Knowledge (XXG)

Attenuation

Source đź“ť

1124:
quality of transparency of modern optical transmission. The medium is typically a fiber of silica glass that confines the incident light beam to the inside. Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting the attenuation and maximizing the amplification of the optical signal. Empirical research has shown that attenuation in optical fiber is caused primarily by both scattering and absorption.
1072: 1223:"diffuse reflection", and it is typically characterized by wide variety of reflection angles. Most objects that can be seen with the naked eye are visible due to diffuse reflection. Another term commonly used for this type of reflection is "light scattering". Light scattering from the surfaces of objects is our primary mechanism of physical observation. Light scattering from many common surfaces can be modelled by reflectance. 1235:"domains" exhibiting various degrees of short-range order become the building-blocks of both metals and alloys, as well as glasses and ceramics. Distributed both between and within these domains are microstructural defects that will provide the most ideal locations for the occurrence of light scattering. This same phenomenon is seen as one of the limiting factors in the transparency of IR missile domes. 1207: 753:-a pigments in the phytoplankton absorb light, and the plants themselves scatter light, making coastal waters less clear than mid-ocean waters. Chlorophyll-a absorbs light most strongly in the shortest wavelengths (blue and violet) of the visible spectrum. In coastal waters where high concentrations of phytoplankton occur, the green wavelength reaches the deepest in the water column and the 1109:
chances of interacting with matter. This is mainly due to the photoelectric effect which states that "the probability of photoelectric absorption is approximately proportional to (Z/E), where Z is the atomic number of the tissue atom and E is the photon energy. In context of this, an increase in photon energy (E) will result in a rapid decrease in the interaction with matter.
151: 1231:
crystalline order. It has recently been shown that, when the size of the scattering center (or grain boundary) is reduced below the size of the wavelength of the light being scattered, the scattering no longer occurs to any significant extent. This phenomenon has given rise to the production of transparent ceramic materials.
1257:
The selective absorption of infrared (IR) light by a particular material occurs because the selected frequency of the light wave matches the frequency (or an integral multiple of the frequency) at which the particles of that material vibrate. Since different atoms and molecules have different natural
1123:
Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance travelled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high
1252:
At the atomic or molecular level, it depends on the frequencies of atomic or molecular vibrations or chemical bonds, how close-packed its atoms or molecules are, and whether or not the atoms or molecules exhibit long-range order. These factors will determine the capacity of the material transmitting
216:
of the ultrasound beam as a function of distance through the imaging medium. Accounting for attenuation effects in ultrasound is important because a reduced signal amplitude can affect the quality of the image produced. By knowing the attenuation that an ultrasound beam experiences traveling through
1108:
The beam of X-ray is attenuated when photons are absorbed when the x-ray beam passes through the tissue. Interaction with matter varies between high energy photons and low energy photons. Photons travelling at higher energy are more capable of travelling through a tissue specimen as they have less
725:
of light that range from 360 nm (violet) to 750 nm (red). When the Sun's radiation reaches the sea surface, the shortwave radiation is attenuated by the water, and the intensity of light decreases exponentially with water depth. The intensity of light at depth can be calculated using the
1226:
Light scattering depends on the wavelength of the light being scattered. Thus, limits to spatial scales of visibility arise, depending on the frequency of the incident lightwave and the physical dimension (or spatial scale) of the scattering center, which is typically in the form of some specific
1234:
Likewise, the scattering of light in optical quality glass fiber is caused by molecular-level irregularities (compositional fluctuations) in the glass structure. Indeed, one emerging school of thought is that a glass is simply the limiting case of a polycrystalline solid. Within this framework,
