Knowledge

Axiality (geometry)

Source 📝

481:, as well as studying axiality, studies a restricted version of axiality in which the goal is to find a halfspace whose intersection with a convex shape has large area lies entirely within the reflection of the shape across the halfspace boundary. He shows that such an intersection can always be found to have area at least 1/8 that of the whole shape. 285:) a two-dimensional space, which they partition into cells within which the pattern of crossings of the polygon with its reflection is fixed, causing the axiality to vary smoothly within each cell. They thus reduce the problem to a numerical computation within each cell, which they do not solve explicitly. The partition of the plane into cells has 474:
of the given shape, to take the value one for symmetric shapes, and to take a value between zero and one for other shapes. Other symmetry measures with these properties include the ratio of the area of the shape to its smallest enclosing symmetric superset, and the analogous ratios of perimeters.
28:
a shape has. It is defined as the ratio of areas of the largest axially symmetric subset of the shape to the whole shape. Equivalently it is the largest fraction of the area of the shape that can be covered by a mirror reflection of the shape (with any orientation).
274:
The axiality of a given convex shape can be approximated arbitrarily closely in sublinear time, given access to the shape by oracles for finding an extreme point in a given direction and for finding the intersection of the shape with a line.
357:
cells for convex polygons; it can be constructed in an amount of time which is larger than these bounds by a logarithmic factor. Barequet and Rogol claim that in practice the area maximization problem within a single cell can be solved in
700: 900:
Ahn, Hee-Kap; Brass, Peter; Cheong, Otfried; Na, Hyeon-Suk; Shin, Chan-Su; Vigneron, Antoine (2006), "Inscribing an axially symmetric polygon and other approximation algorithms for planar convex sets",
117: 559: 240: 181: 751: 457: 421: 355: 319: 281:
consider the problem of computing the axiality exactly, for both convex and non-convex polygons. The set of all possible reflection symmetry lines in the plane is (by
579: 385: 723: 514: 260: 201: 157: 137: 587: 262:-coordinates approach zero, showing that the lower bound is as large as possible. It is also possible to construct a sequence of centrally symmetric 470:
lists 11 different measures of axial symmetry, of which the one described here is number three. He requires each such measure to be invariant under
74:
convex bodies, the axiality is always somewhat higher: every triangle, and every centrally symmetric convex body, has axiality at least
1058: 903: 829:, Masters thesis, Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology 984: 1021:
Marola, Giovanni (1989), "On the detection of the axes of symmetry of symmetric and almost symmetric planar images",
77: 471: 523: 206: 821: 726: 282: 162: 33: 1053: 841:
Nohl, W. (1962), "Die innere axiale Symmetrie zentrischer Eibereiche der euklidischen Ebene",
426: 390: 324: 288: 564: 1030: 993: 964: 920: 912: 779: 760: 71: 37: 1007: 934: 886: 774: 1003: 930: 882: 770: 485: 361: 17: 708: 499: 245: 186: 142: 122: 25: 949: 695:{\displaystyle {\frac {\int \int w(p)w(\sigma (p))dx\,dy}{\int \int w(p)^{2}dx\,dy}}.} 1047: 493: 263: 60: 749:
Lassak, Marek (2002), "Approximation of convex bodies by axially symmetric bodies",
950:"Maximizing the area of an axially symmetric polygon inscribed in a simple polygon" 783: 765: 916: 55:
has axiality at least 2/3. This result improved a previous lower bound of 5/8 by
866: 266:
whose axiality has the same limit, again showing that the lower bound is tight.
36:, will have an axiality of exactly one, whereas an asymmetric shape, such as a 968: 52: 823:
Finding the largest inscribed axially symmetric polygon for a convex polygon
517: 67: 998: 63:, found through a computer search, whose axiality is less than 0.816. 1034: 982:
