Knowledge

Class field theory

Source đź“ť

732:. In this case the reciprocity isomorphism of class field theory (or Artin reciprocity map) also admits an explicit description due to the Kronecker–Weber theorem. However, principal constructions of such more detailed theories for small algebraic number fields are not extendable to the general case of algebraic number fields, and different conceptual principles are in use in the general class field theory. 979:
finite Galois extensions as class field theory does in the abelian case. It also does not include an analog of the existence theorem in class field theory: the concept of class fields is absent in the Langlands correspondence. There are several other nonabelian theories, local and global, which provide alternatives to the Langlands correspondence point of view.
796:
The first two class field theories were very explicit cyclotomic and complex multiplication class field theories. They used additional structures: in the case of the field of rational numbers they use roots of unity, in the case of imaginary quadratic extensions of the field of rational numbers they
735:
The standard method to construct the reciprocity homomorphism is to first construct the local reciprocity isomorphism from the multiplicative group of the completion of a global field to the Galois group of its maximal abelian extension (this is done inside local class field theory) and then prove
978:
Often, the Langlands correspondence is viewed as a nonabelian class field theory. If and when it is fully established, it would contain a certain theory of nonabelian Galois extensions of global fields. However, the Langlands correspondence does not include as much arithmetical information about
491:
in the case of local fields with finite residue field and the idele class group in the case of global fields. The finite abelian extension corresponding to an open subgroup of finite index is called the class field for that subgroup, which gave the name to the theory.
958:
for number fields, and Iwasawa theory for number fields use very explicit but narrow class field theory methods or their generalizations. The open question is therefore to use generalizations of general class field theory in these three directions.
633: 373:, and in particular by developing the notion of class formations. Later, Neukirch found a proof of the main statements of global class field theory without using cohomological ideas. His method was explicit and algorithmic. 266: 910:, which became a standard way to learn class field theory for several generations of number theorists. One drawback of the cohomological method is its relative inexplicitness. As the result of local contributions by 72:
who coined the term before Hilbert's fundamental papers came out. The relevant ideas were developed in the period of several decades, giving rise to a set of conjectures by Hilbert that were subsequently proved by
926:
and also in relation to the work on explicit reciprocity formulas by many mathematicians, a very explicit and cohomology-free presentation of class field theory was established in the 1990s. (See, for example,
755:
which derives class field theory from axioms of class field theory. This derivation is purely topological group theoretical, while to establish the axioms one has to use the ring structure of the ground field.
852:
However, these very explicit theories could not be extended to more general number fields. General class field theory used different concepts and constructions which work over every global field.
759:
There are methods which use cohomology groups, in particular the Brauer group, and there are methods which do not use cohomology groups and are very explicit and fruitful for applications.
903:
in the 1930s to replace ideal classes, essentially clarifying and simplifying the description of abelian extensions of global fields. Most of the central results were proved by 1940.
379:
Explicit class field theory provides an explicit construction of maximal abelian extensions of a number field in various situations. This portion of the theory consists of
711: 677: 403: 986:, which studies algorithms to restore the original object (e.g. a number field or a hyperbolic curve over it) from the knowledge of its full absolute Galois group or 304: 357: 1038: 773:
The origins of class field theory lie in the quadratic reciprocity law proved by Gauss. The generalization took place as a long-term historical project, involving
1184:
Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions, notes on the work of Shinichi Mochizuki, Eur. J. Math., 2015
847: 819: 539: 887:. The first proofs of class field theory used substantial analytic methods. In the 1930s and subsequently saw the increasing use of infinite extensions and 153: 365:, which describes abelian extensions of local fields, and then use it to construct global class field theory. This was first done by Emil Artin and 1495: 1464: 1357: 1335: 1305: 1240: 724:, and the corresponding maximal abelian extension of the rationals is the field generated by all roots of unity. This is known as the 740:
group of the global field is trivial on the image of the multiplicative group of the global field. The latter property is called the
1487: 510:, the multiplicative group of a local field or the idele class group of the global field, with respect to the natural topology on 82: 1049: 1297: 860: 768: 725: 380: 1531: 987: 883:
was known by 1920 and all the main results by about 1930. One of the last classical conjectures to be proved was the
801:
provided another very explicit class field theory for a class of algebraic number fields. In positive characteristic
1228: 915: 884: 778: 745: 460: 366: 1064: 951: 880: 362: 797:
use elliptic curves with complex multiplication and their points of finite order. Much later, the theory of
69: 64:
is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to
43: 1203:
Class field theory, its three main generalisations, and applications, May 2021, EMS Surveys 8(2021) 107-133
868: 479:. In particular, one wishes to establish a one-to-one correspondence between finite abelian extensions of 406: 376:
Inside class field theory one can distinguish special class field theory and general class field theory.