1222:
The propagation of light through the core of an optical fiber is based on total internal reflection of the lightwave. Rough and irregular surfaces, even at the molecular level of the glass, can cause light rays to be reflected in many random directions. This type of reflection is referred to as
1230:
Thus, attenuation results from the incoherent scattering of light at internal surfaces and interfaces. In (poly)crystalline materials such as metals and ceramics, in addition to pores, most of the internal surfaces or interfaces are in the form of grain boundaries that separate tiny regions of
1190: 1243:
In addition to light scattering, attenuation or signal loss can also occur due to selective absorption of specific wavelengths, in a manner similar to that responsible for the appearance of color. Primary material considerations include both electrons and molecules as follows:
432:). Attenuation coefficients vary widely for different media. In biomedical ultrasound imaging however, biological materials and water are the most commonly used media. The attenuation coefficients of common biological materials at a frequency of 1 MHz are listed below: 1270:, attenuation is the rate at which the signal light decreases in intensity. For this reason, glass fiber (which has a low attenuation) is used for long-distance fiber optic cables; plastic fiber has a higher attenuation and, hence, shorter range. There also exist 1248:
At the electronic level, it depends on whether the electron orbitals are spaced (or "quantized") such that they can absorb a quantum of light (or photon) of a specific wavelength or frequency in the ultraviolet (UV) or visible ranges. This is what gives rise to
1215: 997: 733:
In clear mid-ocean waters, visible light is absorbed most strongly at the longest wavelengths. Thus, red, orange, and yellow wavelengths are totally absorbed at shallower depths, while blue and violet wavelengths reach deeper in the
419: 1288:
Due to the damaging effects of high-energy photons, it is necessary to know how much energy is deposited in tissue during diagnostic treatments involving such radiation. In addition, gamma radiation is used in
1133: 895: 1227:
microstructural feature. For example, since visible light has a wavelength scale on the order of one micrometer, scattering centers will have dimensions on a similar spatial scale.
497: 1641:
Müller, Tobias M.; Gurevich, Boris; Lebedev, Maxim (September 2010). "Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review".
1325:. Attenuation limits the range of radio signals and is affected by the materials a signal must travel through (e.g., air, wood, concrete, rain). See the article on 316: 1054: 1027: 866:
geometric spreading. Therefore, calculation of the total change in intensity involves both the inverse-square law and an estimation of attenuation over the path.
294:
are used to quantify different media according to how strongly the transmitted ultrasound amplitude decreases as a function of frequency. The attenuation
1728: 1850: 328: 851: 1705: 1185:{\displaystyle {\text{Attenuation (dB)}}=10\times \log _{10}\left({\frac {\text{Input intensity (W)}}{\text{Output intensity (W)}}}\right)} 429: 703: 255: 838:, intrinsic attenuation of seismic waves is primarily caused by the wave-induced flow of the pore fluid relative to the solid frame. 1620: 1479:
S. P. Näsholm and S. Holm, "On a Fractional Zener Elastic Wave Equation," Fract. Calc. Appl. Anal. Vol. 16, No 1 (2013), pp. 26–50,
1258:
frequencies of vibration, they will selectively absorb different frequencies (or portions of the spectrum) of infrared (IR) light.
1498:
Stokes, G.G. "On the theories of the internal friction in fluids in motion, and of the equilibrium and motion of elastic solids",
1540: 123: 277:
In homogeneous media, the main physical properties contributing to sound attenuation are viscosity and thermal conductivity.
1511:
G. Kirchhoff, "Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung", Ann. Phys. , 210: 177-193 (1868).
738:. Because the blue and violet wavelengths are absorbed least compared to the other wavelengths, open-ocean waters appear 31: 1029:
is the input power into a 100 m long cable terminated with the nominal value of its characteristic impedance, and
217:
a medium, one can adjust the input signal amplitude to compensate for any loss of energy at the desired imaging depth.
