Knowledge (XXG)

Great Oxidation Event

Source 📝

686:. The iron in banded iron formations is partially oxidized, with roughly equal amounts of ferrous and ferric iron. Deposition of a banded iron formation requires both an anoxic deep ocean capable of transporting iron in soluble ferrous form, and an oxidized shallow ocean where the ferrous iron is oxidized to insoluble ferric iron and precipitates onto the ocean floor. The deposition of banded iron formations before 1.8 Ga suggests the ocean was in a persistent ferruginous state, but deposition was episodic and there may have been significant intervals of 2243: 8144: 2162: 40: 8556: 48: 2153:
action of ultraviolet light in the upper atmosphere and releases its hydrogen. The escape of hydrogen from the Earth into space must have oxidized the Earth because the process of hydrogen loss is chemical oxidation. This process of hydrogen escape required the generation of methane by methanogens, so that methanogens actually helped create the conditions necessary for the oxidation of the atmosphere.
8566: 2042:
oxygenated the ocean and ended banded iron formation deposition. However, improved dating of Precambrian strata showed that the late Archean peak of deposition was spread out over tens of millions of years, rather than taking place in a very short interval of time following the evolution of oxygen-coping mechanisms. This made Cloud's hypothesis untenable.
723:, which is considered a modern model for ancient anoxic ocean basins, indicate that high DOP, a high ratio of reactive iron to total iron, and a high ratio of total iron to aluminum are all indicators of transport of iron into a euxinic environment. Ferruginous anoxic conditions can be distinguished from euxenic conditions by a DOP less than about 0.7. 2000:) that is insoluble in water, and sank to the bottom of the shallow seas to create banded iron formations. It took 50 million years or longer to deplete the oxygen sinks. The rate of photosynthesis and associated rate of organic burial also affect the rate of oxygen accumulation. When land plants spread over the continents in the 2046:
photosynthesisers over the course of the GOE. More recently, families of bacteria have been discovered that closely resemble cyanobacteria but show no indication of ever having possessed photosynthetic capability. These may be descended from the earliest ancestors of cyanobacteria, which only later acquired photosynthetic ability by
1908:
formation continued to be deposited until around 1.85 Ga. Given the rapid multiplication rate of cyanobacteria under ideal conditions, an explanation is needed for the delay of at least 400 million years between the evolution of oxygen-producing photosynthesis and the appearance of significant oxygen in the atmosphere.
1912:
organic carbon and does not accumulate. The burial of organic carbon, sulfide, and minerals containing ferrous iron (Fe) is a primary factor in oxygen accumulation. When organic carbon is buried without being oxidized, the oxygen is left in the atmosphere. In total, the burial of organic carbon and pyrite today creates
690:. The transition from deposition of banded iron formations to manganese oxides in some strata has been considered a key tipping point in the timing of the GOE because it is believed to indicate the escape of significant molecular oxygen into the atmosphere in the absence of ferrous iron as a reducing agent. 2598:, even under thick ice. By inference, these organisms could have adapted to oxygen even before oxygen accumulated in the atmosphere. The evolution of such oxygen-dependent organisms eventually established an equilibrium in the availability of oxygen, which became a major constituent of the atmosphere. 2178:
lies in these deposits. It was assumed oxygen released from cyanobacteria resulted in the chemical reactions that created rust, but it appears the iron formations were caused by anoxygenic phototrophic iron-oxidizing bacteria, which does not require oxygen. Evidence suggests oxygen levels spiked each
759:
MIF provides clues to the Great Oxygenation Event. For example, oxidation of manganese in surface rocks by atmospheric oxygen leads to further reactions that oxidize chromium. The heavier Cr is oxidized preferentially over the lighter Cr, and the soluble oxidized chromium carried into the ocean shows
726:
The currently available evidence suggests that the deep ocean remained anoxic and ferruginous as late as 580 Ma, well after the Great Oxygenation Event, remaining just short of euxenic during much of this interval of time. Deposition of banded iron formation ceased when conditions of local euxenia on
718:
Examples of such indicators of anoxic conditions include the degree of pyritization (DOP), which is the ratio of iron present as pyrite to the total reactive iron. Reactive iron, in turn, is defined as iron found in oxides and oxyhydroxides, carbonates, and reduced sulfur minerals such as pyrites, in
2212:
Cyanobacteria tend to consume nearly as much oxygen at night as they produce during the day. However, experiments demonstrate that cyanobacterial mats produce a greater excess of oxygen with longer photoperiods. The rotational period of the Earth was only about six hours shortly after its formation
2152:
is the main key of GOE. Hydrogen and methane released from metamorphic processes are also lost from Earth's atmosphere over time and leave the crust oxidized. Scientists realized that hydrogen would escape into space through a process called methane photolysis, in which methane decomposes under the
2143:
In contrast to the increasing flux hypothesis, there are several hypotheses that attempt to use decrease of sinks to explain the GOE. One theory suggests increasing lacustrine organic carbon burial as a cause; with more reduced carbon being buried, there was less of it for free oxygen to react with
2108:
cooled and the supply of volcanic nickel dwindled, oxygen-producing algae began to outperform methane producers, and the oxygen percentage of the atmosphere steadily increased. From 2.7 to 2.4 Ga the rate of deposition of nickel declined steadily from a level 400 times that of today. This
2063:
Another possibility is that early cyanobacteria were starved for vital nutrients, and this checked their growth. However, a lack of the scarcest nutrients, iron, nitrogen, and phosphorus, could have slowed but not prevented a cyanobacteria population explosion and rapid oxygenation. The explanation
2169:
One hypothesis suggests that the oxygen increase had to await tectonically driven changes in the Earth, including the appearance of shelf seas, where reduced organic carbon could reach the sediments and be buried. The burial of reduced carbon as graphite or diamond around subduction zones released
2251:
The increased oxygen concentrations provided a new opportunity for biological diversification, as well as tremendous changes in the nature of chemical interactions between rocks, sand, clay, and other geological substrates and the Earth's air, oceans, and other surface waters. Despite the natural
2217:
but increased to 21 hours by 2.4 Ga in the Paleoproterozoic. The rotational period increased again, starting 700 million years ago, to its present value of 24 hours. The total amount of oxygen produced by the cyanobacteria remained the same with longer days, but the longer the
764:
after the GOE. However, the chromium data may conflict with the sulfur isotope data, which calls the reliability of the chromium data into question. It is also possible that oxygen was present earlier only in localized "oxygen oases". Since chromium is not easily dissolved, its release from rocks
422:, meanwhile, was present in the atmosphere at just 0.001% of its present atmospheric level. The Sun shone at about 70% of its current brightness 4 billion years ago, but there is strong evidence that liquid water existed on Earth at the time. A warm Earth, in spite of a faint Sun, is known as the 818:
in Western Australia, are associated with cyanobacteria, and thus fossil stromatolites had long been interpreted as the evidence for cyanobacteria. However, it has increasingly been inferred that at least some of these Archaean fossils were generated abiotically or produced by non-cyanobacterial
1911:
Hypotheses to explain this gap must take into consideration the balance between oxygen sources and oxygen sinks. Oxygenic photosynthesis produces organic carbon that must be segregated from oxygen to allow oxygen accumulation in the surface environment, otherwise the oxygen back-reacts with the
2134:
One hypothesis argues that the GOE was the immediate result of photosynthesis, although the majority of scientists suggest that a long-term increase of oxygen is more likely. Several model results show possibilities of long-term increase of carbon burial, but the conclusions are indeterminate.
2041:
to form banded iron formation. He interpreted the great peak in deposition of banded iron formation at the end of the Archean as the signature for the evolution of mechanisms for living with oxygen. This ended self-poisoning and produced a population explosion in the cyanobacteria that rapidly
755:
that would have shielded the lower atmosphere from UV radiation. The disappearance of the MIF signature for sulfur indicates the formation of such an ozone shield as oxygen began to accumulate in the atmosphere. MIF of sulphur also indicates the presence of oxygen in that oxygen is required to
1907:
The ability to generate oxygen via photosynthesis likely first appeared in the ancestors of cyanobacteria. These organisms evolved at least 2.45–2.32 Ga and probably as early as 2.7 Ga or earlier. However, oxygen remained scarce in the atmosphere until around 2.0 Ga, and banded iron
710:
had not yet evolved during the time frame of the Great Oxygenation Event. Thus laminated black shale by itself is a poor indicator of oxygen levels. Scientists must look instead for geochemical evidence of anoxic conditions. These include ferruginous anoxia, in which dissolved ferrous iron is
842:
are diagenetic products of sterols, which are biosynthesized using molecular oxygen. Thus, steranes can additionally serve as an indicator of oxygen in the atmosphere. However, these biomarker samples have since been shown to have been contaminated, and so the results are no longer accepted.
2045:
Most modern interpretations describe the GOE as a long, protracted process that took place over hundreds of millions of years rather than a single abrupt event, with the quantity of atmospheric oxygen fluctuating in relation to the capacity of oxygen sinks and the productivity of oxygenic
742:
Different isotopes of a chemical element have slightly different atomic masses. Most of the differences in geochemistry between isotopes of the same element scale with this mass difference. These include small differences in molecular velocities and diffusion rates, which are described as
2659:
However, other authors express scepticism that the GOE resulted in widespread eukaryotic diversification due to the lack of robust evidence, concluding that the oxygenation of the oceans and atmosphere does not necessarily lead to increases in ecological and physiological diversity.
2284:, with many elements occurring in one or more oxidized forms near the Earth's surface. It is estimated that the GOE was directly responsible for deposition of more than 2,500 of the total of about 4,500 minerals found on Earth today. Most of these new minerals were formed as 2109:
nickel famine was somewhat buffered by an uptick in sulfide weathering at the start of the GOE that brought some nickel to the oceans, without which methanogenic organisms would have declined in abundance more precipitously, plunging Earth into even more severe and long-lasting
7823:
Kreitsmann, T.; Lepland, A.; Bau, M.; Prave, A.; Paiste, K.; Mänd, K.; et al. (September 2020). "Oxygenated conditions in the aftermath of the Lomagundi-Jatuli event: The carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega formation, Russia".
658:
that are coated with hematite. The occurrence of red beds indicates that there was sufficient oxygen to oxidize iron to its ferric state, and these represent a marked contrast to sandstones deposited under anoxic conditions which are often beige, white, grey, or green.
2173:
The newly produced oxygen was first consumed in various chemical reactions in the oceans, primarily with iron. Evidence is found in older rocks that contain massive banded iron formations apparently laid down as this iron and oxygen first combined; most present-day
719:
contrast with iron tightly bound in silicate minerals. A DOP near zero indicates oxidizing conditions, while a DOP near 1 indicates euxinic conditions. Values of 0.3 to 0.5 are transitional, suggesting anoxic bottom mud under an oxygenated ocean. Studies of the
2656:. Thus the evolution of eukaryotic sex and eukaryogenesis were likely inseparable processes that evolved in large part to facilitate DNA repair. The evolution of mitochondria, which are well suited for oxygenated environments, may have occurred during the GOE. 646:. Detrital grains composed of pyrite, siderite, and uraninite (redox-sensitive detrital minerals) are found in sediments older than ca. 2.4 Ga. These minerals are only stable under low oxygen conditions, and so their occurrence as detrital minerals in 2651:
from these humble beginnings. Selective pressure for efficient DNA repair of oxidative DNA damage may have driven the evolution of eukaryotic sex involving such features as cell-cell fusions, cytoskeleton-mediated chromosome movements and emergence of the
2054:
data, the evolution of oxygen-producing photosynthesis may have occurred much later than previously thought, at around 2.5 Ga. This reduces the gap between the evolution of oxygen photosynthesis and the appearance of significant atmospheric oxygen.
760:
this enhancement of the heavier isotope. The chromium isotope ratio in banded iron formation suggests small but significant quantities of oxygen in the atmosphere before the Great Oxidation Event, and a brief return to low oxygen abundance 500 
578:
Constraining the onset of atmospheric oxygenation has proven particularly challenging for geologists and geochemists. While there is a widespread consensus that initial oxygenation of the atmosphere happened sometime during the first half of the
571:, and an oxygenated ocean blocks such transport by oxidizing the iron to form insoluble ferric iron compounds. The end of the deposition of banded iron formation at 1.85 Ga is therefore interpreted as marking the oxygenation of the deep ocean. 2606:
It has been proposed that a local rise in oxygen levels due to cyanobacterial photosynthesis in ancient microenvironments was highly toxic to the surrounding biota, and that this selective pressure drove the evolutionary transformation of an
583:, there is disagreement on the exact timing of this event. Scientific publications between 2016–2022 have differed in the inferred timing of the onset of atmospheric oxygenation by approximately 500 million years; estimates of 2.7  4843:
Konhauser, Kurt O.; Lalonde, Stefan V.; Planavsky, Noah J.; Pecoits, Ernesto; Lyons, Timothy W.; Mojzsis, Stephen J.; et al. (October 2011). "Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event".
5135: 3832: 3406: 3191: 3122: 2234:(a strong greenhouse gas) to carbon dioxide (a weaker one) and water. This weakened the greenhouse effect of the Earth's atmosphere, causing planetary cooling, which has been proposed to have triggered a series of ice ages known as the 252:, due in part to the great difficulty in surveying microscopic organisms' abundances, and in part to the extreme age of fossil remains from that time, the Great Oxidation Event is typically not counted among conventional lists of " 2036:
through its rapid removal via the high levels of reduced ferrous iron, Fe(II), in the early ocean. He suggested that the oxygen released by photosynthesis oxidized the Fe(II) to ferric iron, Fe(III), which precipitated out of the
4280:
Hofmann, Axel; Bekker, Andrey; Rouxel, Olivier; Rumble, Doug; Master, Sharad (September 2009). "Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis".
2195:
of oxygen concentration. The state of stable low oxygen concentration (0.02%) experiences a high rate of methane oxidation. If some event raises oxygen levels beyond a moderate threshold, the formation of an ozone layer shields
2170:
molecular oxygen into the atmosphere. The appearance of oxidised magmas enriched in sulphur formed around subduction zones confirms changes in tectonic regime played an important role in the oxygenation of Earth's atmosphere.
743:
mass-dependent fractionation processes. By contrast, MIF describes processes that are not proportional to the difference in mass between isotopes. The only such process likely to be significant in the geochemistry of sulfur is
4542:
Scholz, Florian; Severmann, Silke; McManus, James; Noffke, Anna; Lomnitz, Ulrike; Hensen, Christian (December 2014). "On the isotope composition of reactive iron in marine sediments: Redox shuttle versus early diagenesis".
5976:
Konhauser, Kurt O.; Pecoits, Ernesto; Lalonde, Stefan V.; Papineau, Dominic; Nisbet, Euan G.; Barley, Mark E.; et al. (April 2009). "Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event".
4986: 6084:
Peng, Peng; Liu, Xu; Feng, Lianjun; Zhou, Xiqiang; Kuang, Hongwei; Liu, Yongqing; Kang, Jianli; Wang, Xinping; Wang, Chong; Dai, Ke; Wang, Huichu; Li, Jianrong; Miao, Peisen; Guo, Jinghui; Zhai, Mingguo (March 2023).
739:(MIF) of sulfur. The chemical signature of the MIF of sulfur is found prior to 2.4–2.3 Ga but disappears thereafter. The presence of this signature all but eliminates the possibility of an oxygenated atmosphere. 2789: 2688:
period. During the Lomagundi-Jatuli event, oxygen amounts in the atmosphere reached similar heights to modern levels, before returning to low levels during the following stage, which caused the deposition of
2125:
Another hypothesis posits that a number of large igneous provinces (LIPs) were emplaced during the GOE and fertilised the oceans with limiting nutrients, facilitating and sustaining cyanobacterial blooms.
7634:
Mänd, Kaarel; Lalonde, Stefan V.; Robbins, Leslie J.; Thoby, Marie; Paiste, Kärt; Kreitsmann, Timmu; et al. (April 2020). "Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event".
2264:
evolved after the GOE, giving organisms the energy to exploit new, more complex morphologies interacting in increasingly complex ecosystems, although these did not appear until the late Proterozoic and
4328:
Eriksson, Patrick G.; Cheney, Eric S. (January 1992). "Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower proterozoic sequences of southern Africa".
2724:– Earth history between 1.8~0.8 billion years ago, characterized by tectonic stability, climatic stasis, and a slow biological evolution with very low oxygen levels and no evidence of glaciation 7688:
Van Kranendonk, Martin J. (2012). "16: A chronostratigraphic division of the Precambrian: Possibilities and challenges". In Gradstein, Felix M.; Ogg, James G.; Schmitz, Mark D.; Ogg, abi M. (eds.).
547:, all minerals containing reduced forms of iron or uranium that are not found in younger sediments because they are rapidly oxidized in an oxidizing atmosphere. He further observed that continental 527:
The current scientific understanding of when and how the Earth's atmosphere changed from a weakly reducing to a strongly oxidizing atmosphere largely began with the work of the American geologist
5461:
Dutkiewicz, A.; Volk, H.; George, S.C.; Ridley, J.; Buick, R. (2006). "Biomarkers from Huronian oil-bearing fluid inclusions: An uncontaminated record of life before the Great Oxidation Event".
2179:
time smaller land masses collided to form a super-continent. Tectonic pressure thrust up mountain chains, which eroded releasing nutrients into the ocean that fed photosynthetic cyanobacteria.
4505:
Lyons, Timothy W.; Anbar, Ariel D.; Severmann, Silke; Scott, Clint; Gill, Benjamin C. (May 2009). "Tracking Euxinia in the Ancient Ocean: A Multiproxy Perspective and Proterozoic Case Study".
6233:
Krissansen-Totton, J.; Buick, R.; Catling, D.C. (1 April 2015). "A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen".
1973:
per year today oxidizes reduced gases in the atmosphere through photochemical reaction. On the early Earth, there was visibly very little oxidative weathering of continents (e.g., a lack of
814:, which are interpreted as colonies of microbes, including cyanobacteria, with characteristic layered structures. Modern stromatolites, which can only be seen in harsh environments such as 682:
and hematite). Extensive deposits of this rock type are found around the world, almost all of which are more than 1.85 billion years old and most of which were deposited around 2.5 
516:. Such an atmosphere contains practically no oxygen. The modern atmosphere contains abundant oxygen (nearly 21%), making it an oxidizing atmosphere. The rise in oxygen is attributed to 5558: 2064:
for the delay in the oxygenation of the atmosphere following the evolution of oxygen-producing photosynthesis likely lies in the presence of various oxygen sinks on the young Earth.