325:
states that the reciprocity map can be used to give a bijection between the set of abelian extensions of
940: 896: 530: 121: 1277: 1253: 1006: 822: 488: 432:
In modern mathematical language, class field theory (CFT) can be formulated as follows. Consider the
1182: 680: 97: 694: 660: 386: 1139: 1054: 1010: 1002: 983: 972: 919: 892: 421: 1473: 1448: 923: 943:. Very explicit class field theory is used in many subareas of algebraic number theory such as 1491: 1460: 1353: 1331: 1301: 1236: 1131: 968: 729: 417: 132: 113: 65: 1201: 274: 1509: 1423: 1399: 1391: 1371: 1345: 1296:, Translations of Mathematical Monographs, vol. 121 (Second ed.), Providence, RI: 1265: 1249: 1156: 1121: 907: 900: 790: 370: 361:
A standard method for developing global class field theory since the 1930s was to construct
332: 47: 1505: 1367: 1315: 1016: 687:
theory which provides more information. For example, the abelianized absolute Galois group
416:
There are three main generalizations of class field theory: higher class field theory, the
1513: 1501: 1456: 1427: 1403: 1375: 1363: 1327: 1311: 1269: 1009:
of finite type over integers and their appropriate localizations and completions. It uses
752: 500: 456: 1434: 1261: 955: 944: 888: 832: 804: 774: 714: 639: 628:{\displaystyle \operatorname {Gal} (L/K)^{\operatorname {ab} }\to C_{K}/N_{L/K}(C_{L})} 1525: 1411: 1143: 911: 856: 826: 61: 17: 1438: 1289: 1109: 876: 864: 798: 782: 718: 642:
of the Galois group of the extension with the quotient of the idele class group of
475:
in terms of open subgroups of finite index in the topological object associated to
441: 74: 55: 1395: 261:{\displaystyle \theta _{L/F}:C_{F}/{N_{L/F}(C_{L})}\to \operatorname {Gal} (L/F),} 1157:
Reciprocity and IUT, talk at RIMS workshop on IUT Summit, July 2016, Ivan Fesenko
786: 51: 31: 1352:, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, 1224: 1059: 872: 713:
is (naturally isomorphic to) an infinite product of the group of units of the
647: 78: 1135: 463:, and it is abelian. The central aims of class field theory are: to describe 967:
There are three main generalizations, each of great interest. They are: the
495:
The fundamental result of general class field theory states that the group
993:
Another natural generalization is higher class field theory, divided into
895:
to give a clearer if more abstract formulation of the central result, the
410: 736:
that the product of all such local reciprocity maps when defined on the
1126: 1110:"Class field theory, its three main generalisations, and applications" 27:
Branch of algebraic number theory concerned with abelian extensions
751:
One of the methods to construct the reciprocity homomorphism uses
737: 467:
in terms of certain appropriate topological objects associated to
1005:
and higher global fields. The latter come as function fields of
657:
For some small fields, such as the field of rational numbers
383:, which can be used to construct the abelian extensions of 829:
used Witt duality to get a very easy description of the
789:
on ideals and completions, the theory of cyclotomic and
899:. An important step was the introduction of ideles by 891:'s theory of their Galois groups. This combined with 58:
fields using objects associated to the ground field.
1019: 835: 807: 697: 663: 542: 483:
and their norm groups in this topological object for
389: 335: 277: 156: 329:and the set of closed subgroups of finite index of 120:. This statement was generalized to the so called 1032: 841: 813: 744:and is a far reaching generalization of the Gauss 705: 671: 627: 397: 351: 298: 260: 88:One of the major results is: given a number field 1013:, and appropriate Milnor K-groups generalize the 859:stimulated further development, which led to the 982:Another generalization of class field theory is 906:Later the results were reformulated in terms of 521:. Equivalently, for any finite Galois extension 1095: 517:related to the specific structure of the field 1483:Grundlehren der mathematischen Wissenschaften 1382:Kawada, Yukiyosi (1955), "Class formations", 8: 1481: 1040:used in one-dimensional class field theory. 1324:Class Field Theory: from theory to practice 922:and a local and global reinterpretation by 471:, to describe finite abelian extensions of 46:whose goal is to describe all the abelian 1125: 1024: 1018: 834: 806: 699: 698: 696: 665: 664: 662: 616: 599: 595: 586: 580: 567: 555: 541: 391: 390: 388: 340: 334: 286: 282: 276: 244: 219: 202: 198: 193: 188: 182: 165: 161: 155: 147:, this law gives a canonical isomorphism 1235:, Redwood City, Calif.: Addison-Wesley, 1076: 849:-part of the reciprocity homomorphism. 