1840: 1825: 1322: 1285:, as raindrops absorb a part of the emitted beam that is more or less significant, depending on the wavelength used. 424:
Attenuation is linearly dependent on the medium length and attenuation coefficient, as well as – approximately – the
237: 1379: 847: 428:
of the incident ultrasound beam for biological tissue (while for simpler media, such as air, the relationship is
92: 992:{\displaystyle {\text{Attenuation (dB/100m)}}=10\times \log _{10}\left({\frac {P_{1}\ (W)}{P_{2}\ (W)}}\right),} 808: 135: 1798:
Archibald, P.S. and Bennett, H.E., "Scattering from infrared missile domes", Opt. Engr., Vol. 17, p.647 (1978)
1369: 683: 445: 291: 286: 175: 1739: 1523:
S. Benjelloun and J. M. Ghidaglia, "On the dispersion relation for compressible Navier-Stokes Equations,"
1388: 1354: 687: 675: 111: 1583: 1615:
Bohren, C. F. and Huffman, D.R. "Absorption and Scattering of Light by Small Particles", Wiley, (1983),
1364: 1278: 1118: 259: 167: 1650: 1374: 1339: 870: 271: 247: 203: 159: 100: 1349: 1344: 1293:
where it is important to know how much energy will be deposited in healthy and in tumorous tissue.
718: 54: 1845: 1359: 1271: 874: 863: 251: 139: 127: 115: 1810: 1701: 1616: 1598: 1560: 1297: 1290: 831: 573: 1811:
NIST's XAAMDI: X-Ray Attenuation and Absorption for Materials of Dosimetric Interest Database
301: 1820: 1693: 1666: 1658: 1552: 1480: 1433: 1413: 1201: 727: 722: 653: 263: 119: 1032: 1005: 1815: 1568: 878: 1654: 787:
intensity plays an important role in the assessment of possible strong groundshaking. A
1556: 1398: 754: 709: 1757:"X-Ray Physics: X-Ray Interaction with Matter, X-Ray Contrast, and Dose – XRayPhysics" 1687: 1071: 1834: 1631:
Dukhin, A.S. and Goetz, P.J. "Ultrasound for characterizing colloids", Elsevier, 2002
1408: 1300:
attenuation defines the local or global influence of light sources and force fields.
1282: 1267: 784: 746: 691: 225: 183: 131: 1470:
ISO 20998-1:2006 "Measurement and characterization of particles by acoustic methods"
1059:
Attenuation in a coaxial cable is a function of the materials and the construction.
819:
geometric dispersion caused by distribution of the seismic energy to greater volumes
154:
Frequency-dependent attenuation of electromagnetic radiation in standard atmosphere.
1461:
Diagnostic Ultrasound, Stewart C. Bushong and Benjamin R. Archer, Mosby Inc., 1991.
788: 762: 735: 593: 163: 1689:
Attenuation and Dispersion of Elastic Waves in Porous Rocks: Mechanisms and models
1539:
Culjat, Martin O.; Goldenberg, David; Tewari, Priyamvada; Singh, Rahul S. (2010).
1214: 1527: 1393: 1206: 1103: 812: 750: 739: 713: 623: 295: 96: 1484: 822:
dispersion as heat, also called intrinsic attenuation or anelastic attenuation.
1671: 855: 835: 804: 776: 758: 679: 209: 187: 179: 1602: 1697: 1428: 1418: 1403: 1326: 1316: 1253:
longer wavelengths in the infrared (IR), far IR, radio and microwave ranges.
1127:
Attenuation in fiber optics can be quantified using the following equation:
425: 414:{\displaystyle {\text{Attenuation}}=\alpha \left\cdot \ell \cdot {\text{f}}} 213: 1564: 1512: 1756: 150: 1584:"Ultrasound attenuation dependence on air temperature in closed chambers" 827: 780: 229: 174:
per unit length of medium (dB/cm, dB/km, etc.) and is represented by the
62: 17: 208:
One area of research in which attenuation plays a prominent role, is in
1452:
Essentials of Ultrasound Physics, James A. Zagzebski, Mosby Inc., 1996.
1304: 686:
media is associated only with absorption and can be characterized with
563: 319: 233: 171: 104: 58: 38: 1662: 1423: 859: 792: 643: 633: 583: 553: 1780:
Mandelstam, L.I. (1926). "Light Scattering by Inhomogeneous Media".