de Valcourt, B. Abel (1966), "Measures of axial symmetry for ovals",
925: 870: 796:
Krakowski, F. (1963), "Bemerkung zu einer Arbeit von W. Nohl",
1023:
IEEE Transactions on Pattern Analysis and Machine Intelligence
59:. The best upper bound known is given by a particular convex 711: 590: 567: 526: 502: 429: 393: 364: 327: 291: 248: 209: 189: 165: 145: 125: 119:. In the set of obtuse triangles whose vertices have 80: 32:
A shape that is itself axially symmetric, such as an
729:
of a given shape, this is the same as the axiality.
387:time, giving (non-rigorous) overall time bounds of 717: 694: 573: 553: 508: 451: 415: 379: 349: 313: 254: 234: 195: 175: 151: 131: 111: 871:"On a measure of axiality for triangular domains" 752:Proceedings of the American Mathematical Society 278: 112:{\displaystyle 2({\sqrt {2}}-1)\approx 0.828} 8: 852: 807: 467: 744: 742: 997: 924: 764: 710: 679: 667: 639: 591: 589: 566: 525: 501: 440: 428: 404: 392: 363: 338: 326: 302: 290: 247: 216: 208: 188: 166: 164: 144: 124: 87: 79: 56: 738: 492:proposed to measure the symmetry of a 489: 478: 48: 948:Barequet, Gill; Rogol, Vadim (2007), 7: 40:, will have axiality less than one. 14: 581:that maximizes the area integral 520:intensity values in the interval 554:{\displaystyle 0\leq w(p)\leq 1} 235:{\displaystyle 2({\sqrt {2}}-1)} 321:cells in the general case, and 759:(10): 3075–3084 (electronic), 664: 657: 630: 627: 621: 615: 609: 603: 542: 536: 446: 433: 410: 397: 374: 368: 344: 331: 308: 295: 229: 213: 100: 84: 1: 985:Israel Journal of Mathematics 784:10.1090/S0002-9939-03-07225-3 766:10.1090/S0002-9939-02-06404-3 917:10.1016/j.comgeo.2005.06.001 516:from points in the plane to 279:Barequet & Rogol (2007) 176:{\displaystyle {\sqrt {2}}} 1075: 561:) by finding a reflection 472:similarity transformations 203:, the axiality approaches 969:10.1016/j.cag.2006.10.006 24:is a measure of how much 1059:Euclidean plane geometry 957:Computers & Graphics 820:Choi, Chang-Yul (2006), 452:{\displaystyle O(n^{5})} 423:for the convex case and 416:{\displaystyle O(n^{4})} 350:{\displaystyle O(n^{3})} 314:{\displaystyle O(n^{4})} 875:Elemente der Mathematik 843:Elemente der Mathematik 798:Elemente der Mathematik 574:{\displaystyle \sigma } 16:In the geometry of the 904:Computational Geometry 719: 696: 575: 555: 510: 496:(viewed as a function 459:for the general case. 453: 417: 381: 351: 315: 256: 236: 197: 177: 153: 133: 113: 44:Upper and lower bounds 720: 697: 576: 556: 511: 454: 418: 382: 352: 316: 257: 237: 198: 178: 154: 134: 114: 709: 588: 565: 524: 500: 427: 391: 380:{\displaystyle O(n)} 362: 325: 289: 246: 242:in the limit as the 207: 187: 163: 143: 123: 78: 72:centrally symmetric 999:10.1007/BF02937452 865:Buda, Andrzej B.; 853:de Valcourt (1966) 808:de Valcourt (1966) 727:indicator function 715: 692: 571: 551: 506: 468:de Valcourt (1966) 449: 413: 377: 347: 311: 283:projective duality 252: 232: 193: 173: 149: 129: 109: 51:showed that every 34:isosceles triangle 718:{\displaystyle w} 687: 509:{\displaystyle w} 255:{\displaystyle y} 221: 196:{\displaystyle 1} 171: 152:{\displaystyle 0} 132:{\displaystyle x} 92: 1066: 1038: 1037: 1035:10.1109/34.23119 1018: 1012: 1010: 1001: 979: 973: 971: 954: 945: 939: 937: 928: 897: 891: 889: 862: 856: 850: 838: 832: 830: 828: 817: 811: 805: 793: 787: 777: 768: 746: 724: 722: 721: 716: 701: 699: 698: 693: 688: 686: 672: 671: 646: 592: 580: 578: 577: 572: 560: 558: 557: 552: 515: 513: 512: 507: 484:In the study of 463:Related concepts 458: 456: 455: 450: 445: 444: 422: 420: 419: 414: 409: 408: 386: 384: 383: 378: 356: 354: 353: 348: 343: 342: 320: 318: 317: 312: 307: 306: 261: 259: 258: 253: 241: 239: 238: 233: 222: 217: 202: 200: 199: 194: 182: 180: 179: 174: 172: 167: 158: 156: 155: 150: 138: 136: 135: 130: 118: 116: 115: 110: 93: 88: 57:Krakowski (1963) 38:scalene triangle 1074: 1073: 1069: 1068: 1067: 1065: 1064: 1063: 1044: 1043: 1042: 1041: 1020: 1019: 1015: 981: 980: 976: 952: 