3618:Categories 3480:Non-height 2817:High-level 2562:18 October 2519:16 October 2372:19 October 2244:Tunç Tezel 2184:19 October 2101:18 October 1655:19 October 1605:19 October 1578:19 October 1552:16 October 1468:2009-07-27 1417:19 October 1227:19 October 1197:19 October 1045:19 October 627:NASA uses 509:New Jersey 318:mesosphere 265:tropopause 170:mesosphere 3489:Varieties 3443:and other 3281:Horseshoe 3207:Hot tower 3118:Low-level 3094:Varieties 1632:6 October 1454:"Welcome" 1364:6 October 1341:6 October 1168:6 October 1116:5 October 1086:5 October 980:5 October 908:6 October 804:Citations 676:latitudes 451:The AIM ( 438:in 2001. 326:upwelling 257:volcanoes 221:water ice 215:Formation 143:latitudes 119:mesopause 3482:specific 2756:15–30 km 2702:80–85 km 2607:Archived 1793:11 March 1541:: 1921. 1313:19810327 1217:ECE News 766:Aeronomy 744:See also 700:twilight 653:Buryatia 398:Foerster 299:Falcon 9 155:sunlight 147:daylight 67:Altitude 3464:Other- 3367:Species 3309:Species 3240:Fractus 3232:Species 3139:Species 3019:Species 2954:Species 2908:Species 2836:Species 2819:3–18 km 2545:Bibcode 2469:18 July 2447:18 July 2425:18 July 2403:18 July 2324:Bibcode 2288:17 July 2257:17 July 2218:Bibcode 2138:Bibcode 2057:Bibcode 1982:Bibcode 1947:Bibcode 1910:Bibcode 1881:18 July 1859:18 July 1837:18 July 1815:18 July 1726:25 June 1684:Bibcode 1543:Bibcode 1513:9335046 1493:Bibcode 1458:agu.org 1293:Bibcode 1256:Bibcode 935:Bibcode 609:Nunavut 593:Esrange 443:Swedish 413:Wegener 394:Germany 316:As the 275:in the 269:methane 186:Uppsala 176:General 62:NLC/PMC 52:Germany 3424:Shelf) 3120:0–2 km 3002:2–8 km 2675:genera 2502:  1511:  1311:  692:Turkey 657:Russia 637:albedo 613:Canada 605:Arctic 597:Sweden 369:sodium 322:Sahara 310:Arctic 296:SpaceX 209:bolide 201:Armagh 190:Sweden 166:clouds 139:summer 3274:Other 2712:(NLC) 2672:Cloud 2533:(PDF) 2513:(PDF) 2496:(PDF) 2318:(8). 2030:TECH2 1531:(PDF) 1509:S2CID 1002:7 May 717:Forms 696:Spain 688:Italy 680:Paris 664:ozone 428:lidar 361:radar 271:with 207:super 135:Latin 107:cloud 101:, or 82:Other 48:Laboe 3264:ICAO 2564:2008 2521:2008 2500:ISBN 2471:2019 2449:2019 2427:2019 2405:2019 2374:2008 2290:2014 2259:2014 2186:2008 2103:2008 2012:NASA 1883:2019 1861:2019 1839:2019 1817:2019 1795:2021 1755:2009 1728:2009 1657:2008 1634:2008 1607:2008 1580:2008 1554:2008 1419:2008 1366:2008 1343:2008 1309:PMID 1229:2008 1199:2008 1170:2008 1118:2008 1088:2008 1076:NASA 1047:2008 1004:2014 982:2008 910:2008 868:NASA 694:and 684:Utah 589:NASA 480:The 373:iron 371:and 336:and 328:and 3343:Fog 2683:WMO 2553:doi 2332:doi 2320:BBC 2226:doi 2065:doi 2053:123 1990:doi 1955:doi 1918:doi 1692:doi 1501:doi 1301:doi 1264:doi 1252:114 943:doi 704:Sun 629:AIM 541:Sun 511:to 500:XII 420:OGO 365:MHz 199:in 3620:: 2681:- 2551:. 2541:82 2539:. 2535:. 2330:. 2316:61 2314:. 2310:. 2298:^ 2276:. 2250:. 2224:. 2214:73 2212:. 2134:31 2132:. 2111:^ 2079:^ 2063:. 2051:. 2047:. 2028:. 2010:. 1988:. 1978:94 1976:. 1953:. 1943:46 1941:. 1916:. 1906:29 1904:. 1900:. 1786:. 1719:. 1715:. 1690:. 1680:36 1678:. 1674:. 1539:35 1537:. 1533:. 1507:. 1499:. 1489:28 1487:. 1456:. 1436:^ 1410:. 1321:^ 1307:. 1299:. 1287:. 1262:. 1250:. 1246:. 1215:. 1178:^ 1141:. 1126:^ 1096:^ 1074:. 1012:^ 971:. 955:^ 941:. 931:72 929:. 866:. 850:^ 690:, 686:, 682:, 655:, 624:. 611:, 595:, 515:. 279:. 225:nm 188:, 129:. 92:No 50:, 3262:( 3258:( 3254:( 2664:e 2657:t 2650:v 2566:. 2555:: 2547:: 2523:. 2473:. 2451:. 2429:. 2407:. 2376:. 2340:. 2334:: 2326:: 2292:. 2261:. 2232:. 2228:: 2220:: 2188:. 2144:. 2140:: 2105:. 2073:. 2067:: 2059:: 1996:. 1992:: 1984:: 1961:. 1957:: 1949:: 1926:. 1920:: 1912:: 1885:. 1863:. 1841:. 1819:. 1797:. 1757:. 1730:. 1700:. 1694:: 1686:: 1659:. 1636:. 1609:. 1582:. 1556:. 1545:: 1515:. 1503:: 1495:: 1471:. 1421:. 1368:. 1345:. 1315:. 1303:: 1295:: 1289:7 1272:. 1266:: 1258:: 1231:. 1201:. 1172:. 1120:. 1090:. 1049:. 1006:. 984:. 949:. 945:: 937:: 912:. 820:. 543:. 20:)

Index

Noctilucent clouds

Laboe
Germany
Classification
Precipitation
cloud
atmosphere of Earth
mesopause
ice crystals
astronomical twilight
Latin
summer
latitudes
daylight
Earth's shadow
sunlight
atmospheric methane
clouds
mesosphere

Uppsala
Sweden
Thomas Romney Robinson
Armagh
Chelyabinsk
bolide
water ice
nm
mesospheric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