2668:
The rise in oxygen content was not linear: instead, there was a rise in oxygen content around 2.3 Ga, followed by a drop around 2.1 Ga. This rise in oxygen is called the
751:
shows that UV radiation was penetrating deep into the Earth's atmosphere. This in turn rules out an atmosphere containing more than traces of oxygen, which would have produced an
642:, detrital grains, and red beds are evidence of low oxygen levels. Paleosols (fossil soils) older than 2.4 billion years old have low iron concentrations that suggest anoxic 747:. This is the process in which a molecule containing sulfur is broken up by solar ultraviolet (UV) radiation. The presence of a clear MIF signature for sulfur prior to 2.4  1961:
per year today goes to the sinks composed of reduced minerals and gases from volcanoes, metamorphism, percolating seawater and heat vents from the seafloor. On the other hand,
2028:
Preston Cloud originally proposed that the first cyanobacteria had evolved the capacity to carry out oxygen-producing photosynthesis but had not yet evolved enzymes (such as
4189:
Utsunomiya, Satoshi; Murakami, Takashi; Nakada, Masami; Kasama, Takeshi (January 2003). "Iron oxidation state of a 2.45 Byr-old paleosol developed on mafic volcanics".
587:, 2.501–2.434 Ga 2.501–2.225 Ga, 2.460–2.426 Ga, 2.430 Ga, 2.33 Ga, and 2.3 Ga have been given. Factors limiting calculations include an incomplete 8605: 6182:
des Marais, David J.; Strauss, Harald; Summons, Roger E.; Hayes, J.M. (October 1992). "Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment".
2594:, Antarctica, scientists found that mats of oxygen-producing cyanobacteria produced a thin layer, one to two millimeters thick, of oxygenated water in an otherwise 619:), this is rarely quantified when considering geochemical records and may therefore lead to uncertainties for scientists studying the timing of atmospheric oxygenation. 2012:
molecule spends in the air before it is consumed by geological sinks is about 2 million years. That residence time is relatively short in geologic time; so in the
6714: 8483: 5037: 4507: 4634: 3738:
Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Strauss, Justin V. (December 2013).
2996:
Sosa Torres, Martha E.; Saucedo-Vázquez, Juan P.; Kroneck, Peter M.H. (2015). "The Magic of Dioxygen". In Kroneck, Peter M.H.; Sosa Torres, Martha E. (eds.).
1937:
The rate of change of oxygen can be calculated from the difference between global sources and sinks. The oxygen sinks include reduced gases and minerals from
7928: 887: 777:) which may have formed through bacterial oxidation of pyrite. This could provide some of the earliest evidence of oxygen-breathing life on land surfaces. 4365:
Trendall, A.F.; Blockley, J.G. (2004). "Precambrian iron-formation". In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.).
3649:
Baumgartner, Raphael J.; Van Kranendonk, Martin J.; Wacey, David; Fiorentini, Marco L.; Saunders, Martin; Caruso, Stefano; et al. (1 November 2019).
8540: 834:. For example, traces of 2α-methylhopanes and steranes that are thought to be derived from cyanobacteria and eukaryotes, respectively, were found in the 8317: 7881: 2929:
Gumsley, Ashley P.; Chamberlain, Kevin R.; Bleeker, Wouter; Söderlund, Ulf; De Kock, Michiel O.; Larsson, Emilie R.; Bekker, Andrey (6 February 2017).
2200:
rays and decreases methane oxidation, raising oxygen further to a stable state of 21% or more. The Great Oxygenation Event can then be understood as a
8365: 563:
largely disappears from the geological record at 1.85 Ga, after peaking at about 2.5 Ga. Banded iron formation can form only when abundant dissolved
2693:(rocks that contain large amounts of organic matter that would otherwise have been burned away by oxygen). This drop in oxygen levels is called the 8327: 4689:
Frei, R.; Gaucher, C.; Poulton, S.W.; Canfield, D.E. (2009). "Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes".
917: 8312: 6939:
Bekker, Andrey (2014). "Huronian glaciation". In Amils, Ricardo; Gargaud, Muriel; Cernicharo Quintanilla, José; Cleaves, Henderson James (eds.).
5660:
Anbar, A.; Duan, Y.; Lyons, T.; Arnold, G.; Kendall, B.; Creaser, R.; et al. (2007). "A whiff of oxygen before the great oxidation event?".
654:
sediments are widely interpreted as evidence of an anoxic atmosphere. In contrast to redox-sensitive detrital minerals are red beds, red-colored
8467: 7032: 8425: 8307: 5129:
French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; et al. (27 April 2015).
802:
While the GOE is generally thought to be a result of oxygenic photosynthesis by ancestral cyanobacteria, the presence of cyanobacteria in the
7705: 7361: 6956: 4386: 4173: 3719: 3400:
Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; et al. (4 January 2016).
3013: 2875:
Lyons, Timothy W.; Reinhard, Christopher T.; Planavsky, Noah J. (February 2014). "The rise of oxygen in Earth's early ocean and atmosphere".
7723:"A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi–Jatuli Event)" 4089:
Ostrander, Chadlin M.; Heard, Andy W.; Shu, Yunchao; Bekker, Andrey; Poulton, Simon W.; Olesen, Kasper P.; Nielsen, Sune G. (11 July 2024).
8065: 7891: 3037:
Ossa Ossa, Frantz; Spangenberg, Jorge E.; Bekker, Andrey; König, Stephan; Stüeken, Eva E.; Hofmann, Axel; et al. (15 September 2022).
7771:"C–O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: Implications for the Great Oxidation Event and ore genesis" 7377:
Mänd, Kaarel; Planavsky, Noah J.; Porter, Susannah M.; Robbins, Leslie J.; Wang, Changle; Kreitsmann, Timmu; et al. (15 April 2022).
4405:
Canfield, Donald E.; Poulton, Simon W. (1 April 2011). "Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History".
7437:"Earth's surface oxygenation and the rise of eukaryotic life: Relationships to the Lomagundi positive carbon isotope excursion revisited" 6592:
Meng, Xuyang; Simon, Adam C.; Kleinsasser, Jackie M.; Mole, David R.; Kontak, Daniel J.; Jugo, Peter J.; et al. (28 November 2022).
3091: 806:
before the GOE is a highly controversial topic. Structures that are claimed to be fossils of cyanobacteria exist in rock formed 3.5 
8610: 8498: 8247: 7383: 4283: 3826:
Warke, Matthew R.; Di Rocco, Tommaso; Zerkle, Aubrey L.; Lepland, Aivo; Prave, Anthony R.; Martin, Adam P.; et al. (16 June 2020).
3043: 2256:, life had remained energetically limited until the widespread availability of oxygen. The availability of oxygen greatly increased the 706:
conditions. However, the deposition of abundant organic matter is not a sure indication of anoxia, and burrowing organisms that destroy
8625: 8620: 8420: 846:
Carbonaceous microfossils from the Turee Creek Group of Western Australia, which date back to ~2.45–2.21 Ga, have been interpreted as
3260:
Crockford, Peter W.; Kunzmann, Marcus; Bekker, Andrey; Hayles, Justin; Bao, Huiming; Halverson, Galen P.; et al. (20 May 2019).
1977:), and so the weathering sink on oxygen would have been negligible compared to that from reduced gases and dissolved iron in oceans. 8385: 3583: 2854: 5954: 8519: 8488: 7921: 7435:
Fakhraee, Mojtaba; Tarhan, Lidya G.; Reinhard, Christopher T.; Crowe, Sean A.; Lyons, Timothy W.; Planavsky, Noah J. (May 2023).
2727: 1624: 31: 3947:
Poulton, Simon W.; Bekker, Andrey; Cumming, Vivien M.; Zerkle, Aubrey L.; Canfield, Donald E.; Johnston, David T. (April 2021).
1984:
sinks. Free oxygen produced during this time was chemically captured by dissolved iron, converting iron Fe and Fe to magnetite (
199:
one containing abundant free oxygen, with oxygen levels being as high as 10% of modern atmospheric level by the end of the GOE.
8297: 8194: 7480:"Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget" 6135:"Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II" 5294: 4191: 3650: 3785:
Large, Ross R.; Hazen, Robert M.; Morrison, Shaunna M.; Gregory, Dan D.; Steadman, Jeffrey A.; Mukherjee, Indrani (May 2022).
8174: 2648: 1684: 1482: 736: 2144:
in the atmosphere and oceans, enabling its buildup. A different theory suggests that the composition of the volatiles from
8524: 5586: 3356:"Mass-Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere" 2110: 6795:
Claire, M.W.; Catling, D.C.; Zahnle, K.J. (December 2006). "Biogeochemical modelling of the rise in atmospheric oxygen".
6722: 627:
Evidence for the Great Oxidation Event is provided by a variety of petrological and geochemical markers that define this
8355: 6282: 2733: 1542: 575:
further elaborated these ideas through the 1980s, placing the main time interval of oxygenation between 2.2 and 1.9 Ga.
7166: 3187:"Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event" 8440: 7914: 5770:
Catling, David C.; Claire, Mark W. (August 2005). "How Earth's atmosphere evolved to an oxic state: A status report".
2242: 1158: 910: 2842: 7344:
Bernstein, Harris; Bernstein, Carol (2017). "Sexual communication in Archaea, the precursor to eukaryotic meiosis".
5711:
Dahl, T.W.; Hammarlund, E.U.; Anbar, A.D.; Bond, D.P.G.; Gill, B.C.; Gordon, G.W.; et al. (30 September 2010).
3116:
Hodgskiss, Malcolm S. W.; Crockford, Peter W.; Peng, Yongbo; Wing, Boswell A.; Horner, Tristan J. (27 August 2019).
1945:
and weathering. The GOE started after these oxygen-sink fluxes and reduced-gas fluxes were exceeded by the flux of O
850:. Their presence suggests a minimum threshold of seawater oxygen content had been reached by this interval of time. 8615: 8088: 6375:
Catling, D.C. (3 August 2001). "Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth".
4157: 647: 2627:) to drive selection in an early archaeal lineage towards eukaryosis. This archaeal ancestor may already have had 2032:) for living in an oxygenated environment. These cyanobacteria would have been protected from their own poisonous 59:. Red and green lines represent the range of the estimates while time is measured in billions of years ago (Ga). 8590: 8430: 6087:"Rhyacian intermittent large igneous provinces sustained Great Oxidation Event: Evidence from North China craton" 5713:"Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish" 2257: 1785: 1502: 241: 7109:
Sverjensky, Dimitri A.; Lee, Namhey (1 February 2010). "The Great Oxidation Event and Mineral Diversification".
8462: 8454: 8350: 8302: 8058: 6974:"The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis" 6744:
Goldblatt, C.; Lenton, T.M.; Watson, A.J. (2006). "Bistability of atmospheric oxygen and the Great Oxidation".
4633:
Fakhraee, Mojtaba; Hancisse, Olivier; Canfield, Donald Eugene; Crowe, Sean A.; Katsev, Sergei (22 April 2019).
4440:
Lantink, Margriet L.; Oonk, Paul B. H.; Floor, Geerke H.; Tsikos, Harilaos; Mason, Paul R. D. (February 2018).
2632: 1462: 1126: 568: 7572:"A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids" 4022:
Luo, Genming; Ono, Shuhei; Beukes, Nicolas J.; Wang, David T.; Xie, Shucheng; Summons, Roger E. (6 May 2016).
3185:
Schirrmeister, Bettina E.; de Vos, Jurriaan M.; Antonelli, Alexandre; Bagheri, Homayoun C. (29 January 2013).
616: 2730:– A second major increase in Earth's oxygen levels that occurred between around 850 and 540 million years ago 858:
Some elements in marine sediments are sensitive to different levels of oxygen in the environment such as the
8595: 8400: 7050:
Sperling, Erik; Frieder, Christina; Raman, Akkur; Girguis, Peter; Levin, Lisa; Knoll, Andrew (August 2013).
6332:
Spinks, Samuel C.; Parnell, John; Bowden, Stephen A.; Taylor, Ross A.D.; Maclean, Màiri E. (December 2014).
6028:
Wang, Shui-Jiong; Rudnick, Roberta L.; Gaschnig, Richard M.; Wang, Hao; Wasylenki, Laura E. (4 March 2019).
5382:"The evolutionary diversification of cyanobacteria: Molecular–phylogenetic and paleontological perspectives" 5199:"Iron mineralization and taphonomy of microfossils of the 2.45–2.21 Ga Turee Creek Group, Western Australia" 2751: 2620: 2101: 2033: 847: 780:
Other elements whose MIF may provide clues to the GOE include carbon, nitrogen, transitional metals such as
423: 245: 8267: 8219: 7722: 6921: 4441: 2623:(ROS) might have acted in synergy with other environmental stresses (such as ultraviolet radiation and/or 1896: 1522: 1190: 903: 611:. While the effects of an incomplete geological record have been discussed and quantified in the field of 8569: 7518: 7479: 7144: 3651:"Nano−porous pyrite and organic matter in 3.5 billion-year-old stromatolites record primordial life" 727:
continental platforms and shelves began precipitating iron out of upwelling ferruginous water as pyrite.
8224: 8113: 8103: 7727: 7441: 6693: 6654: 6091: 5900: 5563: 5032: 2757: 2635:, and possibly some kind of cell fusion mechanism. The detrimental effects of internal ROS (produced by 2047: 1871: 797: 667: 560: 8390: 5288:
Stüeken, E.E.; Buick, R.; Bekker, A.; Catling, D.; Foriel, J.; Guy, B.M.; et al. (1 August 2015).
4892: 3740:"Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance" 143: 56: 6890:(2 August 2021). "'Totally new' idea suggests longer days on early Earth set stage for complex life". 5603:
Holland, Heinrich D. (November 2002). "Volcanic gases, black smokers, and the great oxidation event".
3702:
Trendall, A. F. (2002). "The Significance of Iron-Formation in the Precambrian Stratigraphic Record".
3261: 8493: 8262: 8252: 8209: 7833: 7782: 7736: 7644: 7583: 7530: 7491: 7450: 7392: 7178: 7118: 7063: 6985: 6851: 6804: 6753: 6663: 6607: 6548: 6500: 6441: 6384: 6338: 6334:"Enhanced organic carbon burial in large Proterozoic lakes: Implications for atmospheric oxygenation" 6291: 6242: 6191: 6100: 6043: 5986: 5912: 5874: 5817: 5779: 5724: 5669: 5612: 5511: 5470: 5393: 5303: 5254: 5212: 5203: 5144: 5095: 5046: 4925: 4855: 4700: 4648: 4591: 4554: 4516: 4455: 4446: 4414: 4339: 4330: 4292: 4246: 4200: 4037: 3962: 3841: 3798: 3751: 3665: 3540: 3415: 3320: 3273: 3200: 3131: 3052: 2942: 2884: 2029: 1142: 707: 608: 370: 261: 181: 7165:
Sumner, Dawn Y.; Hawes, Ian; Mackey, Tyler J.; Jungblut, Anne D.; Doran, Peter T. (1 October 2015).
8559: 8322: 8204: 8199: 8189: 8108: 8051: 6648:
Köhler, Inga; Konhauser, Kurt O.; Papineau, Dominic; Bekker, Andrey; Kappler, Andreas (June 2013).
5081: 2235: 2231: 2114: 1644: 1603: 513: 386: 380: 315: 311: 192: 6278:"Mechanisms and climatic-ecological effects of the Great Oxidation Event in the early Proterozoic" 3900:"A prolonged, two-step oxygenation of Earth's early atmosphere: Support from confidence intervals" 7859: 7798: 7769:
Tang, Hao-Shu; Chen, Yan-Jing; Santosh, M.; Zhong, Hong; Wu, Guang; Lai, Yong (28 January 2013).
7670: 7378: 7216: 7204: 6903: 6869: 6820: 6777: 6650:"Biological carbon precursor to diagenetic siderite with spherical structures in iron formations" 6623: 6467: 6408: 6333: 6307: 6258: 6215: 6086: 6059: 6010: 5936: 5833: 5693: 5642: 5580: 5270: 5198: 5197:
Fadel, Alexandre; Lepot, Kevin; Busigny, Vincent; Addad, Ahmed; Troadec, David (September 2017).
4879: 4825: 4775: 4724: 4664: 4615: 4004: 3929: 3767: 3681: 3631: 3504: 3308: 3240: 2908: 1765: 1664: 1562: 615:
for several decades, particularly with respect to the evolution and extinction of organisms (the
600: 532: 4442:"Fe isotopes of a 2.4 Ga hematite-rich IF constrain marine redox conditions around the GOE" 3355: 39: 6277: 3307:
Crockford, Peter W.; bar On, Yinon M.; Ward, Luce M.; Milo, Ron; Halevy, Itay (November 2023).
8529: 8415: 8405: 8158: 8118: 7701: 7611: 7357: 7326: 7274: 7091: 7013: 6952: 6887: 6769: 6681: 6598: 6574: 6539: 6535:"Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon" 6491: 6459: 6400: 6207: 6164: 6034: 6002: 5928: 5841: 5752: 5685: 5539: 5421: 5362: 5333:"Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria" 5172: 5111: 5086: 5062: 5013: 4959: 4941: 4871: 4817: 4767: 4716: 4639: 4607: 4582: 4382: 4262: 4169: 4112: 4071: 4053: 3996: 3988: 3921: 3904: 3877: 3859: 3715: 3623: 3579: 3496: 3443: 3375: 3336: 3289: 3228: 3167: 3149: 3019: 3009: 2978: 2960: 2900: 2850: 2816: 2677: 2275: 744: 434: 4229:
Johnson, Jena E.; Gerpheide, Aya; Lamb, Michael P.; Fischer, Woodward W. (27 February 2014).
298:. The continually produced oxygen eventually depleted all the surface reducing capacity from 8534: 8282: 8257: 8214: 8184: 8133: 8128: 7950: 7849: 7841: 7790: 7744: 7693: 7660: 7652: 7601: 7591: 7538: 7499: 7458: 7408: 7400: 7396: 7349: 7316: 7308: 7264: 7254: 7194: 7186: 7126: 7081: 7071: 7003: 6993: 6944: 6895: 6859: 6812: 6761: 6671: 6615: 6564: 6556: 6508: 6449: 6432: 6392: 6347: 6299: 6276:
Luo, Genming; Zhu, Xiangkun; Wang, Shuijiong; Zhang, Shihong; Jiao, Chaoqun (22 June 2022).