1524: 1487: 1213: 796: 663: 613: 543: 514: 191: 149: 86: 82: 74: 70: 30:
This article is about attenuation in physics. For other uses, see
1321:
Attenuation is an important consideration in the modern world of
862:. Attenuation does not include the decrease in intensity due to 162:
of the path length through the medium. In optics and in chemical
811:
of the seismic energy with the distance. There are two types of
524: 66: 50: 1329:
for more information on signal loss in wireless communication.
1274:
that decrease the signal in a fiber optic cable intentionally.
1307:, attenuation describes the density or darkness of the image. 1066: 603: 503: 170:. In engineering, attenuation is usually measured in units of 78: 274:
into account can be written on a fractional derivative form.
1541:"A Review of Tissue Substitutes for Ultrasound Imaging" 1083: 212:
physics. Attenuation in ultrasound is the reduction in
674:
There are two general ways of acoustic energy losses:
178:
of the medium in question. Attenuation also occurs in
99:
from flowing into the ears. This phenomenon is called
1281:. This same effect is an important consideration in 1136: 1035: 1008: 898: 448: 331: 304: 1729:"Technical Information – Coaxial Transmission Lines" 869:
The primary causes of attenuation in matter are the
142:
are commonly manufactured components in this field.
1500:
Transactions of the Cambridge Philosophical Society
1184: 1056:is the output power at the far end of this cable. 1048: 1021: 991: 491: 413: 310: 190:, they grow smaller as they are attenuated by the 318:) can be used to determine total attenuation in 877:, and, for photon energies of above 1.022 MeV, 694:media requires taking into account scattering. 27:Gradual loss of flux intensity through a medium 1821:NIST's FAST: Attenuation and Scattering Tables 721:emitted from the Sun have wavelengths in the 240:. There is an ISO standard on this technique. 8: 889:The attenuation of RF cables is defined by: 745:Near the shore, coastal water contains more 1816:NIST's XCOM: Photon Cross Sections Database 1686:Gurevich, Boris; Carcione, JosĂ© M. (2022). 322:in the medium using the following formula: 1277:Attenuation of light is also important in 779:affects a location depends on the running 1670: 1168: 1155: 1137: 1135: 1040: 1034: 1013: 1007: 961: 937: 930: 917: 899: 897: 477: 472: 467: 461: 452: 447: 403: 395: 384: 363: 358: 353: 347: 332: 330: 303: 1692:. Society of Exploration Geophysicists. 1205: 434: 1445: 846:Attenuation decreases the intensity of 749:than the very clear mid-ocean waters. 492:{\displaystyle \alpha {\text{ }}\left} 1582:JakeviÄŤius, L.; DemÄŤenko, A. (2008). 7: 1545:Ultrasound in Medicine & Biology 783:. The attenuation in the signal of 704:Electromagnetic absorption by water 1557:10.1016/j.ultrasmedbio.2010.02.012 25: 682:. Ultrasound propagation through 158:In many cases, attenuation is an 1070: 1502:, vol.8, 22, pp. 287-342 (1845) 89:at variable attenuation rates. 