947: 946: 942: 899: 898: 894: 864: 863: 859: 840: 839: 835: 826: 819: 818: 814: 795: 794: 790: 748: 747: 740: 735: 707: 706: 663: 647: 593: 586: 585: 563: 562: 522: 521: 498: 497: 486:computer vision 465: 436: 425: 424: 400: 389: 388: 360: 359: 334: 323: 322: 298: 287: 286: 272: 244: 243: 205: 204: 185: 184: 161: 160: 141: 140: 121: 120: 76: 75: 46: 18:Euclidean plane 12: 11: 5: 1072: 1070: 1062: 1061: 1056: 1046: 1045: 1040: 1039: 1029:(1): 104–108, 1013: 974: 963:(1): 127–136, 940: 911:(3): 152–164, 892: 857: 851:. As cited by 833: 812: 806:. As cited by 788: 737: 736: 734: 731: 714: 703: 702: 691: 685: 682: 678: 675: 670: 666: 662: 659: 656: 653: 650: 645: 642: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 608: 605: 602: 599: 596: 570: 550: 547: 544: 541: 538: 535: 532: 529: 505: 464: 461: 448: 443: 439: 435: 432: 412: 407: 403: 399: 396: 376: 373: 370: 367: 346: 341: 337: 333: 330: 310: 305: 301: 297: 294: 271: 268: 264:parallelograms 251: 231: 228: 225: 220: 215: 212: 192: 170: 148: 128: 108: 105: 102: 99: 96: 91: 86: 83: 45: 42: 26:axial symmetry 13: 10: 9: 6: 4: 3: 2: 1071: 1060: 1057: 1055: 1052: 1051: 1049: 1036: 1032: 1028: 1024: 1017: 1014: 1009: 1005: 1000: 995: 991: 987: 986: 978: 975: 970: 966: 962: 958: 951: 944: 941: 936: 932: 927: 922: 918: 914: 910: 906: 905: 896: 893: 888: 884: 880: 876: 872: 868: 861: 858: 854: 848: 844: 837: 834: 825: 824: 816: 813: 809: 803: 799: 792: 789: 785: 781: 776: 772: 767: 762: 758: 754: 753: 745: 743: 739: 732: 730: 728: 712: 689: 683: 680: 676: 673: 668: 660: 654: 651: 648: 643: 640: 636: 633: 624: 618: 612: 606: 600: 597: 594: 584: 583: 582: 568: 548: 545: 539: 533: 530: 527: 519: 503: 495: 494:digital image 491: 490:Marola (1989) 487: 482: 480: 479:Lassak (2002) 476: 473: 469: 462: 460: 441: 437: 430: 405: 401: 394: 371: 365: 339: 335: 328: 303: 299: 292: 284: 280: 276: 269: 267: 265: 249: 226: 223: 218: 210: 190: 168: 146: 139:-coordinates 126: 106: 103: 97: 94: 89: 81: 73: 69: 64: 62: 61:quadrilateral 58: 54: 50: 49:Lassak (2002) 43: 41: 39: 35: 30: 27: 23: 19: 1026: 1022: 1016: 992:(2): 65–82, 989: 983: 977: 960: 956: 943: 908: 902: 895: 881:(3): 65–73, 878: 874: 867:Mislow, Kurt 860: 846: 842: 836: 822: 815: 801: 797: 791: 756: 750: 704: 483: 477: 466: 277: 273: 65: 47: 31: 21: 15: 778:. Erratum, 1048:Categories 733:References 270:Algorithms 53:convex set 926:10203/314 652:∫ 649:∫ 619:σ 598:∫ 595:∫ 569:σ 546:≤ 531:≤ 518:grayscale 224:− 104:≈ 95:− 68:triangles 1054:Symmetry 869:(1991), 70:and for 22:axiality 1008:0203589 935:2188943 887:1113766 849:: 59–63 804:: 60–61 775:1908932 725:is the 1006:  933:  885:  773:  183:, and 953:(PDF) 827:(PDF) 705:When 107:0.828 66:For 1031:doi 994:doi 965:doi 921:hdl 913:doi 780:doi 761:doi 757:130 1050:: 1027:11 1025:, 1004:MR 1002:, 988:, 961:31 959:, 955:, 931:MR 929:, 919:, 909:33 907:, 883:MR 879:46 877:, 873:, 847:17 845:, 802:18 800:, 771:MR 769:, 755:, 741:^ 488:, 159:, 20:, 1033:: 1011:. 996:: 990:4 972:. 967:: 938:. 923:: 915:: 890:. 855:. 831:. 810:. 786:. 782:: 763:: 713:w 690:. 684:y 681:d 677:x 674:d 669:2 665:) 661:p 658:( 655:w 644:y 641:d 637:x 634:d 631:) 628:) 625:p 622:( 616:( 613:w 610:) 607:p 604:( 601:w 549:1 543:) 540:p 537:( 534:w 528:0 504:w 447:) 442:5 438:n 434:( 431:O 411:) 406:4 402:n 398:( 395:O 375:) 372:n 369:( 366:O 345:) 340:3 336:n 332:( 329:O 309:) 304:4 300:n 296:( 293:O 250:y 230:) 227:1 219:2 214:( 211:2 191:1 169:2 147:0 127:x 101:) 98:1 90:2 85:( 82:2

Index

Euclidean plane
axial symmetry
isosceles triangle
scalene triangle
Lassak (2002)
convex set
Krakowski (1963)
quadrilateral
triangles
centrally symmetric
parallelograms
Barequet & Rogol (2007)
projective duality
de Valcourt (1966)
similarity transformations
Lassak (2002)
computer vision
Marola (1989)
digital image
grayscale
indicator function


Proceedings of the American Mathematical Society
doi
10.1090/S0002-9939-02-06404-3
MR
1908932
doi
10.1090/S0002-9939-03-07225-3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.