6250: 6199: 6154: 6146: 6108: 6051: 5994: 5920: 5882: 5825: 5787: 5783: 5742: 5732: 5677: 5620: 5529: 5519: 5478: 5411: 5401: 5352: 5344: 5311: 5262: 5220: 5162: 5152: 5103: 5054: 5003: 4995: 4949: 4933: 4863: 4846: 4809: 4757: 4748: 4708: 4691: 4656: 4599: 4562: 4545: 4524: 4471: 4463: 4422: 4374: 4347: 4308: 4300: 4296: 4254: 4208: 4161: 4104: 4095: 4061: 4045: 4028: 3978: 3970: 3953: 3913: 3867: 3849: 3806: 3759: 3707: 3673: 3615: 3571: 3548: 3488: 3433: 3423: 3367: 3328: 3281: 3218: 3208: 3157: 3139: 3070: 3060: 3056: 3001: 2968: 2950: 2892: 2806: 2798: 2739: 2653: 2616: 2289: 2201: 2161: 2105: 859: 712: 628: 604: 580: 572: 376: 307: 253: 229: 207: 203: 136: 7770: 5808:
Cloud, Preston E. (1968). "Atmospheric and Hydrospheric Evolution on the Primitive Earth".
5266: 4528: 8600: 8242: 8179: 7955: 5290:"The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances" 5245:
Anbar, Ariel D.; Rouxel, Olivier (May 2007). "Metal Stable Isotopes in Paleoceanography".
2712:
It has been hypothesized that eukaryotes first evolved during the Lomagundi-Jatuli event.
2293: 2051: 1745: 1246: 675: 588: 494: 366: 265: 249: 6487:"Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon" 2226:
Eventually, oxygen started to accumulate in the atmosphere, with two major consequences.
67:
in the atmosphere. The oceans were also largely anoxic – with the possible exception of O
7837: 7786: 7740: 7648: 7587: 7534: 7495: 7454: 7182: 7122: 7067: 6989: 6855: 6808: 6757: 6667: 6611: 6552: 6504: 6445: 6388: 6295: 6246: 6195: 6104: 6047: 5990: 5916: 5878: 5821: 5728: 5673: 5616: 5515: 5474: 5397: 5307: 5258: 5216: 5148: 5099: 5058: 5050: 4929: 4859: 4704: 4652: 4595: 4580:
Farquhar, J. (4 August 2000). "Atmospheric Influence of Earth's Earliest Sulfur Cycle".
4558: 4520: 4459: 4418: 4343: 4250: 4204: 4041: 3966: 3845: 3802: 3755: 3669: 3544: 3419: 3324: 3277: 3204: 3135: 2998:
Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases
2946: 2888: 810:. These include microfossils of supposedly cyanobacterial cells and macrofossils called 78:
produced, rising to values of 0.02 and 0.04 atm, but absorbed in oceans and seabed rock.
8395: 8370: 7960: 7697: 7606: 7571: 7519:"Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia" 7321: 7296: 7269: 7242: 7086: 7051: 7008: 6973: 6569: 6534: 6159: 6134: 5747: 5712: 5534: 5497: 5416: 5381: 5357: 5332: 5167: 5080:
Brocks, Jochen J.; Logan, Graham A.; Buick, Roger; Summons, Roger E. (13 August 1999).
5008: 4981: 4954: 4913: 4635:"Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry" 4066: 4023: 3872: 3827: 3575: 3438: 3223: 3186: 3162: 3117: 3039:"Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event" 2973: 2930: 2811: 2784: 2721: 2706: 2253: 2081: 2073: 869:. Non-metal elements such as selenium and iodine are also indicators of oxygen levels. 517: 438: 401: 334: 188: 89:
of the oceans, but is absorbed by land surfaces. No significant change in oxygen level.
7721:
Martin, Adam P.; Condon, Daniel J.; Prave, Anthony R.; Lepland, Aivo (December 2013).
5624: 4378: 4212: 3739: 2709:. Oceans seem to have stayed rich in oxygen for some time even after the event ended. 2148:
was more oxidized. Another theory suggests that the decrease of metamorphic gases and
735:
Some of the most persuasive evidence for the Great Oxidation Event is provided by the
607:, and uncertainties related to the interpretation of different geological/geochemical 457:, which is a powerful greenhouse gas and was produced by early forms of life known as 8584: 8272: 8123: 8098: 7886: 7863: 7802: 7674: 7542: 7503: 6907: 6873: 6816: 6627: 6593: 6311: 6063: 6014: 5862: 5439: 5274: 5130: 4883: 4829: 4779: 4668: 4351: 4090: 4008: 3948: 3933: 3685: 3635: 3401: 2834: 2745: 2640: 2595: 2377: 1826: 766: 703: 528: 521: 354: 327: 319: 280: 7845: 7748: 7463: 7436: 7208: 6948: 6824: 6471: 6412: 6351: 6262: 6112: 6029: 5940: 5697: 5224: 4619: 4467: 3771: 3508: 8514: 8093: 6781: 6219: 4728: 3531:
Shaw, George H. (August 2008). "Earth's atmosphere – Hadean to early Proterozoic".
2912: 2838: 2763: 2702: 2636: 2591: 2577: 2261: 2192: 2149: 2145: 1942: 1704: 1442: 878: 827: 811: 612: 596: 342: 338: 299: 237: 151: 139: 6838:
Klatt, J.M.; Chennu, A.; Arbic, B.K.; Biddanda, B.A.; Dick, G.J. (2 August 2021).
5524: 5107: 4813: 4566: 3763: 3285: 2742: – The hypothesis that multicellular life may be self-destructive or suicidal 17: 6972:
Kopp, Robert E.; Kirschvink, Joseph L.; Hilburn, Isaac A.; Nash, Cody Z. (2005).
6030:"Methanogenesis sustained by sulfide weathering during the Great Oxidation Event" 5829: 4603: 3811: 3786: 3552: 2736:– Timeline of the development of free oxygen in the Earth's oceans and atmosphere 8375: 8360: 8143: 7937: 7570:
Strassert, Jürgen F.H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (2021).
7353: 5886: 5559:"Photosynthesis originated a billion years earlier than we thought, study shows" 3005: 3000:. Metal Ions in Life Sciences volume 15. Vol. 15. Springer. pp. 1–12. 2690: 2624: 2197: 2188: 2093: 2089: 2013: 1388: 1350: 752: 651: 458: 284: 257: 222: 147: 47: 7596: 7404: 7167:"Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases" 7056:
Proceedings of the National Academy of Sciences of the United States of America
6978:
Proceedings of the National Academy of Sciences of the United States of America
6864: 6839: 6619: 5791: 5136:
Proceedings of the National Academy of Sciences of the United States of America
4426: 4304: 4108: 3974: 3833:
Proceedings of the National Academy of Sciences of the United States of America
3407:
Proceedings of the National Academy of Sciences of the United States of America
3371: 3192:
Proceedings of the National Academy of Sciences of the United States of America
3123:
Proceedings of the National Academy of Sciences of the United States of America
3065: 3038: 2935:
Proceedings of the National Academy of Sciences of the United States of America
2766: – Layered sedimentary structure formed by the growth of bacteria or algae 2760:– Hypothesis that complex extraterrestrial life is an extremely rare phenomenon 2260:
available to living organisms, with global environmental impacts. For example,
411:, which are also the predominant nitrogen-and-carbon-bearing gases produced by 314:
over nearly a billion years. The oxidative environmental change, compounded by
8074: 8022: 7985: 7656: 7556: 7130: 6560: 6303: 6055: 5316: 5289: 4660: 3711: 3332: 2628: 2440: 2413: 2350: 2280:
The Great Oxygenation Event triggered an explosive growth in the diversity of
2214: 1724: 862: 807: 781: 761: 748: 683: 643: 592: 584: 461:. Scientists continue to research how the Earth was warmed before life arose. 346: 323: 295: 218: 157:. This began approximately 2.460–2.426 Ga (billion years) ago during the 86: 5066: 4945: 4266: 4116: 4057: 3992: 3925: 3863: 3492: 3293: 3153: 2964: 8380: 8027: 7996: 7980: 7076: 6998: 6899: 6396: 5924: 5737: 5681: 5406: 5348: 5157: 3854: 3619: 3428: 3213: 3144: 2955: 2612: 2422: 2332: 2080:, an important trap for molecular oxygen, since methane readily oxidizes to 2038: 1234: 1174: 831: 823: 815: 720: 679: 655: 552: 540: 524:, which are thought to have evolved as early as 3.5 billion years ago. 412: 350: 288: 269: 214: 196: 185: 169:
and chemical evidence suggests that biologically produced molecular oxygen (
7615: 7330: 7312: 7278: 7259: 7095: 7017: 6773: 6685: 6578: 6486: 6463: 6404: 6211: 6168: 6150: 6139:
Philosophical Transactions of the Royal Society B: Biological Sciences
6006: 5932: 5756: 5689: 5543: 5425: 5366: 5176: 5115: 5017: 4999: 4963: 4937: 4875: 4821: 4771: 4720: 4611: 4075: 4049: 4000: 3881: 3627: 3500: 3447: 3379: 3340: 3232: 3171: 3023: 2982: 2904: 2820: 2802: 7379:"Chromium evidence for protracted oxygenation during the Paleoproterozoic" 6594:"Formation of oxidized sulfur-rich magmas in Neoarchaean subduction zones" 5845: 4165: 3262:"Claypool continued: Extending the isotopic record of sedimentary sulfate" 8435: 8410: 8001: 7975: 7970: 3606:
Wiechert, U. H. (20 December 2002). "GEOLOGY: Earth's Early Atmosphere".
2685: 2681: 2404: 2395: 2368: 2359: 2341: 2285: 2175: 2001: 1974: 1806: 1255: 1237: 785: 639: 556: 548: 544: 502: 390: 273: 211: 162: 158: 6765: 5998: 4867: 4712: 3828:"The Great Oxidation Event preceded a Paleoproterozoic "snowball Earth"" 3787:"Evidence that the GOE was a prolonged event with a peak around 1900 Ma" 2896: 1949:
associated with the burial of reductants, such as organic carbon. About
8006: 7854: 7665: 7413: 7199: 6676: 6649: 6254: 5837: 5502: 4476: 4373:. Developments in Precambrian Geology. Vol. 12. pp. 359–511. 3983: 3075: 2608: 2431: 2386: 2281: 2077: 1938: 1322: 1289: 866: 839: 835: 803: 687: 564: 442: 233: 226: 178: 166: 4987:
Philosophical Transactions of the Royal Society B: Biological Sciences
8017: 7190: 6512: 6203: 5865:(1973). "Paleoecological Significance of the Banded Iron-Formation". 5482: 5031:
Bosak, Tanja; Knoll, Andrew H.; Petroff, Alexander P. (30 May 2013).
4313: 4258: 4091:"Onset of coupled atmosphere–ocean oxygenation 2.3 billion years ago" 4024:"Rapid oxygenation of Earth's atmosphere 2.33 billion years ago" 3917: 3677: 3566:
Kasting, J.F. (2014). "Modeling the Archean Atmosphere and Climate".
2644: 2097: 2016:, there must have been feedback processes that kept the atmospheric O 1299: 1271: 536: 331: 303: 170: 154: 7794: 6454: 6427: 4762: 4743: 2790:
Philosophical Transactions of the Royal Society: Biological Sciences
822:
Additionally, Archaean sedimentary rocks were once found to contain
4230: 3899: 2701:. Evidence for the event has been found globally in places such as 830:, interpreted as fossilized membrane lipids from cyanobacteria and 7906: 3402:"Sufficient oxygen for animal respiration 1,400 million years ago" 2241: 2187:
Another hypothesis posits a model of the atmosphere that exhibits
2160: 1919: 1851: 1206: 699: 671: 292: 132: 46: 38: 7517:
Schidlowski, Manfred; Eichmann, Rudolf; Junge, Christian (1976).
7478:
Schidlowski, Manfred; Eichmann, Rudolf; Junge, Christian (1975).
7243:"Uniting sex and eukaryote origins in an emerging oxygenic world" 202:
The appearance of highly reactive free oxygen, which can oxidize
30:
For the second (Neoproterozoic) surge in atmospheric oxygen, see
4235:
constraints from Paleoproterozoic detrital pyrite and uraninite"
1280: 268:
have been interpreted to indicate a decrease in the size of the
8047: 7910: 7217:"Oxygen oasis in Antarctic lake reflects Earth in distant past" 4893:"Evidence of Earliest Oxygen-Breathing Life on Land Discovered" 3949:"A 200-million-year delay in permanent atmospheric oxygenation" 559:, began to appear in the geological record at about this time. 535:
sediments older than about 2 billion years contained grains of
4742:
Lyons, Timothy W.; Reinhard, Christopher T. (September 2009).
3898:
Hodgskiss, Malcolm S.W.; Sperling, Erik A. (20 October 2021).
1888: 1847: 882: 8043: 6840:"Possible link between Earth's rotation rate and oxygenation" 5643:"Great Oxidation Event: More oxygen through multicellularity" 3241:"Great Oxidation Event: More oxygen through multicellularity" 2754:– Hypothesis that early photosynthesis reflected purple light 702:, rich in organic matter, are often regarded as a marker for 5636: 5634: 5082:"Archean Molecular Fossils and the Early Rise of Eukaryotes" 3479:
Kasting, J. (12 February 1993). "Earth's early atmosphere".
2004:, more organic carbon was buried and likely allowed higher O 161:
period and ended approximately 2.060 Ga ago during the
433:
levels were much higher at the time, providing enough of a
5498:"Early Archean origin of heterodimeric Photosystem I" 5331:
Cardona, T.; Murray, J. W.; Rutherford, A. W. (May 2015).
4796:
Kerr, R. A. (17 June 2005). "Earth Science: The Story of O
2849:. California: University of California Press. p. 99. 389:
is not known with certainty. However, the bulk was likely
6533:
Eguchi, James; Seales, Johnny; Dasgupta, Rajdeep (2019).
6133:
Kirschvink, Joseph L.; Kopp, Robert E. (27 August 2008).
2218:
day, the more time oxygen has to diffuse into the water.
7882:"First breath: Earth's billion-year struggle for oxygen" 7052:"Oxygen, ecology, and the Cambrian radiation of animals" 7033:"First breath: Earth's billion-year struggle for oxygen" 6426:
Lenton, T.M.; Schellnhuber, H.J.; Szathmáry, E. (2004).
5131:"Reappraisal of hydrocarbon biomarkers in Archean rocks" 3118:"A productivity collapse to end Earth's Great Oxidation" 248:). Although the event is inferred to have constituted a 7692:(1st ed.). Amsterdam: Elsevier. pp. 359–365. 2748: – Switch from fermentation to aerobic respiration 2165:
2.1-billion-year-old rock showing banded iron formation
4154:
Atmospheric Evolution on Inhabited and Lifeless Worlds
2847:
Microcosmos: Four Billion Years of Microbial Evolution
6485:
Duncan, Megan S.; Dasgupta, Rajdeep (25 April 2017).
4912:
Catling, David C.; Zahnle, Kevin J. (February 2020).
