Knowledge (XXG)

Eta invariant

Source đź“ť

231: 145: 88:
They also later used the eta invariant of a self-adjoint operator to define the eta invariant of a compact odd-dimensional smooth manifold.
412: 39: 102:
of the boundary of a manifold as the eta invariant, and used this to show that Hirzebruch's signature defect of a cusp of a
78: 54: 357:; Donnelly, H.; Singer, I. M. (1983), "Eta invariants, signature defects of cusps, and values of L-functions", 103: 53:
minus the number of negative eigenvalues. In practice both numbers are often infinite so are defined using
262: 82: 359: 226:{\displaystyle \eta (s)=\sum _{\lambda \neq 0}{\frac {\operatorname {sign} (\lambda )}{|\lambda |^{s}}}} 42: 311: 267: 17: 384: 343: 111: 62: 376: 327: 280: 368: 319: 272: 99: 81:
to manifolds with boundary. The name comes from the fact that it is a generalization of the
46: 396: 339: 292: 392: 335: 288: 315: 302:; Patodi, V. K.; Singer, I. M. (1975), "Spectral asymmetry and Riemannian geometry. I", 354: 299: 250: 91: 66: 58: 406: 253:; Patodi, V. K.; Singer, I. M. (1973), "Spectral asymmetry and Riemannian geometry", 347: 31: 323: 50: 380: 331: 284: 276: 388: 372: 304:
Mathematical Proceedings of the Cambridge Philosophical Society
236:
and the sum is over the nonzero eigenvalues λ of 
148: 95: 225: 94:, H. Donnelly, and I. M. Singer ( 74: 70: 255:The Bulletin of the London Mathematical Society 8: 122:The eta invariant of self-adjoint operator 106:can be expressed in terms of the value at 266: 214: 209: 200: 180: 168: 147: 7: 49:is formally the number of positive 25: 18:Atiyah–Patodi–Singer eta invariant 139:is the analytic continuation of 210: 201: 195: 189: 158: 152: 1: 79:Hirzebruch signature theorem 77:) who used it to extend the 55:zeta function regularization 429: 92:Michael Francis Atiyah 324:10.1017/S0305004100049410 355:Atiyah, Michael Francis 300:Atiyah, Michael Francis 251:Atiyah, Michael Francis 104:Hilbert modular surface 57:. It was introduced by 413:Differential operators 227: 83:Dirichlet eta function 360:Annals of Mathematics 228: 43:differential operator 27:Differential operator 277:10.1112/blms/5.2.229 146: 316:1975MPCPS..77...43A 223: 179: 112:Shimizu L-function 38:of a self-adjoint 363:, Second Series, 221: 164: 16:(Redirected from 420: 399: 350: 295: 270: 232: 230: 229: 224: 222: 220: 219: 218: 213: 204: 198: 181: 178: 100:signature defect 47:compact manifold 21: 428: 427: 423: 422: 421: 419: 418: 417: 403: 402: 373:10.2307/2006957 353: 298: 268:10.1.1.597.6432 249: 246: 208: 199: 182: 144: 143: 134: 120: 28: 23: 22: 15: 12: 11: 5: 426: 424: 416: 415: 405: 404: 401: 400: 367:(1): 131–177, 351: 296: 261:(2): 229–234, 245: 242: 234: 233: 217: 212: 207: 203: 197: 194: 191: 188: 185: 177: 174: 171: 167: 163: 160: 157: 154: 151: 130: 119: 116: 98:) defined the 65:, and 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 425: 414: 411: 410: 408: 398: 394: 390: 386: 382: 378: 374: 370: 366: 362: 361: 356: 352: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 297: 294: 290: 286: 282: 278: 274: 269: 264: 260: 256: 252: 248: 247: 243: 241: 239: 215: 205: 192: 186: 183: 175: 172: 169: 165: 161: 155: 149: 142: 141: 140: 138: 133: 129: 125: 117: 115: 113: 110:=0 or 1 of a 109: 105: 101: 97: 93: 89: 86: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 41: 37: 36:eta invariant 33: 19: 364: 358: 310:(1): 43–69, 307: 303: 258: 254: 237: 235: 136: 131: 127: 126:is given by 123: 121: 107: 90: 87: 35: 29: 135:(0), where 51:eigenvalues 32:mathematics 244:References 118:Definition 381:0003-486X 332:0305-0041 285:0024-6093 263:CiteSeerX 206:λ 193:λ 187:⁡ 173:≠ 170:λ 166:∑ 150:η 407:Category 348:17638224 40:elliptic 397:0707164 389:2006957 340:0397797 312:Bibcode 293:0331443 69: ( 395:  387:  379:  346:  338:  330:  291:  283:  265:  67:Singer 63:Patodi 61:, 59:Atiyah 34:, the 385:JSTOR 344:S2CID 45:on a 377:ISSN 328:ISSN 281:ISSN 184:sign 96:1983 75:1975 71:1973 369:doi 365:118 320:doi 273:doi 30:In 409:: 393:MR 391:, 383:, 375:, 342:, 336:MR 334:, 326:, 318:, 308:77 306:, 289:MR 287:, 279:, 271:, 257:, 240:. 114:. 85:. 73:, 371:: 322:: 314:: 275:: 259:5 238:A 216:s 211:| 202:| 196:) 190:( 176:0 162:= 159:) 156:s 153:( 137:η 132:A 128:η 124:A 108:s 20:)

Index

Atiyah–Patodi–Singer eta invariant
mathematics
elliptic
differential operator
compact manifold
eigenvalues
zeta function regularization
Atiyah
Patodi
Singer
1973
1975
Hirzebruch signature theorem
Dirichlet eta function
Michael Francis Atiyah
1983
signature defect
Hilbert modular surface
Shimizu L-function
Atiyah, Michael Francis
CiteSeerX
10.1.1.597.6432
doi
10.1112/blms/5.2.229
ISSN
0024-6093
MR
0331443
Atiyah, Michael Francis
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