Knowledge (XXG)

Non-thermal microwave effect

Source 📝

27:. The main effect of the absorption of microwaves by dielectric materials is a brief displacement in the permanent dipoles which causes rotational entropy. Since the frequency of the microwave energy is much faster than the electrons can absorb, the resultant energy can cause frictional heating of nearby atoms or molecules. If the material is rigid there will be no release of rotational energy, and therefore no heating. There are no "Non-thermal effects". If the material is not a dielectric material with dipoles or an ionic distribution, there is no interaction with microwaves and no heating. Non-thermal effects in liquids are almost certainly non-existent, as the time for energy redistribution between molecules in a liquid is much less than the period of a microwave 31:. A 2005 review has illustrated this in application to organic chemistry, though clearly supports the existence of non-thermal effects. It has been shown that such non-thermal effects exist in the reaction of O + HCl(DCl) -> OH(OD) + Cl in the gas phase and the authors suggest that some mechanisms may also be present in the condensed phase. Non-thermal effects in solids are still part of an ongoing debate. It is likely that through focusing of 47:
processes. Debates continued in 2006 about non-thermal effects of microwaves that have been reported in solid-state phase transitions. A 2013 essay concluded the effect did not exist in organic synthesis involving liquid phases. A 2015 perspective discusses the non-thermal microwave effect (a
65: 120: 263: 113:
Strong Acceleration of Chemical Reactions Occurring Through the Effects of Rotational Excitation on Collisional Geometry
258: 177:
Kappe, C. O.; Pieber, B.; Dallinger, D. (2013). "Microwave Effects in Organic Synthesis: Myth or Reality?".
24: 81:
Stuerga, D.; Gaillard, P. Journal of Microwave Power and Electromagnetic Energy, 1996, 31, 87-99.
235: 225: 217: 186: 116: 97: 70: 36: 149:
Booske, J. H.; Cooper, R. F.; Freeman, S. A. Materials Research Innovations 1997, 1, 77-84.
82: 140:
Booske, J. H.; Cooper, R. F.; Dobson, I. Journal of Materials Research 1992, 7, 495-501.
230: 205: 32: 96:, Antonio de la Hoz, Angel Diaz-Ortiz, Andres Moreno, Chem. Soc. Rev., 2005, 164-178. 252: 206:"On the existence of and mechanism for microwave-specific reaction rate enhancement" 48:
resonance process) in relation to selective heating by Debye relaxation processes.
28: 43:
in solids via second-order effects. As a result, they may enhance solid-state
158:
Freeman, S. A.; Booske, J. H.; Cooper, R. F. J. Appl. Phys., 1998, 83, 5761.
44: 40: 239: 190: 94:
Microwaves in organic synthesis. Thermal and non-thermal microwave effects
167:
Robb, G.; Harrison, A.; Whittaker, A. G. Phys. Chem. Comm., 2002, 135-137
221: 101: 121:
10.1002/1439-7641(20010917)2:8/9<552::AID-CPHC552>3.0.CO;2-5
23:
have been posited in order to explain unusual observations in
131:
Whittaker, A.G., Chem. Mater., 17 (13), 3426 -3432, 2005.
71:
http://jmpee.org/JMPEE_temp/31-2_bl/JMPEEA-31-2-Pg101.htm
83:
http://jmpee.org/JMPEE_temp/31-2_bl/JMPEEA-31-2-Pg87.htm
66:
Journal of Microwave Power and Electromagnetic Energy
204:
Dudley, G. B.; Richert, R.; Stiegman, A. E. (2015).
115:, Adolf Miklavc, ChemPhysChem, 2001, 552-555. 8: 229: 35:at particle interfaces, microwaves cause 56: 7: 14: 1: 17:Non-thermal microwave effects 280: 63:Stuerga, D.; Gaillard, P. 21:specific microwave effects 191:10.1002/anie.201204103 39:formation and enhance 69:, 1996, 31, 101-113. 179:Angew. Chem. Int. Ed 264:Microwave chemistry 25:microwave chemistry 222:10.1039/c4sc03372h 259:Chemical kinetics 271: 244: 243: 233: 201: 195: 194: 185:(4): 1088–1094. 174: 168: 165: 159: 156: 150: 147: 141: 138: 132: 129: 123: 110: 104: 102:10.1039/B411438H 91: 85: 79: 73: 61: 279: 278: 274: 273: 272: 270: 269: 268: 249: 248: 247: 203: 202: 198: 176: 175: 171: 166: 162: 157: 153: 148: 144: 139: 135: 130: 126: 111: 107: 92: 88: 80: 76: 62: 58: 54: 33:electric fields 12: 11: 5: 277: 275: 267: 266: 261: 251: 250: 246: 245: 196: 169: 160: 151: 142: 133: 124: 105: 86: 74: 55: 53: 50: 13: 10: 9: 6: 4: 3: 2: 276: 265: 262: 260: 257: 256: 254: 241: 237: 232: 227: 223: 219: 215: 211: 207: 200: 197: 192: 188: 184: 180: 173: 170: 164: 161: 155: 152: 146: 143: 137: 134: 128: 125: 122: 118: 114: 109: 106: 103: 99: 95: 90: 87: 84: 78: 75: 72: 68: 67: 60: 57: 51: 49: 46: 42: 38: 34: 30: 26: 22: 18: 213: 209: 199: 182: 178: 172: 163: 154: 145: 136: 127: 112: 108: 93: 89: 77: 64: 59: 20: 16: 15: 216:(4): 2144. 29:oscillation 253:Categories 52:References 210:Chem. Sci 45:sintering 41:diffusion 240:29308138 231:5639434 238:  228:  37:plasma 236:PMID 226:PMC 218:doi 187:doi 117:doi 98:doi 19:or 255:: 234:. 224:. 212:. 208:. 183:52 181:. 242:. 220:: 214:6 193:. 189:: 119:: 100::

Index

microwave chemistry
oscillation
electric fields
plasma
diffusion
sintering
Journal of Microwave Power and Electromagnetic Energy
http://jmpee.org/JMPEE_temp/31-2_bl/JMPEEA-31-2-Pg101.htm
http://jmpee.org/JMPEE_temp/31-2_bl/JMPEEA-31-2-Pg87.htm
doi
10.1039/B411438H
doi
10.1002/1439-7641(20010917)2:8/9<552::AID-CPHC552>3.0.CO;2-5
doi
10.1002/anie.201204103
"On the existence of and mechanism for microwave-specific reaction rate enhancement"
doi
10.1039/c4sc03372h
PMC
5639434
PMID
29308138
Categories
Chemical kinetics
Microwave chemistry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.