2924: 2922: 5955:"Breathing Easy Thanks to the Great Oxidation Event" 8507: 8476: 8453: 8338: 8290: 8281: 8233: 8167: 8151: 8081: 4500: 4498: 4496: 4494: 6370: 6368: 2008:levels to occur. Today, the average time that an O 287:-based photosynthesis that releases dioxygen as a 5903:(31 March 2017). "How Cyanobacteria went green". 3893: 3891: 3733: 3731: 765:requires the presence of a powerful acid such as 415:today. These are relatively inert gases. Oxygen, 150:first experienced a rise in the concentration of 96:reservoirs filled; gas accumulates in atmosphere. 6922:"Longer days likely bosted Earth's early oxygen" 4400: 4398: 3697: 3695: 3601: 3599: 3597: 3595: 3474: 3472: 3470: 3468: 3466: 3464: 7290: 7288: 7236: 7234: 7232: 5717:Proceedings of the National Academy of Sciences 5598: 5596: 4224: 4222: 4147: 4145: 4143: 4141: 4139: 4137: 4135: 4133: 2931:"Timing and tempo of the Great Oxidation Event" 2870: 2868: 2866: 2684:; it is currently considered to be part of the 2238:, bracketing an age range of 2.45–2.22 Ga. 8484:International Union for Conservation of Nature 5567:. Archived from the original on 1 October 2020 4975: 4973: 3309:"The geologic history of primary productivity" 2785:"The oxygenation of the atmosphere and oceans" 2020:level within bounds suitable for animal life. 756:facilitate repeated redox cycling of sulphur. 8059: 7922: 6715:"Abundant Oxygen Indirectly Due to Tectonics" 5857: 5855: 5803: 5801: 5247:Annual Review of Earth and Planetary Sciences 5038:Annual Review of Earth and Planetary Sciences 4508:Annual Review of Earth and Planetary Sciences 4152:Catling, David C.; Kasting, James F. (2017). 911: 8: 7629: 7627: 7625: 6943:. Springer Berlin Heidelberg. pp. 1–8. 4791: 4789: 3526: 3524: 3522: 3520: 3518: 27:Paleoproterozoic surge in atmospheric oxygen 7241:Gross, J.; Bhattacharya, D. (August 2010). 4367:Evolution of the Hydrosphere and Atmosphere 3354:Pavlov, A.A.; Kasting, J.F. (5 July 2004). 2204:from the lower to the upper steady states. 670:are composed of thin alternating layers of 591:for the Paleoproterozoic (e.g., because of 551:, which get their color from the oxidized ( 322:around the Earth's surface. The subsequent 279:The GOE is inferred to have been caused by 92:Stages 4 and 5 (0.85 Ga – present): Other O 8541:The Sixth Extinction: An Unnatural History 8287: 8066: 8052: 8044: 7946: 7929: 7915: 7907: 6694:"Iron in primeval seas rusted by bacteria" 918: 904: 441:were present. The most likely such gas is 225:of many early organisms on Earth – mostly 191:, and eventually changed it from a weakly 8606:Events in the geological history of Earth 7853: 7664: 7605: 7595: 7462: 7412: 7320: 7268: 7258: 7198: 7160: 7158: 7085: 7075: 7007: 6997: 6863: 6675: 6568: 6453: 6158: 5746: 5736: 5533: 5523: 5415: 5405: 5356: 5315: 5166: 5156: 5007: 4953: 4761: 4475: 4312: 4065: 3982: 3871: 3853: 3810: 3437: 3427: 3222: 3212: 3161: 3143: 3074: 3064: 2972: 2954: 2810: 784:and iron, and non-metal elements such as 7297:"How oxygen gave rise to eukaryotic sex" 5641:University of Zurich (17 January 2013). 1996: 508: 489: 481: 474: 467: 429: 418: 407: 396: 63:Stage 1 (3.85–2.45 Ga): Practically no O 2775: 2246:Timeline of glaciations, shown in blue. 256:", which are implicitly limited to the 210:) and thus is toxic to the then-mostly 7295:Hörandl E, Speijer D (February 2018). 5578: 5267:10.1146/annurev.earth.34.031405.125029 4529:10.1146/annurev.earth.36.031207.124233 4239:Geological Society of America Bulletin 2680:) and the time period has been termed 2113:conditions than those seen during the 1980:Dissolved iron in oceans exemplifies O 272:of >80% associated with changes in 1934:flux from the global oxygen sources. 195:practically devoid of oxygen into an 7: 8565: 6361:– via Elsevier Science Direct. 6122:– via Elsevier Science Direct. 5234:– via Elsevier Science Direct. 3704:Precambrian Sedimentary Environments 2783:Holland, Heinrich D. (19 May 2006). 2631:mechanisms based on DNA pairing and 1860: 1836: 1815: 1795: 1774: 1754: 1734: 1713: 1693: 1673: 1653: 1633: 1613: 1592: 1572: 1551: 1531: 1511: 1491: 1471: 1451: 1431: 8499:Voluntary Human Extinction Movement 8248:Extinction risk from climate change 7384:Earth and Planetary Science Letters 5772:Earth and Planetary Science Letters 5059:10.1146/annurev-earth-042711-105327 4980:Schopf, J. William (29 June 2006). 4371:Developments in Precambrian Geology 4284:Earth and Planetary Science Letters 3044:Earth and Planetary Science Letters 2843:"Chapter 6, "The Oxygen Holocaust"" 7698:10.1016/B978-0-444-59425-9.00016-0 7223:(Press release). 1 September 2015. 6428:"Climbing the co-evolution ladder" 4982:"Fossil evidence of Archaean life" 3576:10.1016/b978-0-08-095975-7.01306-1 2288:and oxidized forms due to dynamic 531:in the 1970s. Cloud observed that 25: 5557:Howard, Victoria (7 March 2018). 3247:(Press release). 17 January 2013. 131:, was a time interval during the 8564: 8555: 8554: 8520:Decline in amphibian populations 8489:IUCN Species Survival Commission 8142: 6817:10.1111/j.1472-4669.2006.00084.x 5496:Caredona, Tanai (6 March 2018). 2728:Neoproterozoic oxygenation event 711:abundant, and euxinia, in which 276:supplies at the end of the GOE. 32:Neoproterozoic oxygenation event 8195:Human impact on the environment 7890:. No. 2746. Archived from 7846:10.1016/j.precamres.2020.105855 7749:10.1016/j.earscirev.2013.10.006 7523:Geochimica et Cosmochimica Acta 7464:10.1016/j.earscirev.2023.104398 6949:10.1007/978-3-642-27833-4_742-4 6352:10.1016/j.precamres.2014.09.026 6113:10.1016/j.earscirev.2023.104352 5605:Geochimica et Cosmochimica Acta 5337:Molecular Biology and Evolution 5295:Geochimica et Cosmochimica Acta 5225:10.1016/j.precamres.2017.07.003 4891:Wynne Parry (25 October 2011). 4468:10.1016/j.precamres.2017.12.025 4192:Geochimica et Cosmochimica Acta 2088:) and water in the presence of 177:) started to accumulate in the 8175:Climate variability and change 7880:Lane, Nick (5 February 2010). 7031:Lane, Nick (5 February 2010). 5440:"Cyanobacteria: Fossil record" 5380:Tomitani, Akiko (April 2006). 5033:"The Meaning of Stromatolites" 3570:. Elsevier. pp. 157–175. 1930:per year. This creates a net O 737:mass-independent fractionation 345:) may have led to the rise of 1: 8525:Decline in insect populations 8468:IUCN Red List extinct species 5625:10.1016/s0016-7037(02)00950-x 5525:10.1016/j.heliyon.2018.e00548 5108:10.1126/science.285.5430.1033 4814:10.1126/science.308.5729.1730 4744:"Oxygen for heavy-metal fans" 4567:10.1016/j.chemgeo.2014.09.009 4379:10.1016/S0166-2635(04)80007-0 4213:10.1016/s0016-7037(02)01083-9 3791:Geosystems and Geoenvironment 3764:10.1016/j.chemgeo.2013.08.002 3286:10.1016/j.chemgeo.2019.02.030 349:organisms and the subsequent 7690:The geologic time scale 2012 7543:10.1016/0016-7037(76)90010-7 7504:10.1016/0301-9268(75)90018-2 6941:Encyclopedia of Astrobiology 6283:Science China Earth Sciences 5830:10.1126/science.160.3829.729 4604:10.1126/science.289.5480.756 4352:10.1016/0301-9268(92)90073-w 3812:10.1016/j.geogeo.2022.100036 3553:10.1016/j.chemer.2008.05.001 3090:Plait, Phil (28 July 2014). 2734:Geological history of oxygen 437:to warm the Earth, or other 7354:10.1007/978-3-319-65536-9_7 7346:Biocommunication of Archaea 6235:American Journal of Science 5887:10.2113/gsecongeo.68.7.1135 3006:10.1007/978-3-319-12415-5_1 2676:, (named for a district of 2222:Consequences of oxygenation 1645:Earliest multicellular life 512:) is described as a weakly 387:Earth's earliest atmosphere 8642: 8611:Evolution of the biosphere 8089:Background extinction rate 7597:10.1038/s41467-021-22044-z 7405:10.1016/j.epsl.2022.117501 6865:10.1038/s41561-021-00784-3 6620:10.1038/s41561-022-01071-5 5792:10.1016/j.epsl.2005.06.013 4427:10.2113/gselements.7.2.107 4305:10.1016/j.epsl.2009.07.008 4158:Cambridge University Press 4109:10.1038/s41586-024-07551-5 3975:10.1038/s41586-021-03393-7 3372:10.1089/153110702753621321 3066:10.1016/j.epsl.2022.117716 2697:Shunga-Francevillian event 2317:End of Huronian glaciation 2273: 876: 795: 374: 364: 29: 8626:Meteorological hypotheses 8621:Mass extinction timelines 8550: 8411:End-Jurassic or Tithonian 8140: 7944: 7657:10.1038/s41561-020-0558-5 7131:10.2113/gselements.6.1.31 6561:10.1038/s41561-019-0492-6 6304:10.1007/s11430-021-9934-y 6056:10.1038/s41561-019-0320-z 5585:: CS1 maint: unfit URL ( 5317:10.1016/j.gca.2015.04.033 4661:10.1038/s41561-019-0351-5 3712:10.1002/9781444304312.ch3 3333:10.1016/j.cub.2023.09.040 2590:In field studies done in 1884: 896: 885: 715:is present in the water. 567:iron is transported into 326:of surviving archaea via 242:anoxygenic photosynthesis 81:Stage 3 (1.85–0.85 Ga): O 74:Stage 2 (2.45–1.85 Ga): O 8463:Lists of extinct species 4914:"The Archean atmosphere" 3568:Treatise on Geochemistry 3493:10.1126/science.11536547 2649:evolution of meiotic sex 2647:could have promoted the 2619:involving production of 2074:chemosynthetic organisms 1071:−1000 — 1051:−1500 — 1031:−2000 — 1011:−2500 — 991:−3000 — 971:−3500 — 951:−4000 — 931:−4500 — 674:(a fine-grained form of 7397:2022E&PSL.58417501M 7145:"Evolution of Minerals" 7077:10.1073/pnas.1312778110 6999:10.1073/pnas.0504878102 6900:10.1126/science.abl7415 6397:10.1126/science.1061976 5925:10.1126/science.aam9365 5784:2005E&PSL.237....1C 5738:10.1073/pnas.1011287107 5682:10.1126/science.1140325 5407:10.1073/pnas.0600999103 5158:10.1073/pnas.1419563112 4297:2009E&PSL.286..436H 3855:10.1073/pnas.2003090117 3620:10.1126/science.1079894 3429:10.1073/pnas.1523449113 3214:10.1073/pnas.1209927110 3145:10.1073/pnas.1900325116 3057:2022E&PSL.59417716O 2956:10.1073/pnas.1608824114 2752:Purple Earth hypothesis 2621:reactive oxygen species 2611:lineage into the first 2586:Cyanobacteria evolution 2270:Mineral diversification 2230:Oxygen likely oxidized 2121:Large igneous provinces 1091:−500 — 848:iron-oxidising bacteria 819:phototrophic bacteria. 424:faint young Sun paradox 385:The composition of the 246:Purple Earth hypothesis 113:Great Oxygenation Event 8268:Latent extinction risk 7313:10.1098/rspb.2017.2706 7260:10.1186/1745-6150-5-53 6713:American, Scientific. 6151:10.1098/rstb.2008.0024 5901:Blankenship, Robert E. 5000:10.1098/rstb.2006.1834 4938:10.1126/sciadv.aax1420 4050:10.1126/sciadv.1600134 2803:10.1098/rstb.2006.1838 2670:Lomagundi-Jatuli event 2664:Lomagundi-Jatuli event 2247: 2208:Increasing photoperiod 2166: 838:of Western Australia. 792:Fossils and biomarkers 668:Banded iron formations 635:Continental indicators 478:with trace amounts of 236:to use green-spectrum 217:, may have caused the 100: 71:in the shallow oceans. 44: 8225:Paradox of enrichment 8114:Functional extinction 8104:Ecological extinction 7728:Earth-Science Reviews 7442:Earth-Science Reviews 6655:Nature Communications 6092:Earth-Science Reviews 5957:. Scientific American 5564:Astrobiology Magazine 5349:10.1093/molbev/msv024 4166:10.1017/9781139020558 2758:Rare Earth hypothesis 2245: 2164: 2048:lateral gene transfer 798:Biomarker (petroleum) 663:Banded iron formation 561:Banded iron formation 105:Great Oxidation Event 50: 42: 8494:Extinction Rebellion 8436:Pliocene–Pleistocene 8318:Cretaceous–Paleogene 8263:Hypothetical species 8253:Extinction threshold 8210:Overabundant species 7951:Paleoproterozoic Era 7826:Precambrian Research 7484:Precambrian Research 7348:. pp. 103–117. 6339:Precambrian Research 5204:Precambrian Research 4447:Precambrian Research 4331:Precambrian Research 3319:(21): 4741–4750.e5. 2602:Origin of eukaryotes 2030:superoxide dismutase 599:), uncertainties in 371:Prebiotic atmosphere 262:isotope geochemistry 240:and power a form of 182:prebiotic atmosphere 8421:Cenomanian-Turonian 8366:Cambrian–Ordovician 8298:Ordovician–Silurian 8205:Mutational meltdown 8190:Habitat destruction 8109:Extinct in the wild 7956:Mesoproterozoic Era 7838:2020PreR..34705855K 7787:2013GeolJ..48..467T 7741:2013ESRv..127..242M 7649:2020NatGe..13..302M 7588:2021NatCo..12.1879S 7535:1976GeCoA..40..449S 7496:1975PreR....2....1S 7455:2023ESRv..24004398F 7183:2015Geo....43..887S 7149:Scientific American 7123:2010Eleme...6...31S 7068:2013PNAS..11013446S 7062:(33): 13446–13451. 6990:2005PNAS..10211131K 6984:(32): 11131–11136. 6928:. 3 September 2021. 6856:2021NatGe..14..564K 6809:2006Gbio....4..239C 6766:10.1038/nature05169 6758:2006Natur.443..683G 6719:Scientific American 6668:2013NatCo...4.1741K 6612:2022NatGe..15.1064M 6553:2020NatGe..13...71E 6505:2017NatGe..10..387D 6446:2004Natur.431..913L 6389:2001Sci...293..839C 6296:2022ScChD..65.1646L 6247:2015AmJS..315..275K 6196:1992Natur.359..605M 6145:(1504): 2755–2765. 6105:2023ESRv..23804352P 6048:2019NatGe..12..296W 5999:10.1038/nature07858 5991:2009Natur.458..750K 5917:2017Sci...355.1372B 5911:(6332): 1372–1373. 