1851:Telecommunications engineering 1826:Underwater Radio Communication 976: 970: 952: 946: 408: 400: 389: 381: 1: 1738:. p. 644. Archived from 885:Coaxial and general RF cables 795:as it propagates through the 32:Attenuation (disambiguation) 1323:wireless telecommunications 186:move farther away from the 1867: 1485:10.2478/s13540-013--0003-1 1314: 1199: 1116: 1101: 707: 701: 698:Light attenuation in water 690:only. Propagation through 284: 270:Wave equations which take 238:particle size distribution 201: 118:, attenuation affects the 29: 1380:Environmental remediation 848:electromagnetic radiation 775:The energy with which an 49:) is the gradual loss of 1591:Ultragarsas (Ultrasound) 292:Attenuation coefficients 236:, yields information on 1782:Zh. Russ. Fiz-Khim. Ova 1698:10.1190/1.9781560803911 1370:Cross section (physics) 311:{\displaystyle \alpha } 287:Attenuation coefficient 281:Attenuation coefficient 250:measurement. There are 176:attenuation coefficient 166:, this is known as the 1525:Link to Archiv e-print 1389:Extinction (astronomy) 1355:Atmospheric refraction 1219: 1211: 1186: 1050: 1023: 993: 688:absorption coefficient 493: 415: 312: 244:Ultrasound attenuation 222:Ultrasound attenuation 155: 136:Electrical attenuators 112:electrical engineering 1365:Attenuator (genetics) 1279:physical oceanography 1217: 1209: 1187: 1119:Transparent materials 1051: 1049:{\displaystyle P_{2}} 1024: 1022:{\displaystyle P_{1}} 994: 901:Attenuation (dB/100m) 708:Further information: 654:Soft tissue (average) 494: 416: 313: 260:extensional viscosity 153: 57:. For instance, dark 1649:(5): 75A147–75A164. 1375:Electrical impedance 1340:Air mass (astronomy) 1239:UV-Vis-IR absorption 1174:Output intensity (W) 1134: 1033: 1006: 896: 871:photoelectric effect 446: 329: 302: 272:acoustic attenuation 248:extensional rheology 204:Acoustic attenuation 160:exponential function 120:propagation of waves 101:acoustic attenuation 53:intensity through a 1655:2010Geop...75A.147M 1528:Link to Hal e-print 1384:natural attenuation 1350:Astronomical seeing 1345:Astronomical filter 1272:optical attenuators 1210:Specular reflection 1171:Input intensity (W) 801:seismic attenuation 719:Shortwave radiation 436: 252:acoustic rheometers 140:optical attenuators 128:electrical circuits 103:and is measured in 45:(in some contexts, 1841:Physical phenomena 1672:20.500.11937/35921 1360:Attenuation length 1220: 1218:Diffuse reflection 1212: 1182: 1082:. You can help by 1046: 1019: 989: 875:Compton scattering 864:inverse-square law 489: 435: 411: 308: 156: 116:telecommunications 93:Hearing protectors 1707:978-1-56080-390-4 1663:10.1190/1.3463417 1298:computer graphics 1291:cancer treatments 1176: 1175: 1172: 1140: 1100: 1099: 980: 969: 945: 902: 832:sedimentary rocks 807:is tied into the 672: 671: 574:Connective tissue 535:Bone, trabecular 483: 480: 470: 465: 455: 406: 398: 387: 369: 366: 356: 351: 335: 16:(Redirected from 1858: 1799: 1796: 1790: 1789: 1777: 1771: 1770: 1768: 1767: 1753: 1747: 1746: 1744: 1733: 1725: 1719: 1718: 1716: 1714: 1683: 1677: 1676: 1674: 1638: 1632: 1629: 1623: 1613: 1607: 1606: 1588: 1579: 1573: 1572: 1567:. Archived from 1536: 1530: 1521: 1515: 