5879:1973EcGeo..68.1135C 5822:1968Sci...160..729C 5729:2010PNAS..10717911D 5723:(42): 17911–17915. 5674:2007Sci...317.1903A 5668:(5846): 1903–1906. 5617:2002GeCoA..66.3811H 5516:2018Heliy...400548C 5475:2006Geo....34..437D 5442:. Ucmp.berkeley.edu 5398:2006PNAS..103.5442T 5308:2015GeCoA.162..109S 5259:2007AREPS..35..717A 5217:2017PreR..298..530F 5149:2015PNAS..112.5915F 5100:1999Sci...285.1033B 5094:(5430): 1033–1036. 5051:2013AREPS..41...21B 4930:2020SciA....6.1420C 4868:10.1038/nature10511 4860:2011Natur.478..369K 4808:(5729): 1730–1732. 4713:10.1038/nature08266 4705:2009Natur.461..250F 4653:2019NatGe..12..375F 4596:2000Sci...289..756F 4559:2014ChGeo.389...48S 4521:2009AREPS..37..507L 4460:2018PreR..305..218L 4419:2011Eleme...7..107P 4344:1992PreR...54..257E 4251:2014GSAB..126..813J 4205:2003GeCoA..67..213U 4042:2016SciA....2E0134L 3967:2021Natur.592..232P 3846:2020PNAS..11713314W 3840:(24): 13314–13320. 3803:2022GsGe....100036L 3756:2013ChGeo.362..232C 3670:2019Geo....47.1039B 3614:(5602): 2341–2342. 3545:2008ChEG...68..235S 3420:2016PNAS..113.1731Z 3325:2023CBio...33E4741C 3278:2019ChGeo.513..200C 3205:2013PNAS..110.1791S 3136:2019PNAS..11617207H 3130:(35): 17207–17212. 2947:2017PNAS..114.1811G 2897:10.1038/nature13068 2889:2014Natur.506..307L 2576:Million years ago. 2236:Huronian glaciation 2232:atmospheric methane 2115:Huronian glaciation 2024:Evolution by stages 1924:(1 Tmol = 10 moles) 1625:Sexual reproduction 1604:Huronian glaciation 678:) and iron oxides ( 623:Geological evidence 617:Signor–Lipps effect 569:depositional basins 514:reducing atmosphere 381:Atmosphere of Earth 316:a global glaciation 312:atmospheric methane 193:reducing atmosphere 7961:Neoproterozoic Era 7775:Geological Journal 7307:(1872): 20172706. 6888:Pennisi, Elizabeth 6677:10.1038/ncomms2770 6255:10.2475/04.2015.01 3706:. pp. 33–66. 2643:) on the archaeal 2596:anoxic environment 2248: 2167: 1872:Quaternary ice age 1807:Earliest tetrapods 1766:Cambrian explosion 1725:Cryogenian ice age 1584:Atmospheric oxygen 1563:Pongola glaciation 1191:Multicellular life 1143:Single-celled life 589:sedimentary record 260:eon. In any case, 144:Earth's atmosphere 117:Oxygen Catastrophe 115:, also called the 101: 57:Earth's atmosphere 45: 18:Oxygen Catastrophe 8616:Extinction events 8578: 8577: 8530:Extinction symbol 8449: 8448: 8313:Triassic–Jurassic 8283:Extinction events 8159:Extinction vortex 8119:Genetic pollution 8041: 8040: 8036: 8035: 7894:on 6 January 2011 7707:978-0-44-459425-9 7637:Nature Geoscience 7363:978-3-319-65535-2 6958:978-3-642-27833-4 6844:Nature Geoscience 6752:(7112): 683–686. 6725:on 28 August 2018 6599:Nature Geoscience 6540:Nature Geoscience 6492:Nature Geoscience 6383:(5531): 839–843. 6190:(6396): 605–609. 6035:Nature Geoscience 5985:(7239): 750–753. 5816:(3829): 729–736. 5611:(21): 3811–3826. 5392:(14): 5442–5447. 5143:(19): 5915–5920. 4994:(1470): 869–885. 4854:(7369): 369–373. 4756:(7261): 179–180. 4699:(7261): 250–253. 4640:Nature Geoscience 4590:(5480): 756–758. 4388:978-0-444-51506-3 4175:978-1-139-02055-8 4103:(8020): 335–339. 3961:(7853): 232–236. 3721:978-1-4443-0431-2 3664:(11): 1039–1043. 3487:(5097): 920–926. 3092:"Poisoned Planet" 3015:978-3-319-12414-8 2883:(7488): 307–315. 2797:(1470): 903–915. 2678:Southern Rhodesia 2276:Mineral evolution 1905: 1904: 1889:million years ago 1880: 1879: 1859: 1858: 1835: 1834: 1814: 1813: 1794: 1793: 1786:Andean glaciation 1773: 1772: 1753: 1752: 1733: 1732: 1712: 1711: 1692: 1691: 1672: 1671: 1652: 1651: 1632: 1631: 1612: 1611: 1591: 1590: 1571: 1570: 1550: 1549: 1530: 1529: 1510: 1509: 1490: 1489: 1470: 1469: 1450: 1449: 860:transition metals 745:photodissociation 605:sedimentary units 603:for many ancient 601:depositional ages 464:An atmosphere of 435:greenhouse effect 318:, devastated the 254:great extinctions 208:genetic materials 204:organic compounds 121:Oxygen Revolution 16:(Redirected from 8633: 8591:Paleoproterozoic 8568: 8567: 8558: 8557: 8535:Human extinction 8426:Eocene–Oligocene 8308:Permian–Triassic 8288: 8258:Field of Bullets 8215:Overexploitation 8200:Muller's ratchet 8185:Invasive species 8146: 8134:Pseudoextinction 8129:Local extinction 8068: 8061: 8054: 8045: 7947: 7931: 7924: 7917: 7908: 7903: 7901: 7899: 7868: 7867: 7857: 7820: 7814: 7813: 7811: 7809: 7766: 7760: 7759: 7757: 7755: 7718: 7712: 7711: 7685: 7679: 7678: 7668: 7631: 7620: 7619: 7609: 7599: 7567: 7561: 7560: 7553: 7547: 7546: 7514: 7508: 7507: 7475: 7469: 7468: 7466: 7432: 7426: 7425: 7423: 7421: 7416: 7374: 7368: 7367: 7341: 7335: 7334: 7324: 7292: 7283: 7282: 7272: 7262: 7238: 7227: 7224: 7212: 7202: 7191:10.1130/G36966.1 7162: 7153: 7152: 7141: 7135: 7134: 7106: 7100: 7099: 7089: 7079: 7047: 7041: 7040: 7039:. No. 2746. 7028: 7022: 7021: 7011: 7001: 6969: 6963: 6962: 6936: 6930: 6929: 6918: 6912: 6911: 6884: 6878: 6877: 6867: 6835: 6829: 6828: 6792: 6786: 6785: 6741: 6735: 6734: 6732: 6730: 6721:. Archived from 6710: 6704: 6701: 6700:. 25 April 2013. 6689: 6679: 6645: 6639: 6638: 6636: 6634: 6606:(1): 1064–1070. 6589: 6583: 6582: 6572: 6530: 6524: 6523: 6521: 6519: 6513:10.1038/ngeo2939 6482: 6476: 6475: 6457: 6423: 6417: 6416: 6372: 6363: 6362: 6360: 6358: 6329: 6323: 6322: 6320: 6318: 6290:(9): 1646–1672. 6273: 6267: 6266: 6230: 6224: 6223: 6204:10.1038/359605a0 6179: 6173: 6172: 6162: 6130: 6124: 6123: 6121: 6119: 6081: 6075: 6074: 6072: 6070: 6025: 6019: 6018: 5973: 5967: 5966: 5964: 5962: 5951: 5945: 5944: 5897: 5891: 5890: 5873:(7): 1135–1143. 5867:Economic Geology 5859: 5850: 5849: 5805: 5796: 5795: 5767: 5761: 5760: 5750: 5740: 5708: 5702: 5701: 5657: 5651: 5650: 5638: 5629: 5628: 5600: 5591: 5590: 5584: 5576: 5574: 5572: 5554: 5548: 5547: 5537: 5527: 5493: 5487: 5486: 5483:10.1130/G22360.1 5458: 5452: 5451: 5449: 5447: 5436: 5430: 5429: 5419: 5409: 5377: 5371: 5370: 5360: 5343:(5): 1310–1328. 5328: 5322: 5321: 5319: 5285: 5279: 5278: 5242: 5236: 5235: 5233: 5231: 5194: 5188: 5187: 5185: 5183: 5170: 5160: 5126: 5120: 5119: 5077: 5071: 5070: 5028: 5022: 5021: 5011: 4977: 4968: 4967: 4957: 4918:Science Advances 4909: 4903: 4900: 4887: 4840: 4834: 4833: 4793: 4784: 4783: 4765: 4739: 4733: 4732: 4686: 4680: 4679: 4677: 4675: 4630: 4624: 4623: 4577: 4571: 4570: 4546:Chemical Geology 4539: 4533: 4532: 4502: 4489: 4488: 4486: 4484: 4479: 4437: 4431: 4430: 4402: 4393: 4392: 4362: 4356: 4355: 4338:(2–4): 257–269. 4325: 4319: 4318: 4316: 4291:(3–4): 436–445. 4277: 4271: 4270: 4259:10.1130/b30949.1 4245:(5–6): 813–830. 4226: 4217: 4216: 4186: 4180: 4179: 4149: 4128: 4127: 4125: 4123: 4086: 4080: 4079: 4069: 4029:Science Advances 4019: 4013: 4012: 3986: 3944: 3938: 3937: 3918:10.1130/g49385.1 3895: 3886: 3885: 3875: 3857: 3823: 3817: 3816: 3814: 3782: 3776: 3775: 3744:Chemical Geology 3735: 3726: 3725: 3699: 3690: 3689: 3678:10.1130/G46365.1 3655: 3646: 3640: 3639: 3603: 3590: 3589: 3563: 3557: 3556: 3528: 3513: 3512: 3476: 3459: 3458: 3456: 3454: 3441: 3431: 3414:(7): 1731–1736. 3397: 3391: 3390: 3388: 3386: 3351: 3345: 3344: 3304: 3298: 3297: 3266:Chemical Geology 3257: 3251: 3248: 3236: 3226: 3216: 3199:(5): 1791–1796. 3182: 3176: 3175: 3165: 3147: 3113: 3107: 3106: 3104: 3102: 3087: 3081: 3080: 3078: 3068: 3034: 3028: 3027: 2993: 2987: 2986: 2976: 2958: 2941:(8): 1811–1816. 2926: 2917: 2916: 2872: 2861: 2860: 2831: 2825: 2824: 2814: 2780: 2740:Medea hypothesis 2699: 2698: 2654:nuclear membrane 2617:Oxidative stress 2455:Palæoproterozoic 2318: 2315: 2308: 2305: 2157:Tectonic trigger 2150:serpentinization 2076:likely produced 2059:Nutrient famines 1999: 1994: 1993: 1990: 1968: 1966: 1956: 1954: 1925: 1922: 1917: 1866: 1861: 1842: 1837: 1821: 1816: 1801: 1796: 1780: 1775: 1760: 1755: 1740: 1735: 1719: 1714: 1705:Earliest animals 1699: 1694: 1679: 1674: 1659: 1654: 1639: 1634: 1619: 1614: 1598: 1593: 1578: 1573: 1557: 1552: 1537: 1532: 1517: 1512: 1503:Earliest fossils 1497: 1492: 1477: 1472: 1457: 1452: 1437: 1432: 1411: 1380: 1342: 1340: 1314: 1312: 1219: 1112: 1107: 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1067: 1062: 1057: 1052: 1047: 1042: 1037: 1032: 1027: 1022: 1017: 1012: 1007: 1002: 997: 992: 987: 982: 977: 972: 967: 962: 957: 952: 947: 942: 937: 932: 920: 913: 906: 900: 890: 883: 854:Other indicators 828:chemical fossils 826:, also known as 713:hydrogen sulfide 698:Black laminated 629:geological event 581:Paleoproterozoic 573:Heinrich Holland 511: 500: 492: 485: 477: 470: 456: 455: 454: 439:greenhouse gases 432: 421: 410: 399: 377:Paleoclimatology 361:Early atmosphere 308:hydrogen sulfide 283:, which evolved 266:sulfate minerals 137:Paleoproterozoic 129:Oxygen Holocaust 55:build-up in the 21: 8641: 8640: 8636: 8635: 8634: 8632: 8631: 8630: 8581: 8580: 8579: 8574: 8546: 8503: 8472: 8455:Extinct species 8445: 8401:Carnian Pluvial 8346:Great Oxidation 8334: 8277: 8243:Extinction debt 8235: 8229: 8180:Genetic erosion 8163: 8147: 8138: 8077: 8072: 8042: 8037: 8032: 8011: 7990: 7940: 7938:Proterozoic Eon 7935: 7897: 7895: 7879: 7876: 7871: 7822: 7821: 7817: 7807: 7805: 7795:10.1002/gj.2486 7768: 7767: 7763: 7753: 7751: 7720: 7719: 7715: 7708: 7687: 7686: 7682: 7633: 7632: 7623: 7569: 7568: 7564: 7555: 7554: 7550: 7516: 7515: 7511: 7477: 7476: 7472: 7434: 7433: 7429: 7419: 7417: 7376: 7375: 7371: 7364: 7343: 7342: 7338: 7301:Proc. Biol. Sci 7294: 7293: 7286: 7240: 7239: 7230: 7215: 7177:(10): 887–890. 7164: 7163: 7156: 7143: 7142: 7138: 7108: 7107: 7103: 7049: 7048: 7044: 7030: 7029: 7025: 6971: 6970: 6966: 6959: 6938: 6937: 6933: 6920: 6919: 6915: 6886: 6885: 6881: 6837: 6836: 6832: 6794: 6793: 6789: 6743: 6742: 6738: 6728: 6726: 6712: 6711: 6707: 6692: 6647: 6646: 6642: 6632: 6630: 6591: 6590: 6586: 6532: 6531: 6527: 6517: 6515: 6484: 6483: 6479: 6455:10.1038/431913a 6425: 6424: 6420: 6374: 6373: 6366: 6356: 6354: 6331: 6330: 6326: 6316: 6314: 6275: 6274: 6270: 6232: 6231: 6227: 6181: 6180: 6176: 6132: 6131: 6127: 6117: 6115: 6083: 6082: 6078: 6068: 6066: 6027: 6026: 6022: 5975: 5974: 5970: 5960: 5958: 5953: 5952: 5948: 5899: 5898: 5894: 5861: 5860: 5853: 5807: 5806: 5799: 5769: 5768: 5764: 5710: 5709: 5705: 5659: 5658: 5654: 5640: 5639: 5632: 5602: 5601: 5594: 5577: 5570: 5568: 5556: 5555: 5551: 5495: 5494: 5490: 5460: 5459: 5455: 5445: 5443: 5438: 5437: 5433: 5379: 5378: 5374: 5330: 5329: 5325: 5287: 5286: 5282: 5244: 5243: 5239: 5229: 5227: 5196: 5195: 5191: 5181: 5179: 5128: 5127: 5123: 5079: 5078: 5074: 5030: 5029: 5025: 4979: 4978: 4971: 4924:(9): eaax1420. 4911: 4910: 4906: 4890: 4842: 4841: 4837: 4799: 4795: 4794: 4787: 4763:10.1038/461179a 4741: 4740: 4736: 4688: 4687: 4683: 4673: 4671: 4632: 4631: 4627: 4579: 4578: 4574: 4541: 4540: 4536: 4504: 4503: 4492: 4482: 4480: 4439: 4438: 4434: 4404: 4403: 4396: 4389: 4364: 4363: 4359: 4327: 4326: 4322: 4279: 4278: 4274: 4234: 4228: 4227: 4220: 4188: 4187: 4183: 4176: 4151: 4150: 4131: 4121: 4119: 4088: 4087: 4083: 4036:(5): e1600134. 4021: 4020: 4016: 3946: 3945: 3941: 3897: 3896: 3889: 3825: 3824: 3820: 3784: 3783: 3779: 3737: 3736: 3729: 3722: 3701: 3700: 3693: 3653: 3648: 3647: 3643: 3605: 3604: 3593: 3586: 3565: 3564: 3560: 3530: 3529: 3516: 3478: 3477: 3462: 3452: 3450: 3399: 3398: 3394: 3384: 3382: 3353: 3352: 3348: 3313:Current Biology 3306: 3305: 3301: 3259: 3258: 3254: 3239: 3184: 3183: 3179: 3115: 3114: 3110: 3100: 3098: 3089: 3088: 3084: 3036: 3035: 3031: 3016: 2995: 2994: 2990: 2928: 2927: 2920: 2874: 2873: 2864: 2857: 2833: 2832: 2828: 2782: 2781: 2777: 2773: 2718: 2696: 2695: 2674:Lomagundi event 2666: 2604: 2588: 2583: 2582: 2581: 2574: 2573: 2572: 2567: 2566: 2561: 2560: 2555: 2554: 2549: 2548: 2543: 2542: 2537: 2536: 2531: 2530: 2525: 2524: 2519: 2518: 2513: 2512: 2507: 2506: 2501: 2500: 2494: 2493: 2492: 2491: 2486: 2485: 2484: 2479: 2478: 2477: 2472: 2471: 2470: 2465: 2464: 2463: 2462:Mesoproterozoic 2458: 2457: 2456: 2450: 2449: 2448: 2447: 2446: 2445: 2444: 2443: 2436: 2435: 2434: 2427: 2426: 2425: 2418: 2417: 2416: 2409: 2408: 2407: 2400: 2399: 2398: 2391: 2390: 2389: 2382: 2381: 2380: 2373: 2372: 2371: 2364: 2363: 2362: 2355: 2354: 2353: 2346: 2345: 2344: 2337: 2336: 2335: 2324: 2321: 2320: 2319: 2316: 2313: 2310: 2309: 2306: 2303: 2278: 2272: 2224: 2210: 2185: 2159: 2141: 2139:Decreasing sink 2132: 2130:Increasing flux 2123: 2102:enzyme cofactor 2087: 2070: 2061: 2052:molecular clock 2026: 2019: 2011: 2007: 1998: 1991: 1988: 1987: 1985: 1983: 1972: 1964: 1962: 1960: 1952: 1950: 1948: 1933: 1929: 1923: 1915: 1913: 1901: 1900: 1892: 1876: 1875: 1864: 1855: 1854: 1840: 1831: 1830: 1819: 1810: 1809: 1799: 1790: 1789: 1778: 1769: 1768: 1758: 1749: 1748: 1746:Ediacaran biota 1738: 1729: 1728: 1717: 1708: 1707: 1697: 1688: 1687: 1685:Earliest plants 1677: 1668: 1667: 1657: 1648: 1647: 1637: 1628: 1627: 1617: 1608: 1607: 1596: 1587: 1586: 1576: 1567: 1566: 1555: 1546: 1545: 1543:Earliest oxygen 1535: 1526: 1525: 1515: 1506: 1505: 1495: 1486: 1485: 1475: 1466: 1465: 1455: 1446: 1445: 1435: 1428: 1427: 1426: 1421: 1420: 1419: 1414: 1413: 1412: 1408: 1406: 1404: 1402: 1400: 1398: 1396: 1394: 1392: 1390: 1387: 1383: 1382: 1381: 1377: 1375: 1373: 1371: 1369: 1367: 1365: 1363: 1361: 1359: 1357: 1356: 1355: 1354: 1353: 1352: 1351: 1349: 1345: 1344: 1343: 1338: 1336: 1334: 1332: 1330: 1328: 1326: 1325: 1324: 1323: 1321: 1317: 1316: 1315: 1310: 1308: 1306: 1304: 1302: 1300: 1298: 1294: 1293: 1292: 1285: 1284: 1283: 1276: 1275: 1274: 1267: 1266: 1265: 1260: 1259: 1258: 1251: 1250: 1249: 1242: 1241: 1240: 1230: 1229: 1228: 1223: 1222: 1221: 1217: 1215: 1213: 1211: 1209: 1207: 1202: 1201: 1200: 1195: 1194: 1193: 1186: 1185: 1184: 1179: 1178: 1177: 1170: 1169: 1168: 1163: 1162: 1161: 1154: 1153: 1152: 1147: 1146: 1145: 1138: 1137: 1136: 1131: 1130: 1129: 1122: 1121: 1120: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 948: 945: 943: 940: 938: 935: 933: 930: 924: 898: 892: 888: 881: 875: 856: 800: 794: 776: 772: 733: 696: 694:Iron speciation 665: 637: 625: 510: 506: 498: 495:carbon monoxide 491: 487: 483: 479: 476: 472: 469: 465: 453: 450: 449: 448: 446: 431: 427: 420: 416: 409: 405: 398: 394: 383: 373: 367:Paleoatmosphere 365:Main articles: 363: 250:mass extinction 176: 99: 95: 84: 77: 70: 66: 54: 35: 28: 23: 22: 15: 12: 11: 5: 8639: 8637: 8629: 8628: 8623: 8618: 8613: 8608: 8603: 8598: 8596:Origin of life 8593: 8583: 8582: 8576: 8575: 8573: 8572: 8562: 8551: 8548: 8547: 8545: 8544: 8537: 8532: 8527: 8522: 8517: 8511: 8509: 8505: 8504: 8502: 8501: 8496: 8491: 8486: 8480: 8478: 8474: 8473: 8471: 8470: 8465: 8459: 8457: 8451: 8450: 8447: 8446: 8444: 8443: 8438: 8433: 8431:Middle Miocene 8428: 8423: 8418: 8413: 8408: 8403: 8398: 8396:End-Capitanian 8393: 8388: 8383: 8378: 8373: 8368: 8363: 8358: 8353: 8348: 8342: 8340: 8336: 8335: 8333: 8332: 8331: 8330: 8320: 8315: 8310: 8305: 8300: 8294: 8292: 8285: 8279: 8278: 8276: 8275: 8270: 8265: 8260: 8255: 8250: 8245: 8239: 8237: 8231: 8230: 8228: 8227: 8222: 8217: 8212: 8207: 8202: 8197: 8192: 8187: 8182: 8177: 8171: 8169: 8165: 8164: 8162: 8161: 8155: 8153: 8149: 8148: 8141: 8139: 8137: 8136: 8131: 8126: 8121: 8116: 8111: 8106: 8101: 8096: 8091: 8085: 8083: 8079: 8078: 8073: 8071: 8070: 8063: 8056: 8048: 8039: 8038: 8034: 8033: 8031: 8030: 8025: 8020: 8014: 8012: 8010: 8009: 8004: 7999: 7993: 7991: 7989: 7988: 7983: 7978: 7973: 7967: 7964: 7963: 7958: 7953: 7945: 7942: 7941: 7936: 7934: 7933: 7926: 7919: 7911: 7905: 7904: 7875: 7874:External links 7872: 7870: 7869: 7815: 7781:(5): 467–483. 7761: 7713: 7706: 7680: 7643:(4): 302–306. 7621: 7562: 7548: 7529:(4): 449–455. 7509: 7470: 7427: 7369: 7362: 7336: 7284: 7228: 7226: 7225: 7154: 7136: 7101: 7042: 7023: 6964: 6957: 6931: 6913: 6879: 6850:(8): 564–570. 6830: 6803:(4): 239–269. 6787: 6736: 6705: 6703: 6702: 6640: 6584: 6525: 6499:(1): 387–392. 6477: 6418: 6364: 6324: 6268: 6241:(4): 275–316. 6225: 6174: 6125: 6076: 6042:(4): 296–300. 6020: 5968: 5946: 5892: 5851: 5797: 5762: 5703: 5652: 5630: 5592: 5549: 5488: 5453: 5431: 5372: 5323: 5280: 5253:(1): 717–746. 5237: 5189: 5121: 5072: 5023: 4969: 4904: 4902: 4901: 4835: 4797: 4785: 4734: 4681: 4647:(5): 375–380. 4625: 4572: 4534: 4515:(1): 507–534. 4490: 4432: 4413:(2): 107–112. 4394: 4387: 4357: 4320: 4272: 4232: 4218: 4199:(2): 213–221. 4181: 4174: 4129: 4081: 4014: 3939: 3912:(2): 158–162. 3887: 3818: 3777: 3727: 3720: 3691: 3641: 3591: 3584: 3558: 3539:(3): 235–264. 3514: 3460: 3392: 3346: 3299: 3252: 3250: 3249: 3177: 3108: 3082: 3029: 3014: 2988: 2918: 2862: 2855: 2835:Margulis, Lynn 2826: 2774: 2772: 2769: 2768: 2767: 2761: 2755: 2749: 2743: 2737: 2731: 2725: 2722:Boring Billion 2717: 2714: 2707:Wyoming Craton 2665: 2662: 2603: 2600: 2587: 2584: 2575: 2570: 2568: 2564: 2562: 2558: 2556: 2552: 2550: 2546: 2544: 2540: 2538: 2534: 2532: 2528: 2526: 2522: 2520: 2516: 2514: 2510: 2508: 2504: 2502: 2498: 2496: 2495: 2489: 2488: 2487: 2482: 2481: 2480: 2475: 2474: 2473: 2469:Neoproterozoic 2468: 2467: 2466: 2461: 2460: 2459: 2454: 2453: 2452: 2451: 2439: 2438: 2437: 2430: 2429: 2428: 2421: 2420: 2419: 2412: 2411: 2410: 2403: 2402: 2401: 2394: 2393: 2392: 2385: 2384: 2383: 2376: 2375: 2374: 2367: 2366: 2365: 2358: 2357: 2356: 2349: 2348: 2347: 2340: 2339: 2338: 2331: 2330: 2329: 2328: 2327: 2326: 2325: 2323: 2322: 2312: 2311: 2302: 2301: 2300: 2299: 2298: 2274:Main article: 2271: 2268: 2267: 2266: 2254:organic matter 2240: 2239: 2223: 2220: 2209: 2206: 2184: 2181: 2158: 2155: 2146:volcanic gases 2140: 2137: 2131: 2128: 2122: 2119: 2085: 2082:carbon dioxide 2069: 2066: 2060: 2057: 2025: 2022: 2017: 2009: 2005: 1981: 1970: 1958: 1946: 1931: 1927: 1903: 1902: 1893: 1886: 1885: 1882: 1881: 1878: 1877: 1870: 1869: 1867: 1857: 1856: 1846: 1845: 1843: 1833: 1832: 1825: 1824: 1822: 1812: 1811: 1805: 1804: 1802: 1792: 1791: 1784: 1783: 1781: 1771: 1770: 1764: 1763: 1761: 1751: 1750: 1744: 1743: 1741: 1731: 1730: 1723: 1722: 1720: 1710: 1709: 1703: 1702: 1700: 1690: 1689: 1683: 1682: 1680: 1670: 1669: 1665:Earliest fungi 1663: 1662: 1660: 1650: 1649: 1643: 1642: 1640: 1630: 1629: 1623: 1622: 1620: 1610: 1609: 1602: 1601: 1599: 1589: 1588: 1582: 1581: 1579: 1569: 1568: 1561: 1560: 1558: 1548: 1547: 1541: 1540: 1538: 1528: 1527: 1523:LHB meteorites 1521: 1520: 1518: 1508: 1507: 1501: 1500: 1498: 1488: 1487: 1481: 1480: 1478: 1468: 1467: 1463:Earliest water 1461: 1460: 1458: 1448: 1447: 1441: 1440: 1438: 1429: 1424: 1423: 1422: 1417: 1416: 1415: 1386: 1385: 1384: 1348: 1347: 1346: 1320: 1319: 1318: 1297: 1296: 1295: 1288: 1287: 1286: 1279: 1278: 1277: 1270: 1269: 1268: 1263: 1262: 1261: 1254: 1253: 1252: 1245: 1244: 1243: 1233: 1232: 1231: 1226: 1225: 1224: 1205: 1204: 1203: 1198: 1197: 1196: 1189: 1188: 1187: 1182: 1181: 1180: 1173: 1172: 1171: 1166: 1165: 1164: 1159:Photosynthesis 1157: 1156: 1155: 1150: 1149: 1148: 1141: 1140: 1139: 1134: 1133: 1132: 1125: 1124: 1123: 1118: 1117: 1116: 1114: 1111:0 — 1109: 1104: 1099: 1094: 1089: 1084: 1079: 1074: 1069: 1064: 1059: 1054: 1049: 1044: 1039: 1034: 1029: 1024: 1019: 1014: 1009: 1004: 999: 994: 989: 984: 979: 974: 969: 964: 959: 954: 949: 944: 939: 934: 929: 926: 925: 923: 922: 915: 908: 897: 894: 893: 886: 874: 871: 855: 852: 793: 790: 774: 770: 732: 729: 695: 692: 664: 661: 636: 633: 624: 621: 518:photosynthesis 451: 402:carbon dioxide 362: 359: 335:proteobacteria 320:microbial mats 189:photosynthesis 174: 165:. Geological, 98: 97: 93: 90: 82: 79: 75: 72: 68: 64: 60: 52: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8638: 8627: 8624: 8622: 8619: 8617: 8614: 8612: 8609: 8607: 8604: 8602: 8599: 8597: 8594: 8592: 8589: 8588: 8586: 8571: 8563: 8561: 8553: 8552: 8549: 8543: 8542: 8538: 8536: 8533: 8531: 8528: 8526: 8523: 8521: 8518: 8516: 8513: 8512: 8510: 8506: 8500: 8497: 8495: 8492: 8490: 8487: 8485: 8482: 8481: 8479: 8477:Organizations 8475: 8469: 8466: 8464: 8461: 8460: 8458: 8456: 8452: 8442: 8439: 8437: 8434: 8432: 8429: 8427: 8424: 8422: 8419: 8417: 8414: 8412: 8409: 8407: 8404: 8402: 8399: 8397: 8394: 8392: 8389: 8387: 8386:Carboniferous 8384: 8382: 8379: 8377: 8374: 8372: 8369: 8367: 8364: 8362: 8359: 8357: 8354: 8352: 8351:End-Ediacaran 8349: 8347: 8344: 8343: 8341: 8337: 8329: 8326: 8325: 8324: 8321: 8319: 8316: 8314: 8311: 8309: 8306: 8304: 8303:Late Devonian 8301: 8299: 8296: 8295: 8293: 8289: 8286: 8284: 8280: 8274: 8273:Living fossil 8271: 8269: 8266: 8264: 8261: 8259: 8256: 8254: 8251: 8249: 8246: 8244: 8241: 8240: 8238: 8232: 8226: 8223: 8221: 8218: 8216: 8213: 8211: 8208: 8206: 8203: 8201: 8198: 8196: 8193: 8191: 8188: 8186: 8183: 8181: 8178: 8176: 8173: 8172: 8170: 8166: 8160: 8157: 8156: 8154: 8150: 8145: 8135: 8132: 8130: 8127: 8125: 8124:Lazarus taxon 8122: 8120: 8117: 8115: 8112: 8110: 8107: 8105: 8102: 8100: 8099:De-extinction 8097: 8095: 8092: 8090: 8087: 8086: 8084: 8080: 8076: 8069: 8064: 8062: 8057: 8055: 8050: 8049: 8046: 8029: 8026: 8024: 8021: 8019: 8016: 8015: 8013: 8008: 8005: 8003: 8000: 7998: 7995: 7994: 7992: 7987: 7984: 7982: 7979: 7977: 7974: 7972: 7969: 7968: 7966: 7965: 7962: 7959: 7957: 7954: 7952: 7949: 7948: 7943: 7939: 7932: 7927: 7925: 7920: 7918: 7913: 7912: 7909: 7893: 7889: 7888: 7887:New Scientist 7883: 7878: 7877: 7873: 7865: 7861: 7856: 7851: 7847: 7843: 7839: 7835: 7831: 7827: 7819: 7816: 7804: 7800: 7796: 7792: 7788: 7784: 7780: 7776: 7772: 7765: 7762: 7750: 7746: 7742: 7738: 7734: 7730: 7729: 7724: 7717: 7714: 7709: 7703: 7699: 7695: 7691: 7684: 7681: 7676: 7672: 7667: 7662: 7658: 7654: 7650: 7646: 7642: 7638: 7630: 7628: 7626: 7622: 7617: 7613: 7608: 7603: 7598: 7593: 7589: 7585: 7581: 7577: 7573: 7566: 7563: 7558: 7552: 7549: 7544: 7540: 7536: 7532: 7528: 7524: 7520: 7513: 7510: 7505: 7501: 7497: 7493: 7489: 7485: 7481: 7474: 7471: 7465: 7460: 7456: 7452: 7448: 7444: 7443: 7438: 7431: 7428: 7415: 7410: 7406: 7402: 7398: 7394: 7390: 7386: 7385: 7380: 7373: 7370: 7365: 7359: 7355: 7351: 7347: 7340: 7337: 7332: 7328: 7323: 7318: 7314: 7310: 7306: 7302: 7298: 7291: 7289: 7285: 7280: 7276: 7271: 7266: 7261: 7256: 7252: 7248: 7244: 7237: 7235: 7233: 7229: 7222: 7218: 7214: 7213: 7210: 7206: 7201: 7196: 7192: 7188: 7184: 7180: 7176: 7172: 7168: 7161: 7159: 7155: 7151:. March 2010. 7150: 7146: 7140: 7137: 7132: 7128: 7124: 7120: 7116: 7112: 7105: 7102: 7097: 7093: 7088: 7083: 7078: 7073: 7069: 7065: 7061: 7057: 7053: 7046: 7043: 7038: 7037:New Scientist 7034: 7027: 7024: 7019: 7015: 7010: 7005: 7000: 6995: 6991: 6987: 6983: 6979: 6975: 6968: 6965: 6960: 6954: 6950: 6946: 6942: 6935: 6932: 6927: 6923: 6917: 6914: 6909: 6905: 6901: 6897: 6893: 6889: 6883: 6880: 6875: 6871: 6866: 6861: 6857: 6853: 6849: 6845: 6841: 6834: 6831: 6826: 6822: 6818: 6814: 6810: 6806: 6802: 6798: 6791: 6788: 6783: 6779: 6775: 6771: 6767: 6763: 6759: 6755: 6751: 6747: 6740: 6737: 6724: 6720: 6716: 6709: 6706: 6699: 6695: 6691: 6690: 6687: 6683: 6678: 6673: 6669: 6665: 6661: 6657: 6656: 6651: 6644: 6641: 6629: 6625: 6621: 6617: 6613: 6609: 6605: 6601: 6600: 6595: 6588: 6585: 6580: 6576: 6571: 6566: 6562: 6558: 6554: 6550: 6546: 6542: 6541: 6536: 6529: 6526: 6514: 6510: 6506: 6502: 6498: 6494: 6493: 6488: 6481: 6478: 6473: 6469: 6465: 6461: 6456: 6451: 6447: 6443: 6440:(7011): 913. 6439: 6435: 6434: 6429: 6422: 6419: 6414: 6410: 6406: 6402: 6398: 6394: 6390: 6386: 6382: 6378: 6371: 6369: 6365: 6353: 6349: 6345: 6341: 6340: 6335: 6328: 6325: 6313: 6309: 6305: 6301: 6297: 6293: 6289: 6285: 6284: 6279: 6272: 6269: 6264: 6260: 6256: 6252: 6248: 6244: 6240: 6236: 6229: 6226: 6221: 6217: 6213: 6209: 6205: 6201: 6197: 6193: 6189: 6185: 6178: 6175: 6170: 6166: 6161: 6156: 6152: 6148: 6144: 6140: 6136: 6129: 6126: 6114: 6110: 6106: 6102: 6098: 6094: 6093: 6088: 6080: 6077: 6065: 6061: 6057: 6053: 6049: 6045: 6041: 6037: 6036: 6031: 6024: 6021: 6016: 6012: 6008: 6004: 6000: 5996: 5992: 5988: 5984: 5980: 5972: 5969: 5956: 5950: 5947: 5942: 5938: 5934: 5930: 5926: 5922: 5918: 5914: 5910: 5906: 5902: 5896: 5893: 5888: 5884: 5880: 5876: 5872: 5868: 5864: 5858: 5856: 5852: 5847: 5843: 5839: 5835: 5831: 5827: 5823: 5819: 5815: 5811: 5804: 5802: 5798: 5793: 5789: 5785: 5781: 5778:(1–2): 1–20. 5777: 5773: 5766: 5763: 5758: 5754: 5749: 5744: 5739: 5734: 5730: 5726: 5722: 5718: 5714: 5707: 5704: 5699: 5695: 5691: 5687: 5683: 5679: 5675: 5671: 5667: 5663: 5656: 5653: 5648: 5644: 5637: 5635: 5631: 5626: 5622: 5618: 5614: 5610: 5606: 5599: 5597: 5593: 5588: 5582: 5566: 5565: 5560: 5553: 5550: 5545: 5541: 5536: 5531: 5526: 5521: 5517: 5513: 5510:(3): e00548. 5509: 5505: 5504: 5499: 5492: 5489: 5484: 5480: 5476: 5472: 5468: 5464: 5457: 5454: 5441: 5435: 5432: 5427: 5423: 5418: 5413: 5408: 5403: 5399: 5395: 5391: 5387: 5383: 5376: 5373: 5368: 5364: 5359: 5354: 5350: 5346: 5342: 5338: 5334: 5327: 5324: 5318: 5313: 5309: 5305: 5301: 5297: 5296: 5291: 5284: 5281: 5276: 5272: 5268: 5264: 5260: 5256: 5252: 5248: 5241: 5238: 5226: 5222: 5218: 5214: 5210: 5206: 5205: 5200: 5193: 5190: 5178: 5174: 5169: 5164: 5159: 5154: 5150: 5146: 5142: 5138: 5137: 5132: 5125: 5122: 5117: 5113: 5109: 5105: 5101: 5097: 5093: 5089: 5088: 5083: 5076: 5073: 5068: 5064: 5060: 5056: 5052: 5048: 5044: 5040: 5039: 5034: 5027: 5024: 5019: 5015: 5010: 5005: 5001: 4997: 4993: 4989: 4988: 4983: 4976: 4974: 4970: 4965: 4961: 4956: 4951: 4947: 4943: 4939: 4935: 4931: 4927: 4923: 4919: 4915: 4908: 4905: 4898: 4894: 4889: 4888: 4885: 4881: 4877: 4873: 4869: 4865: 4861: 4857: 4853: 4849: 4848: 4839: 4836: 4831: 4827: 4823: 4819: 4815: 4811: 4807: 4803: 4792: 4790: 4786: 4781: 4777: 4773: 4769: 4764: 4759: 4755: 4751: 4750: 4745: 4738: 4735: 4730: 4726: 4722: 4718: 4714: 4710: 4706: 4702: 4698: 4694: 4693: 4685: 4682: 4670: 4666: 4662: 4658: 4654: 4650: 4646: 4642: 4641: 4636: 4629: 4626: 4621: 4617: 4613: 4609: 4605: 4601: 4597: 4593: 4589: 4585: 4584: 4576: 4573: 4568: 4564: 4560: 4556: 4552: 4548: 4547: 4538: 4535: 4530: 4526: 4522: 4518: 4514: 4510: 4509: 4501: 4499: 4497: 4495: 4491: 4478: 4473: 4469: 4465: 4461: 4457: 4453: 4449: 4448: 4443: 4436: 4433: 4428: 4424: 4420: 4416: 4412: 4408: 4401: 4399: 4395: 4390: 4384: 4380: 4376: 4372: 4368: 4361: 4358: 4353: 4349: 4345: 4341: 4337: 4333: 4332: 4324: 4321: 4315: 4310: 4306: 4302: 4298: 4294: 4290: 4286: 4285: 4276: 4273: 4268: 4264: 4260: 4256: 4252: 4248: 4244: 4240: 4236: 4225: 4223: 4219: 4214: 4210: 4206: 4202: 4198: 4194: 4193: 4185: 4182: 4177: 4171: 4167: 4163: 4159: 4156:. Cambridge: 4155: 4148: 4146: 4144: 4142: 4140: 4138: 4136: 4134: 4130: 4118: 4114: 4110: 4106: 4102: 4098: 4097: 4092: 4085: 4082: 4077: 4073: 4068: 4063: 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4031: 4030: 4025: 4018: 4015: 4010: 4006: 4002: 3998: 3994: 3990: 3985: 3980: 3976: 3972: 3968: 3964: 3960: 3956: 3955: 3950: 3943: 3940: 3935: 3931: 3927: 3923: 3919: 3915: 3911: 3907: 3906: 3901: 3894: 3892: 3888: 3883: 3879: 3874: 3869: 3865: 3861: 3856: 3851: 3847: 3843: 3839: 3835: 3834: 3829: 3822: 3819: 3813: 3808: 3804: 3800: 3797:(2): 100036. 