1509: 1503: 1496: 1490: 1477: 1471: 1468: 1462: 1459: 1453: 1450: 1434:Wave propagation 1414:Radiation length 1202:Light scattering 1196:Light scattering 1191: 1189: 1188: 1183: 1181: 1177: 1173: 1170: 1169: 1160: 1159: 1141: 1139:Attenuation (dB) 1138: 1095: 1092: 1074: 1067: 1055: 1053: 1052: 1047: 1045: 1044: 1028: 1026: 1025: 1020: 1018: 1017: 998: 996: 995: 990: 985: 981: 979: 967: 966: 965: 955: 943: 942: 941: 931: 922: 921: 903: 900: 830:fluid—saturated 728:Beer-Lambert Law 723:visible spectrum 506:, at 20 Â°C 498: 496: 495: 490: 488: 484: 482: 481: 478: 476: 471: 468: 463: 462: 456: 453: 437: 420: 418: 417: 412: 407: 404: 399: 396: 388: 385: 374: 370: 368: 367: 364: 362: 357: 354: 349: 348: 336: 333: 317: 315: 314: 309: 264:volume viscosity 246:can be used for 168:Beer–Lambert law 21: 1866: 1865: 1861: 1860: 1859: 1857: 1856: 1855: 1831: 1830: 1807: 1802: 1797: 1793: 1779: 1778: 1774: 1765: 1763: 1761:xrayphysics.com 1755: 1754: 1750: 1742: 1731: 1727: 1726: 1722: 1712: 1710: 1708: 1685: 1684: 1680: 1640: 1639: 1635: 1630: 1626: 1614: 1610: 1586: 1581: 1580: 1576: 1538: 1537: 1533: 1522: 1518: 1510: 1506: 1497: 1493: 1488:Link to e-print 1478: 1474: 1469: 1465: 1460: 1456: 1451: 1447: 1443: 1438: 1335: 1319: 1313: 1264: 1241: 1204: 1198: 1164: 1151: 1132: 1131: 1121: 1115: 1106: 1096: 1090: 1087: 1080:needs expansion 1065: 1036: 1031: 1030: 1009: 1004: 1003: 957: 956: 933: 932: 926: 913: 894: 893: 887: 879:pair production 844: 842:Electromagnetic 773: 716: 706: 700: 466: 457: 444: 443: 352: 343: 327: 326: 300: 299: 289: 283: 224:measurement in 206: 200: 148: 81:attenuate both 35: 28: 23: 22: 15: 12: 11: 5: 1864: 1862: 1854: 1853: 1848: 1843: 1833: 1832: 1829: 1828: 1823: 1818: 1813: 1806: 1805:External links 1803: 1801: 1800: 1791: 1772: 1748: 1745:on 2018-07-12. 1720: 1706: 1678: 1633: 1624: 1608: 1574: 1571:on 2013-04-16. 1551:(6): 861–873. 1531: 1516: 1504: 1491: 1472: 1463: 1454: 1444: 1442: 1439: 1437: 1436: 1431: 1426: 1421: 1416: 1411: 1406: 1401: 1399:Mean free path 1396: 1391: 1386: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1336: 1334: 1331: 1315:Main article: 1312: 1309: 1268:optical fibers 1263: 1260: 1255: 1254: 1250: 1240: 1237: 1200:Main article: 1197: 1194: 1193: 1192: 1180: 1167: 1163: 1158: 1154: 1150: 1147: 1144: 1117:Main article: 1114: 1111: 1102:Main article: 1098: 1097: 1077: 1075: 1064: 1061: 1043: 1039: 1016: 1012: 1000: 999: 988: 984: 978: 975: 972: 964: 960: 954: 951: 948: 940: 936: 929: 925: 920: 916: 912: 909: 906: 886: 883: 843: 840: 824: 823: 820: 772: 769: 755:color of water 710:Color of water 702:Main article: 699: 696: 670: 669: 666: 660: 659: 656: 650: 649: 646: 640: 639: 636: 630: 629: 626: 620: 619: 616: 610: 609: 606: 600: 599: 596: 590: 589: 586: 580: 579: 576: 570: 569: 566: 560: 559: 556: 550: 549: 546: 540: 539: 536: 532: 531: 528: 521: 520: 517: 511: 510: 507: 500: 499: 487: 475: 460: 451: 441: 422: 421: 410: 402: 394: 391: 383: 380: 377: 373: 361: 346: 342: 339: 307: 285:Main article: 282: 279: 268: 267: 258:for measuring 241: 228:systems, like 202:Main article: 199: 196: 147: 144: 134:, and in air. 132:optical fibers 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1863: 1852: 1849: 1847: 1844: 1842: 1839: 1838: 1836: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1808: 1804: 1795: 1792: 1787: 1783: 1776: 1773: 1762: 1758: 1752: 1749: 1741: 1737: 1730: 1724: 1721: 1709: 1703: 1699: 1695: 1691: 1690: 1682: 1679: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1637: 1634: 1628: 1625: 1622: 1621:0-471-29340-7 1618: 1612: 1609: 1604: 1600: 1596: 1592: 1585: 1578: 1575: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1535: 1532: 1529: 1526: 1520: 1517: 1514: 1513:Link to paper 1508: 1505: 1501: 1495: 1492: 1489: 1486: 1482: 1476: 1473: 1467: 1464: 1458: 1455: 1449: 1446: 1440: 1435: 1432: 1430: 1427: 1425: 1424:Sunset#Colors 1422: 1420: 1417: 1415: 1412: 1410: 1409:Radar horizon 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1337: 1332: 1330: 1328: 1324: 1318: 1310: 1308: 1306: 1301: 1299: 1294: 1292: 1286: 1284: 1283:weather radar 1280: 1275: 1273: 1269: 1261: 1259: 1251: 1247: 1246: 1245: 1238: 1236: 1232: 1228: 1224: 1216: 1208: 1203: 1195: 1178: 1165: 1161: 1156: 1152: 1148: 1145: 1142: 1130: 1129: 1128: 1125: 1120: 1112: 1110: 1105: 1094: 1085: 1081: 1078:This section 1076: 1073: 1069: 1068: 1062: 1060: 1057: 1041: 1037: 1014: 1010: 986: 982: 973: 962: 958: 949: 938: 934: 927: 923: 918: 914: 910: 907: 904: 892: 891: 890: 884: 882: 880: 876: 872: 867: 865: 861: 857: 853: 849: 841: 839: 837: 833: 829: 821: 818: 817: 816: 814: 810: 806: 802: 798: 794: 790: 786: 785:ground motion 782: 778: 770: 768: 766: 764: 760: 756: 752: 748: 747:phytoplankton 743: 741: 737: 731: 729: 724: 720: 715: 711: 705: 697: 695: 693: 692:heterogeneous 689: 685: 681: 677: 667: 665: 662: 661: 657: 655: 652: 651: 647: 645: 642: 641: 637: 635: 632: 631: 627: 625: 622: 621: 617: 615: 612: 611: 607: 605: 602: 601: 597: 595: 592: 591: 587: 585: 582: 581: 577: 575: 572: 571: 567: 565: 562: 561: 557: 555: 552: 551: 547: 545: 542: 541: 537: 534: 533: 529: 526: 523: 522: 518: 516: 513: 512: 508: 505: 502: 501: 485: 473: 458: 449: 442: 439: 438: 433: 431: 427: 392: 378: 375: 371: 359: 344: 340: 337: 325: 324: 323: 321: 305: 297: 293: 288: 280: 278: 275: 273: 265: 261: 257: 253: 249: 245: 242: 239: 235: 231: 227: 226:heterogeneous 223: 220: 219: 218: 215: 211: 205: 197: 195: 193: 189: 185: 184:seismic waves 181: 177: 173: 169: 165: 161: 152: 145: 143: 141: 137: 133: 129: 125: 121: 117: 113: 108: 106: 102: 98: 97:acoustic flux 94: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 33: 19: 1794: 1785: 1781: 1775: 1764:. Retrieved 1760: 1751: 1740:the original 1736:rfsworld.com 1735: 1723: 1711:. Retrieved 1688: 1681: 1646: 1642: 1636: 1627: 1611: 1597:(1): 18–22. 