3796: 3792: 3788: 3781: 3778: 3773: 3769: 3765: 3761: 3757: 3753: 3749: 3745: 3741: 3734: 3732: 3728: 3723: 3717: 3713: 3709: 3705: 3698: 3696: 3692: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3659: 3652: 3645: 3642: 3637: 3633: 3629: 3625: 3621: 3617: 3613: 3609: 3602: 3600: 3598: 3596: 3592: 3587: 3585:9780080983004 3581: 3577: 3573: 3569: 3562: 3559: 3554: 3550: 3546: 3542: 3538: 3534: 3527: 3525: 3523: 3521: 3519: 3515: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3475: 3473: 3471: 3469: 3467: 3465: 3461: 3449: 3445: 3440: 3435: 3430: 3425: 3421: 3417: 3413: 3409: 3408: 3403: 3396: 3393: 3381: 3377: 3373: 3369: 3365: 3361: 3357: 3350: 3347: 3342: 3338: 3334: 3330: 3326: 3322: 3318: 3314: 3310: 3303: 3300: 3295: 3291: 3287: 3283: 3279: 3275: 3271: 3267: 3263: 3256: 3253: 3246: 3242: 3238: 3237: 3234: 3230: 3225: 3220: 3215: 3210: 3206: 3202: 3198: 3194: 3193: 3188: 3181: 3178: 3173: 3169: 3164: 3159: 3155: 3151: 3146: 3141: 3137: 3133: 3129: 3125: 3124: 3119: 3112: 3109: 3097: 3093: 3086: 3083: 3077: 3072: 3067: 3062: 3058: 3054: 3050: 3046: 3045: 3040: 3033: 3030: 3025: 3021: 3017: 3011: 3007: 3003: 2999: 2992: 2989: 2984: 2980: 2975: 2970: 2966: 2962: 2957: 2952: 2948: 2944: 2940: 2936: 2932: 2925: 2923: 2919: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2886: 2882: 2878: 2871: 2869: 2867: 2863: 2858: 2856:9780520210646 2852: 2848: 2844: 2840: 2839:Sagan, Dorion 2836: 2830: 2827: 2822: 2818: 2813: 2808: 2804: 2800: 2796: 2792: 2791: 2786: 2779: 2776: 2770: 2765: 2762: 2759: 2756: 2753: 2750: 2747: 2746:Pasteur point 2744: 2741: 2738: 2735: 2732: 2729: 2726: 2723: 2720: 2719: 2715: 2713: 2710: 2708: 2704: 2700: 2692: 2687: 2683: 2679: 2675: 2671: 2663: 2661: 2657: 2655: 2650: 2646: 2642: 2638: 2634: 2633:recombination 2630: 2626: 2622: 2618: 2614: 2610: 2601: 2599: 2597: 2593: 2585: 2579: 2442: 2433: 2424: 2415: 2406: 2397: 2388: 2379: 2378:Carboniferous 2370: 2361: 2352: 2343: 2334: 2297: 2295: 2291: 2287: 2283: 2277: 2269: 2263: 2259: 2255: 2252:recycling of 2250: 2249: 2244: 2237: 2233: 2229: 2228: 2227: 2221: 2219: 2216: 2207: 2205: 2203: 2199: 2194: 2193:steady states 2190: 2182: 2180: 2177: 2171: 2163: 2156: 2154: 2151: 2147: 2138: 2136: 2129: 2127: 2120: 2118: 2116: 2112: 2107: 2106:Earth's crust 2103: 2099: 2095: 2091: 2083: 2079: 2075: 2068:Nickel famine 2067: 2065: 2058: 2056: 2053: 2049: 2043: 2040: 2035: 2031: 2023: 2021: 2015: 2003: 1978: 1976: 1967:1.2 Tmol 1955:3.3 Tmol 1944: 1940: 1935: 1921: 1909: 1899: 1898: 1890: 1883: 1873: 1868: 1863: 1862: 1853: 1849: 1848:Earliest apes 1844: 1839: 1838: 1828: 1827:Karoo ice age 1823: 1818: 1817: 1808: 1803: 1798: 1797: 1787: 1782: 1777: 1776: 1767: 1762: 1757: 1756: 1747: 1742: 1737: 1736: 1726: 1721: 1716: 1715: 1706: 1701: 1696: 1695: 1686: 1681: 1676: 1675: 1666: 1661: 1656: 1655: 1646: 1641: 1636: 1635: 1626: 1621: 1616: 1615: 1605: 1600: 1595: 1594: 1585: 1580: 1575: 1574: 1564: 1559: 1554: 1553: 1544: 1539: 1534: 1533: 1524: 1519: 1514: 1513: 1504: 1499: 1494: 1493: 1484: 1479: 1474: 1473: 1464: 1459: 1454: 1453: 1444: 1439: 1434: 1433: 1430: 1410: 1379: 1341: 1313: 1291: 1282: 1273: 1257: 1248: 1239: 1236: 1220: 1192: 1176: 1160: 1144: 1128: 1115: 928: 927: 921: 916: 914: 909: 907: 902: 901: 895: 891: 889:Life timeline 884: 880: 872: 870: 868: 864: 861: 853: 851: 849: 844: 841: 837: 833: 829: 825: 820: 817: 813: 812:stromatolites 809: 805: 799: 791: 789: 787: 783: 778: 768: 767:sulfuric acid 763: 757: 754: 750: 746: 740: 738: 730: 728: 724: 722: 716: 714: 709: 705: 701: 693: 691: 689: 685: 681: 677: 673: 669: 662: 660: 657: 653: 649: 645: 641: 634: 632: 630: 622: 620: 618: 614: 610: 606: 602: 598: 594: 590: 586: 582: 576: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 529:Preston Cloud 525: 523: 522:cyanobacteria 519: 515: 504: 496: 462: 460: 444: 440: 436: 425: 414: 403: 392: 388: 382: 378: 372: 368: 360: 358: 356: 355:multicellular 352: 348: 344: 340: 336: 333: 329: 328:symbiogenesis 325: 321: 317: 313: 309: 305: 301: 297: 294: 290: 286: 282: 281:cyanobacteria 277: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 228: 224: 220: 216: 213: 209: 205: 200: 198: 194: 190: 187: 183: 180: 172: 168: 164: 160: 156: 153: 149: 145: 141: 138: 134: 130: 126: 125:Oxygen Crisis 122: 118: 114: 110: 106: 91: 88: 80: 73: 62: 61: 58: 49: 41: 37: 33: 19: 8539: 8515:Anthropocene 8356:End-Botomian 8345: 8236:and concepts 8094:Coextinction 7896:. Retrieved 7892:the original 7885: 7829: 7825: 7818: 7806:. Retrieved 7778: 7774: 7764: 7752:. Retrieved 7732: 7726: 7716: 7689: 7683: 7640: 7636: 7579: 7575: 7565: 7551: 7526: 7522: 7512: 7487: 7483: 7473: 7446: 7440: 7430: 7420:17 September 7418:. Retrieved 7388: 7382: 7372: 7345: 7339: 7304: 7300: 7250: 7247:Biol. Direct 7246: 7221:ScienceDaily 7220: 7174: 7170: 7148: 7139: 7117:(1): 31–36. 7114: 7110: 7104: 7059: 7055: 7045: 7036: 7026: 6981: 6977: 6967: 6940: 6934: 6925: 6916: 6891: 6882: 6847: 6843: 6833: 6800: 6796: 6790: 6749: 6745: 6739: 6727:. Retrieved 6723:the original 6718: 6708: 6697: 6659: 6653: 6643: 6631:. Retrieved 6603: 6597: 6587: 6547:(1): 71–76. 6544: 6538: 6528: 6516:. Retrieved 6496: 6490: 6480: 6437: 6431: 6421: 6380: 6376: 6355:. Retrieved 6343: 6337: 6327: 6315:. Retrieved 6287: 6281: 6271: 6238: 6234: 6228: 6187: 6183: 6177: 6142: 6138: 6128: 6116:. Retrieved 6096: 6090: 6079: 6067:. Retrieved 6039: 6033: 6023: 5982: 5978: 5971: 5959:. Retrieved 5949: 5908: 5904: 5895: 5870: 5866: 5813: 5809: 5775: 5771: 5765: 5720: 5716: 5706: 5665: 5661: 5655: 5647:ScienceDaily 5646: 5608: 5604: 5569:. Retrieved 5562: 5552: 5507: 5501: 5491: 5466: 5462: 5456: 5444:. Retrieved 5434: 5389: 5385: 5375: 5340: 5336: 5326: 5299: 5293: 5283: 5250: 5246: 5240: 5228:. Retrieved 5208: 5202: 5192: 5180:. Retrieved 5140: 5134: 5124: 5091: 5085: 5075: 5045:(1): 21–44. 5042: 5036: 5026: 4991: 4985: 4921: 4917: 4907: 4897:Live Science 4896: 4851: 4845: 4838: 4805: 4801: 4753: 4747: 4737: 4696: 4690: 4684: 4672:. Retrieved 4644: 4638: 4628: 4587: 4581: 4575: 4550: 4544: 4537: 4512: 4506: 4481:. Retrieved 4451: 4445: 4435: 4410: 4406: 4370: 4366: 4360: 4335: 4329: 4323: 4288: 4282: 4275: 4242: 4238: 4196: 4190: 4184: 4153: 4120:. Retrieved 4100: 4094: 4084: 4033: 4027: 4017: 3958: 3952: 3942: 3909: 3903: 3837: 3831: 3821: 3794: 3790: 3780: 3747: 3743: 3703: 3661: 3657: 3644: 3611: 3607: 3567: 3561: 3536: 3533:Geochemistry 3532: 3484: 3480: 3451:. Retrieved 3411: 3405: 3395: 3385:25 September 3383:. Retrieved 3366:(1): 27–41. 3363: 3360:Astrobiology 3359: 3349: 3316: 3312: 3302: 3269: 3265: 3255: 3245:ScienceDaily 3244: 3196: 3190: 3180: 3127: 3121: 3111: 3099:. Retrieved 3095: 3085: 3048: 3042: 3032: 2997: 2991: 2938: 2934: 2880: 2876: 2846: 2829: 2794: 2788: 2778: 2764:Stromatolite 2711: 2703:Fennoscandia 2694: 2691:black shales 2673: 2669: 2667: 2658: 2641:mitochondria 2637:endosymbiont 2605: 2592:Lake Fryxell 2589: 2578:Age of Earth 2279: 2262:mitochondria 2225: 2211: 2186: 2172: 2168: 2142: 2133: 2124: 2090:UV radiation 2071: 2062: 2044: 2034:oxygen waste 2027: 1979: 1943:metamorphism 1936: 1910: 1906: 1895: 1583: 1443:Earth formed 879:Oxygen cycle 857: 845: 821: 801: 779: 758: 741: 734: 725: 717: 697: 666: 638: 626: 613:paleontology 597:metamorphism 577: 526: 463: 384: 357:life-forms. 343:mitochondria 339:endosymbiont 337:(which went 300:ferrous iron 278: 238:light energy 206:(especially 201: 148:shallow seas 128: 124: 120: 116: 112: 108: 104: 102: 36: 8361:Dresbachian 7855:10023/23503 7808:12 December 7754:12 December 7735:: 242–261. 7666:10037/19269 7582:(1): 1879. 7490:(1): 1–69. 7414:10037/24808 7200:10092/12361 6662:(1): 1741. 6346:: 202–215. 6317:12 November 6069:11 November 5302:: 109–125. 5211:: 530–551. 4674:20 December 4483:29 December 4477:1874/362652 4454:: 218–235. 3984:10023/24041 3750:: 232–249. 3272:: 200–225. 3076:10481/78482 2625:desiccation 2296:processes. 2258:free energy 2189:bistability 2183:Bistability 2094:methanogens 2050:. Based on 2014:Phanerozoic 899:This box: 753:ozone layer 459:methanogens 341:and became 285:chlorophyll 258:Phanerozoic 223:extirpation 8585:Categories 8441:Quaternary 8075:Extinction 8023:Cryogenian 7986:Statherian 7832:: 105855. 7557:"Research" 7449:: 104398. 7391:: 117501. 6797:Geobiology 6099:: 104352. 5469:(6): 437. 3051:: 117716. 2771:References 2629:DNA repair 2613:eukaryotes 2441:Quaternary 2414:Cretaceous 2351:Ordovician 2202:transition 1235:Arthropods 1175:Eukaryotes 877:See also: 873:Hypotheses 863:molybdenum 832:eukaryotes 824:biomarkers 796:See also: 782:molybdenum 708:lamination 656:sandstones 644:weathering 593:subduction 555:) mineral 375:See also: 347:eukaryotic 324:adaptation 296:photolysis 264:data from 232:that used 219:extinction 85:starts to 8220:Overshoot 8082:Phenomena 8028:Ediacaran 7997:Calymmian 7981:Orosirian 7898:8 October 7864:225636859 7803:140672677 7675:212732729 6908:242885564 6874:236780731 6628:254175442 6357:18 August 6312:250065550 6064:134715298 6015:205216259 5863:Cloud, P. 5581:cite news 5446:26 August 5275:130960654 5182:13 August 5067:0084-6597 4946:2375-2548 4884:205226545 4830:129684672 4780:205049360 4669:146026944 4553:: 48–59. 4314:1912/3068 4267:0016-7606 4122:18 August 4117:0028-0836 4058:2375-2548 4009:232419035 3993:1476-4687 3934:244621056 3926:0091-7613 3864:0027-8424 3686:204258554 3636:128858098 3453:13 August 3294:0009-2541 3154:0027-8424 2965:0027-8424 2476:Palæozoic 2423:Paleogene 2333:Ediacaran 2265:Cambrian. 2213:4.5  2104:. As the 2092:. Modern 2039:sea water 1939:volcanoes 1918:3.3  1256:Dinosaurs 816:Shark Bay 721:Black Sea 680:magnetite 640:Paleosols 541:uraninite 426:. Either 413:volcanism 351:evolution 289:byproduct 270:biosphere 215:biosphere 212:anaerobic 197:oxidizing 186:microbial 142:when the 43:Timescale 8560:Category 8508:See also 8406:Toarcian 8371:Ireviken 8328:Timeline 8323:Holocene 8234:Theories 8002:Ectasian 7976:Rhyacian 7971:Siderian 7616:33767194 7331:29436502 7279:20731852 7209:55557643 7111:Elements 7096:23898193 7018:16061801 6825:11575334 6774:17036001 6698:Phys.org 6686:23612282 6579:31807138 6472:27619682 6464:15496901 6413:37386726 6405:11486082 6263:73687062 6212:11536507 6169:18487128 6007:19360085 5941:37177062 5933:28360281 5757:20884852 5698:25260892 5690:17901330 5571:23 March 5544:29560463 5426:16569695 5367:25657330 5177:25918387 5116:10446042 5018:16754604 4964:32133393 4876:22012395 4822:15961643 4772:19741692 4721:19741707 4620:12287304 4612:10926533 4407:Elements 4076:27386544 4001:33782617 3882:32482849 3772:56300363 3628:12493902 3509:21134564 3501:11536547 3448:26729865 3380:12449853 3341:37827153 3233:23319632 3172:31405980 3024:25707464 2983:28167763 2905:24553238 2841:(1986). 