1594: 1590: 1577: 1569:the original 1548: 1544: 1534: 1519: 1507: 1499: 1494: 1475: 1466: 1457: 1448: 1383: 1320: 1302: 1295: 1287: 1276: 1265: 1262:Applications 1256: 1242: 1233: 1229: 1225: 1221: 1126: 1122: 1107: 1088: 1084:adding to it 1079: 1058: 1001: 888: 868: 845: 825: 800: 789:seismic wave 774: 767: 744: 742:to the eye. 736:water column 732: 717: 673: 423: 290: 276: 269: 254:that employ 243: 221: 207: 164:spectroscopy 157: 109: 95:help reduce 91: 46: 42: 36: 1713:26 February 1394:ITU-R P.525 1104:Radiography 1063:Radiography 751:Chlorophyll 714:Ocean color 684:homogeneous 527:, cortical 334:Attenuation 296:coefficient 256:Stokes' law 182:; when the 180:earthquakes 69:attenuates 43:attenuation 1835:Categories 1766:2018-09-21 1643:Geophysics 1441:References 1305:CT imaging 1091:March 2018 856:scattering 852:absorption 836:sandstones 813:dissipated 809:dispersion 805:phenomenon 777:earthquake 759:blue-green 680:scattering 676:absorption 210:ultrasound 198:Ultrasound 188:hypocenter 146:Background 61:attenuate 47:extinction 1846:Acoustics 1603:1392-2114 1429:Twinkling 1419:Rain fade 1404:Path loss 1327:path loss 1317:Path loss 1162:⁡ 1149:× 924:⁡ 911:× 740:deep blue 474:⋅ 450:α 430:quadratic 426:frequency 393:⋅ 379:ℓ 376:⋅ 360:⋅ 341:α 306:α 230:emulsions 214:amplitude 18:Attenuate 1565:20510184 1333:See also 834:such as 815:energy: 803:). This 781:distance 757:appears 440:Material 234:colloids 172:decibels 105:decibels 63:sunlight 1651:Bibcode 860:photons 850:due to 771:Seismic 668:0.0022 564:Cardiac 124:signals 107:(dBs). 59:glasses 39:physics 1788:: 381. 1704:  1619:  1601:  1563:  1249:color. 1113:Optics 1002:where 968:  944:  828:porous 793:energy 791:loses 644:Tendon 634:Muscle 624:Marrow 594:Enamel 584:Dentin 554:Breast 454:  192:ground 73:, and 71:X-rays 55:medium 1743:(PDF) 1732:(PDF) 1587:(PDF) 1311:Radio 797:earth 763:green 664:Water 658:0.54 638:1.09 614:Liver 608:0.48 578:1.57 568:0.52 558:0.75 544:Brain 538:9.94 515:Blood 509:1.64 130:, in 87:sound 83:light 75:water 1715:2023 1702:ISBN 1617:ISBN 1599:ISSN 1561:PMID 1382:for 712:and 678:and 648:4.7 628:0.5 618:0.5 598:120 548:0.6 530:6.9 525:Bone 519:0.2 262:and 138:and 122:and 114:and 85:and 77:and 67:lead 51:flux 1694:doi 1667:hdl 1659:doi 1553:doi 1481:doi 1303:In 1296:In 1266:In 1153:log 1086:. 915:log 858:of 854:or 826:In 761:or 604:Fat 588:80 504:Air 469:MHz 405:MHz 355:MHz 232:or 126:in 110:In 79:air 37:In 1837:: 1786:58 1784:. 1759:. 1734:. 1700:. 1665:. 1657:. 1647:75 1645:. 1595:63 1593:. 1589:. 1559:. 1549:36 1547:. 1543:. 1157:10 1146:10 919:10 908:10 881:. 873:, 765:. 730:. 479:cm 464:dB 386:cm 365:cm 350:dB 320:dB 194:. 65:, 41:, 1769:. 1717:. 1696:: 1675:. 1669:: 1661:: 1653:: 1605:. 1555:: 1483:: 1179:) 1166:( 1143:= 1093:) 1089:( 1042:2 1038:P 1015:1 1011:P 987:, 983:) 977:) 974:W 971:( 963:2 959:P 953:) 950:W 947:( 939:1 935:P 928:( 905:= 799:( 486:] 459:[ 409:] 401:[ 397:f 390:] 382:[ 372:] 345:[ 338:= 298:( 266:. 34:. 20:)

Index

Attenuate
Attenuation (disambiguation)
physics
flux
medium
glasses
sunlight
lead
X-rays
water
air
light
sound
Hearing protectors
acoustic flux
acoustic attenuation
decibels
electrical engineering
telecommunications
propagation of waves
signals
electrical circuits
optical fibers
Electrical attenuators
optical attenuators

exponential function
spectroscopy
Beer–Lambert law
decibels

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