2821:16754606 2716:See also 2705:and the 2686:Rhyacian 2682:Jatulian 2609:archaeal 2490:Cenozoic 2483:Mesozoic 2405:Jurassic 2396:Triassic 2369:Devonian 2360:Silurian 2342:Cambrian 2286:hydrated 2282:minerals 2176:iron ore 2111:icehouse 2096:require 2002:Devonian 1975:red beds 1897:Ice Ages 1290:Primates 1238:Molluscs 840:Steranes 804:Archaean 786:selenium 731:Isotopes 557:hematite 549:red beds 545:siderite 533:detrital 503:hydrogen 391:nitrogen 274:nutrient 230:colonies 227:archaeal 171:dioxygen 167:isotopic 163:Rhyacian 159:Siderian 8570:Commons 8391:Olson's 8007:Stenian 7834:Bibcode 7783:Bibcode 7737:Bibcode 7645:Bibcode 7607:7994803 7584:Bibcode 7531:Bibcode 7492:Bibcode 7451:Bibcode 7393:Bibcode 7322:5829205 7270:2933680 7179:Bibcode 7171:Geology 7119:Bibcode 7087:3746845 7064:Bibcode 7009:1183582 6986:Bibcode 6926:eos.org 6892:Science 6852:Bibcode 6805:Bibcode 6782:4425486 6754:Bibcode 6729:6 April 6664:Bibcode 6608:Bibcode 6570:6894402 6549:Bibcode 6501:Bibcode 6442:Bibcode 6385:Bibcode 6377:Science 6292:Bibcode 6243:Bibcode 6220:4334787 6192:Bibcode 6160:2606766 6101:Bibcode 6044:Bibcode 5987:Bibcode 5961:6 April 5913:Bibcode 5905:Science 5875:Bibcode 5846:5646415 5838:1724303 5818:Bibcode 5810:Science 5780:Bibcode 5748:2964239 5725:Bibcode 5670:Bibcode 5662:Science 5613:Bibcode 5535:5857716 5512:Bibcode 5503:Heliyon 5471:Bibcode 5463:Geology 5417:1459374 5394:Bibcode 5358:4408414 5304:Bibcode 5255:Bibcode 5213:Bibcode 5168:4434754 5145:Bibcode 5096:Bibcode 5087:Science 5047:Bibcode 5009:1578735 4955:7043912 4926:Bibcode 4856:Bibcode 4802:Science 4729:4373201 4701:Bibcode 4649:Bibcode 4592:Bibcode 4583:Science 4555:Bibcode 4517:Bibcode 4456:Bibcode 4415:Bibcode 4340:Bibcode 4293:Bibcode 4247:Bibcode 4201:Bibcode 4067:4928975 4038:Bibcode 3963:Bibcode 3905:Geology 3873:7306805 3842:Bibcode 3799:Bibcode 3752:Bibcode 3666:Bibcode 3658:Geology 3608:Science 3541:Bibcode 3481:Science 3439:4763753 3416:Bibcode 3321:Bibcode 3274:Bibcode 3224:3562814 3201:Bibcode 3163:6717284 3132:Bibcode 3053:Bibcode 2974:5338422 2943:Bibcode 2913:4443958 2885:Bibcode 2812:1578726 2580:= 4,560 2432:Neogene 2387:Permian 2078:methane 1865:← 1841:← 1820:← 1800:← 1779:← 1759:← 1739:← 1718:← 1698:← 1678:← 1658:← 1638:← 1618:← 1597:← 1577:← 1556:← 1536:← 1516:← 1496:← 1476:← 1456:← 1436:← 1272:Mammals 1247:Flowers 1106:– 1101:— 1096:– 1086:– 1081:— 1076:– 1066:– 1061:— 1056:– 1046:– 1041:— 1036:– 1026:– 1021:— 1016:– 1006:– 1001:— 996:– 986:– 981:— 976:– 966:– 961:— 956:– 946:– 941:— 936:– 867:rhenium 836:Pilbara 688:euxinia 652:deltaic 648:fluvial 609:proxies 565:ferrous 501:), and 443:methane 332:aerobic 234:retinal 184:due to 179:Archean 87:gas out 8601:Oxygen 8416:Aptian 8168:Causes 8152:Models 8018:Tonian 7862:  7801:  7704:  7673:  7614:  7604:  7576:Nature 7360:  7329:  7319:  7277:  7267:  7253:: 53. 7207:  7094:  7084:  7016:  7006:  6955:  6906:  6872:  6823:  6780:  6772:  6746:Nature 6684:  6626:  6577:  6567:  6470:  6462:  6433:Nature 6411:  6403:  6310:  6261:  6218:  6210:  6184:Nature 6167:  6157:  6118:19 May 6062:  6013:  6005:  5979:Nature 5939:  5931:  5844:  5836:  5755:  5745:  5696:  5688:  5542:  5532:  5424:  5414:  5365:  5355:  5273:  5230:19 May 5175:  5165:  5114:  5065:  5016:  5006:  4962:  4952:  4944:  4882:  4874:  4847:Nature 4828:  4820:  4778:  4770:  4749:Nature 4727:  4719:  4692:Nature 4667:  4618:  4610:  4385:  4265:  4172:  4115:  4096:Nature 4074:  4064:  4056:  4007:  3999:  3991:  3954:Nature 3932:  3924:  3880:  3870:  3862:  3770:  3718:  3684:  3634:  3626:  3582:  3507:  3499:  3446:  3436:  3378:  3339:  3292:  3231:  3221:  3170:  3160:  3152:  3101:8 July 3022:  3012:  2981:  2971:  2963:  2911:  2903:  2877:Nature 2853:  2819:  2809:  2645:genome 2639:proto- 2290:mantle 2191:: two 2100:as an 2098:nickel 2072:Early 1852:humans 1425:  1418:  1264:  1227:  1199:  1183:  1167:  1151:  1135:  1119:  704:anoxic 700:shales 676:silica 553:ferric 543:, and 537:pyrite 400:, and 304:sulfur 155:oxygen 8376:Mulde 8339:Other 8291:Major 7860:S2CID 7799:S2CID 7671:S2CID 7205:S2CID 6904:S2CID 6870:S2CID 6821:S2CID 6778:S2CID 6633:2 May 6624:S2CID 6518:2 May 6468:S2CID 6409:S2CID 6308:S2CID 6259:S2CID 6216:S2CID 6060:S2CID 6011:S2CID 5937:S2CID 5834:JSTOR 5694:S2CID 5271:S2CID 4880:S2CID 4826:S2CID 4776:S2CID 4725:S2CID 4665:S2CID 4616:S2CID 4005:S2CID 3930:S2CID 3768:S2CID 3682:S2CID 3654:(PDF) 3632:S2CID 3505:S2CID 3096:Slate 2909:S2CID 2541:−1100 2535:−1300 2529:−1500 2523:−1700 2517:−1900 2511:−2100 2505:−2300 2499:−2500 2294:crust 1281:Birds 1127:Water 672:chert 330:with 293:water 244:(see 133:Earth 111:) or 7900:2017 7810:2022 7756:2022 7702:ISBN 7612:PMID 7422:2023 7358:ISBN 7327:PMID 7275:PMID 7092:PMID 7014:PMID 6953:ISBN 6770:PMID 6731:2016 6682:PMID 6635:2023 6575:PMID 6520:2023 6460:PMID 6401:PMID 6359:2024 6319:2022 6208:PMID 6165:PMID 6120:2024 6071:2022 6003:PMID 5963:2016 5929:PMID 5842:PMID 5753:PMID 5686:PMID 5587:link 5573:2018 5540:PMID 5448:2010 5422:PMID 5386:PNAS 5363:PMID 5232:2024 5184:2023 5173:PMID 5112:PMID 5063:ISSN 5014:PMID 4960:PMID 4942:ISSN 4872:PMID 4818:PMID 4768:PMID 4717:PMID 4676:2022 4608:PMID 4485:2022 4383:ISBN 4263:ISSN 4170:ISBN 4124:2024 4113:ISSN 4072:PMID 4054:ISSN 3997:PMID 3989:ISSN 3922:ISSN 3878:PMID 3860:ISSN 3716:ISBN 3624:PMID 3580:ISBN 3497:PMID 3455:2023 3444:PMID 3387:2022 3376:PMID 3337:PMID 3290:ISSN 3229:PMID 3168:PMID 3150:ISSN 3103:2019 3020:PMID 3010:ISBN 2979:PMID 2961:ISSN 2901:PMID 2851:ISBN 2817:PMID 2571:−100 2565:−300 2559:−500 2553:−700 2547:−900 2292:and 1986:FeFe 1969:of O 1957:of O 1951:12.0 1926:of O 1920:Tmol 1914:15.8 1483:LUCA 919:edit 912:talk 905:view 865:and 650:and 595:and 471:and 379:and 369:and 310:and 173:or O 152:free 146:and 103:The 8381:Lau 7850:hdl 7842:doi 7830:347 7791:doi 7745:doi 7733:127 7694:doi 7661:hdl 7653:doi 7602:PMC 7592:doi 7539:doi 7500:doi 7459:doi 7447:240 7409:hdl 7401:doi 7389:584 7350:doi 7317:PMC 7309:doi 7305:285 7265:PMC 7255:doi 7195:hdl 7187:doi 7127:doi 7082:PMC 7072:doi 7060:110 7004:PMC 6994:doi 6982:102 6945:doi 6896:doi 6860:doi 6813:doi 6762:doi 6750:443 6672:doi 6616:doi 6565:PMC 6557:doi 6509:doi 6450:doi 6438:431 6393:doi 6381:293 6348:doi 6344:255 6300:doi 6251:doi 6239:315 6200:doi 6188:359 6155:PMC 6147:doi 6143:363 6109:doi 6097:238 6052:doi 5995:doi 5983:458 5921:doi 5909:355 5883:doi 5826:doi 5814:160 5788:doi 5776:237 5743:PMC 5733:doi 5721:107 5678:doi 5666:317 5621:doi 5530:PMC 5520:doi 5479:doi 5412:PMC 5402:doi 5390:103 5353:PMC 5345:doi 5312:doi 5300:162 5263:doi 5221:doi 5209:298 5163:PMC 5153:doi 5141:112 5104:doi 5092:285 5055:doi 5004:PMC 4996:doi 4992:361 4950:PMC 4934:doi 4864:doi 4852:478 4810:doi 4806:308 4800:". 4758:doi 4754:461 4709:doi 4697:461 4657:doi 4600:doi 4588:289 4563:doi 4551:389 4525:doi 4472:hdl 4464:doi 4452:305 4423:doi 4375:doi 4348:doi 4309:hdl 4301:doi 4289:286 4255:doi 4243:126 4209:doi 4162:doi 4105:doi 4101:631 4062:PMC 4046:doi 3979:hdl 3971:doi 3959:592 3914:doi 3868:PMC 3850:doi 3838:117 3807:doi 3760:doi 3748:362 3708:doi 3674:doi 3616:doi 3612:298 3572:doi 3549:doi 3489:doi 3485:259 3434:PMC 3424:doi 3412:113 3368:doi 3329:doi 3282:doi 3270:513 3219:PMC 3209:doi 3197:110 3158:PMC 3140:doi 3128:116 3071:hdl 3061:doi 3049:594 3002:doi 2969:PMC 2951:doi 2939:114 2893:doi 2881:506 2807:PMC 2799:doi 2795:361 2672:or 2307:GOE 2084:(CO 1963:5.7 520:by 353:of 291:of 140:era 135:'s 127:or 109:GOE 8587:: 7884:. 7858:. 7848:. 7840:. 7828:. 7797:. 7789:. 7779:48 7777:. 7773:. 7743:. 7731:. 7725:. 7700:. 7669:. 7659:. 7651:. 7641:13 7639:. 7624:^ 7610:. 7600:. 7590:. 7580:12 7578:. 7574:. 7537:. 7527:40 7525:. 7521:. 7498:. 7486:. 7482:. 7457:. 7445:. 7439:. 7407:. 7399:. 7387:. 7381:. 7356:. 7325:. 7315:. 7303:. 7299:. 7287:^ 7273:. 7263:. 7249:. 7245:. 7231:^ 7219:. 7203:. 7193:. 7185:. 7175:43 7173:. 7169:. 7157:^ 7147:. 7125:. 7113:. 7090:. 7080:. 7070:. 7058:. 7054:. 7035:. 7012:. 7002:. 6992:. 6980:. 6976:. 6951:. 6924:. 6902:. 6894:. 6868:. 6858:. 6848:14 6846:. 6842:. 6819:. 6811:. 6799:. 6776:. 6768:. 6760:. 6748:. 6717:. 6696:. 6680:. 6670:. 6658:. 6652:. 6622:. 6614:. 6604:15 6602:. 6596:. 6573:. 6563:. 6555:. 6545:13 6543:. 6537:. 6507:. 6497:10 6495:. 6489:. 6466:. 6458:. 6448:. 6436:. 6430:. 6407:. 6399:. 6391:. 6379:. 6367:^ 6342:. 6336:. 6306:. 6298:. 6288:65 6286:. 6280:. 6257:. 6249:. 6237:. 6214:. 6206:. 6198:. 6186:. 6163:. 6153:. 6141:. 6137:. 6107:. 6095:. 6089:. 6058:. 6050:. 6040:12 6038:. 6032:. 6009:. 6001:. 5993:. 5981:. 5935:. 5927:. 5919:. 5907:. 5881:. 5871:68 5869:. 5854:^ 5840:. 5832:. 5824:. 5812:. 5800:^ 5786:. 5774:. 5751:. 5741:. 5731:. 5719:. 5715:. 5692:. 5684:. 5676:. 5664:. 5645:. 5633:^ 5619:. 5609:66 5607:. 5595:^ 5583:}} 5579:{{ 5561:. 5538:. 5528:. 5518:. 5506:. 5500:. 5477:. 5467:34 5465:. 5420:. 5410:. 5400:. 5388:. 5384:. 5361:. 5351:. 5341:32 5339:. 5335:. 5310:. 5298:. 5292:. 5269:. 5261:. 5251:35 5249:. 5219:. 5207:. 5201:. 5171:. 5161:. 5151:. 5139:. 5133:. 5110:. 5102:. 5090:. 5084:. 5061:. 5053:. 5043:41 5041:. 5035:. 5012:. 5002:. 4990:. 4984:. 4972:^ 4958:. 4948:. 4940:. 4932:. 4920:. 4916:. 4895:. 4878:. 4870:. 4862:. 4850:. 4824:. 4816:. 4804:. 4788:^ 4774:. 4766:. 4752:. 4746:. 4723:. 4715:. 4707:. 4695:. 4663:. 4655:. 4645:12 4643:. 4637:. 4614:. 4606:. 4598:. 4586:. 4561:. 4549:. 4523:. 4513:37 4511:. 4493:^ 4470:. 4462:. 4450:. 4444:. 4421:. 4409:. 4397:^ 4381:. 4369:. 4346:. 4336:54 4334:. 4307:. 4299:. 4287:. 4261:. 4253:. 4241:. 4237:. 4231:"O 4221:^ 4207:. 4197:67 4195:. 4168:. 4160:. 4132:^ 4111:. 4099:. 4093:. 4070:. 4060:. 4052:. 4044:. 4032:. 4026:. 4003:. 3995:. 3987:. 3977:. 3969:. 3957:. 3951:. 3928:. 3920:. 3910:50 3908:. 3902:. 3890:^ 3876:. 3866:. 3858:. 3848:. 3836:. 3830:. 3805:. 3793:. 3789:. 3766:. 3758:. 3746:. 3742:. 3730:^ 3714:. 3694:^ 3680:. 3672:. 3662:47 3660:. 3656:. 3630:. 3622:. 3610:. 3594:^ 3578:. 3547:. 3537:68 3535:. 3517:^ 3503:. 3495:. 3483:. 3463:^ 3442:. 3432:. 3422:. 3410:. 3404:. 3374:. 3362:. 3358:. 3335:. 3327:. 3317:33 3315:. 3311:. 3288:. 3280:. 3268:. 3264:. 3243:. 3227:. 3217:. 3207:. 3195:. 3189:. 3166:. 3156:. 3148:. 3138:. 3126:. 3120:. 3094:. 3069:. 3059:. 3047:. 3041:. 3018:. 3008:. 2977:. 2967:. 2959:. 2949:. 2937:. 2933:. 2921:^ 2907:. 2899:. 2891:. 2879:. 2865:^ 2845:. 2837:; 2815:. 2805:. 2793:. 2787:. 2615:. 2215:Ga 2198:UV 2117:. 1989:3+ 1941:, 1850:/ 808:Ga 788:. 773:SO 769:(H 762:Ma 749:Ga 684:Ga 631:. 585:Ga 539:, 499:CO 493:, 488:CH 486:, 473:CO 447:CH 445:, 428:CO 406:CO 404:, 393:, 306:, 302:, 123:, 119:, 8067:e 8060:t 8053:v 7930:e 7923:t 7916:v 7902:. 7866:. 7852:: 7844:: 7836:: 7812:. 7793:: 7785:: 7758:. 7747:: 7739:: 7710:. 7696:: 7677:. 7663:: 7655:: 7647:: 7618:. 7594:: 7586:: 7559:. 7545:. 7541:: 7533:: 7506:. 7502:: 7494:: 7488:2 7467:. 7461:: 7453:: 7424:. 7411:: 7403:: 7395:: 7366:. 7352:: 7333:. 7311:: 7281:. 7257:: 7251:5 7211:. 7197:: 7189:: 7181:: 7133:. 7129:: 7121:: 7115:6 7098:. 7074:: 7066:: 7020:. 6996:: 6988:: 6961:. 6947:: 6910:. 6898:: 6876:. 6862:: 6854:: 6827:. 6815:: 6807:: 6801:4 6784:. 6764:: 6756:: 6733:. 6688:. 6674:: 6666:: 6660:4 6637:. 6618:: 6610:: 6581:. 6559:: 6551:: 6522:. 6511:: 6503:: 6474:. 6452:: 6444:: 6415:. 6395:: 6387:: 6350:: 6321:. 6302:: 6294:: 6265:. 6253:: 6245:: 6222:. 6202:: 6194:: 6171:. 6149:: 6111:: 6103:: 6073:. 6054:: 6046:: 6017:. 5997:: 5989:: 5965:. 5943:. 5923:: 5915:: 5889:. 5885:: 5877:: 5848:. 5828:: 5820:: 5794:. 5790:: 5782:: 5759:. 5735:: 5727:: 5700:. 5680:: 5672:: 5649:. 5627:. 5623:: 5615:: 5589:) 5575:. 5546:. 5522:: 5514:: 5508:4 5485:. 5481:: 5473:: 5450:. 5428:. 5404:: 5396:: 5369:. 5347:: 5320:. 5314:: 5306:: 5277:. 5265:: 5257:: 5223:: 5215:: 5186:. 5155:: 5147:: 5118:. 5106:: 5098:: 5069:. 5057:: 5049:: 5020:. 4998:: 4966:. 4936:: 4928:: 4922:6 4899:. 4886:. 4866:: 4858:: 4832:. 4812:: 4798:2 4782:. 4760:: 4731:. 4711:: 4703:: 4678:. 4659:: 4651:: 4622:. 4602:: 4594:: 4569:. 4565:: 4557:: 4531:. 4527:: 4519:: 4487:. 4474:: 4466:: 4458:: 4429:. 4425:: 4417:: 4411:7 4391:. 4377:: 4354:. 4350:: 4342:: 4317:. 4311:: 4303:: 4295:: 4269:. 4257:: 4249:: 4233:2 4215:. 4211:: 4203:: 4178:. 4164:: 4126:. 4107:: 4078:. 4048:: 4040:: 4034:2 4011:. 3981:: 3973:: 3965:: 3936:. 3916:: 3884:. 3852:: 3844:: 3815:. 3809:: 3801:: 3795:1 3774:. 3762:: 3754:: 3724:. 3710:: 3688:. 3676:: 3668:: 3638:. 3618:: 3588:. 3574:: 3555:. 3551:: 3543:: 3511:. 3491:: 3457:. 3426:: 3418:: 3389:. 3370:: 3364:2 3343:. 3331:: 3323:: 3296:. 3284:: 3276:: 3235:. 3211:: 3203:: 3174:. 3142:: 3134:: 3105:. 3079:. 3073:: 3063:: 3055:: 3026:. 3004:: 2985:. 2953:: 2945:: 2915:. 2895:: 2887:: 2859:. 2823:. 2801:: 2569:│ 2563:│ 2557:│ 2551:│ 2545:│ 2539:│ 2533:│ 2527:│ 2521:│ 2515:│ 2509:│ 2503:│ 2497:│ 2314:↓ 2304:↓ 2086:2 2018:2 2010:2 2006:2 1997:4 1995:O 1992:2 1982:2 1971:2 1965:± 1959:2 1953:± 1947:2 1932:2 1928:2 1916:± 1894:* 1891:) 1887:( 1874:* 1829:* 1788:* 1727:* 1606:* 1565:* 1409:c 1407:i 1405:o 1403:z 1401:o 1399:r 1397:e 1395:n 1393:a 1391:h 1389:P 1378:c 1376:i 1374:o 1372:z 1370:o 1368:r 1366:e 1364:t 1362:o 1360:r 1358:P 1339:n 1337:a 1335:e 1333:h 1331:c 1329:r 1327:A 1311:n 1309:a 1307:e 1305:d 1303:a 1301:H 1218:s 1216:t 1214:n 1212:a 1210:l 1208:P 775:4 771:2 509:2 507:H 505:( 497:( 490:4 484:O 482:2 480:H 475:2 468:2 466:N 452:4 430:2 419:2 417:O 408:2 397:2 395:N 221:/ 175:2 107:( 94:2 83:2 76:2 69:2 65:2 53:2 51:O 34:. 20:)

Index

Oxygen Catastrophe
Neoproterozoic oxygenation event


Earth's atmosphere
gas out
Earth
Paleoproterozoic
era
Earth's atmosphere
shallow seas
free
oxygen
Siderian
Rhyacian
isotopic
dioxygen
Archean
prebiotic atmosphere
microbial
photosynthesis
reducing atmosphere
oxidizing
organic compounds
genetic materials
anaerobic
biosphere
extinction
extirpation
archaeal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.