1098:, p. 266, Ch. XI by Helmut Hasse. 420:(or 'Langlands correspondences'), and 143:to be any finite abelian extension of 1171:. Charleston, SC: BookSurge, LLC 2006 1083: 1001:. It describes abelian extensions of 963:Generalizations of class field theory 7: 1114:EMS Surveys in Mathematical Sciences 939:Class field theory is used to prove 428:Formulation in contemporary language 409:to construct abelian extensions of 950:Most main achievements toward the 124:; in the idelic language, writing 25: 1294:Local fields and their extensions 975:, and higher class field theory. 487:. This topological object is the 306:denotes the idelic norm map from 112:is canonically isomorphic to the 1414:(1956), "Class formations. II", 999:higher global class field theory 447:. It is of infinite degree over 314:. This isomorphism is named the 1416:J.Fac. Sci.Univ. Tokyo Sect. 1A 995:higher local class field theory 529:, there is an isomorphism (the 499:is naturally isomorphic to the 42:) is the fundamental branch of 1292:; Vostokov, Sergei V. (2002), 1279:History of class field theory. 1050:Non-abelian class field theory 685:very explicit but too specific 681:quadratic imaginary extensions 622: 609: 573: 564: 549: 252: 238: 229: 225: 212: 1: 1396:10.1215/s0012-7094-55-02217-1 1298:American Mathematical Society 879:and many others. The crucial 769:History of class field theory 1108:Fesenko, Ivan (2021-08-31). 728:, originally conjectured by 706:{\displaystyle \mathbb {Q} } 672:{\displaystyle \mathbb {Q} } 650:of the idele class group of 398:{\displaystyle \mathbb {Q} } 1169:Arithmetic duality theorems 1096:Cassels & Fröhlich 1967 988:algebraic fundamental group 947:and Galois modules theory. 455:of A over K is an infinite 1548: 1478:Algebraische Zahlentheorie 1086:, p. 1, Introduction. 766: 98:maximal abelian unramified 1486:. Vol. 322. Berlin: 1065:Langlands correspondences 885:principalisation property 746:quadratic reciprocity law 683:there is a more detailed 461:compact topological group 1350:Local class field theory 952:Langlands correspondence 881:Takagi existence theorem 363:local class field theory 1258:Algebraic Number Theory 954:for number fields, the 855:The famous problems of 726:Kronecker–Weber theorem 381:Kronecker–Weber theorem 299:{\displaystyle N_{L/F}} 44:algebraic number theory 1482: 1322:Gras, Georges (2003). 1200:Fesenko, Ivan (2021), 1181:Fesenko, Ivan (2015), 1034: 843: 815: 785:and Leopold Kronecker/ 742:global reciprocity law 707: 673: 629: 407:complex multiplication 399: 353: 352:{\displaystyle C_{F}.} 300: 262: 104:, the Galois group of 1035: 1033:{\displaystyle K_{1}} 941:Artin-Verdier duality 897:Artin reciprocity law 844: 816: 708: 674: 630: 531:Artin reciprocity map 400: 354: 301: 263: 122:Artin reciprocity law 1455:, Berlin, New York: 1017: 833: 805: 695: 661: 646:by the image of the 540: 501:profinite completion 489:multiplicative group 405:, and the theory of 387: 369:using the theory of 333: 275: 154: 83:Chebotarev's theorem 68:and it was actually 18:Abelian number field 1003:higher local fields 869:Philipp Furtwängler 451:; the Galois group 1532:Class field theory 1453:Class Field Theory 1440:Class Field Theory 1410:Kawada, Yukiyosi; 1254:Fröhlich, Albrecht 1233:Class field theory 1055:Anabelian geometry 1030: 1011:algebraic K-theory 984:anabelian geometry 973:anabelian geometry 929:Class Field Theory 920:Michiel Hazewinkel 893:Pontryagin duality 839: 811: 703: 669: 625: 436:abelian extension 422:anabelian geometry 395: 349: 296: 258: 81:(with the help of 36:class field theory 1497:978-3-540-65399-8 1466:978-3-540-15251-4 1359:978-0-19-504030-2 1346:Iwasawa, Kenkichi 1337:978-3-540-44133-5 1307:978-0-8218-3259-2 1242:978-0-201-51011-9 969:Langlands program 842:{\displaystyle p} 814:{\displaystyle p} 791:Kummer extensions 730:Leopold Kronecker 418:Langlands program 323:existence theorem 133:idele class group 114:ideal class group 48:Galois extensions 16:(Redirected from 1539: 1517: 1485: 1474:Neukirch, JĂĽrgen 1469: 1449:Neukirch, JĂĽrgen 1444: 1430: 1406: 1378: 1341: 1318: 1285: 1284: 1272: 1245: 1210: 1209: 1208: 1197: 1191: 1190: 1189: 1178: 1172: 1165: 1159: 1154: 1148: 1147: 1129: 1105: 1099: 1093: 1087: 1081: 1039: 1037: 1036: 1031: 1029: 1028: 908:group cohomology 901:Claude Chevalley 863:, and proofs by 861:reciprocity laws 848: 846: 845: 840: 820: 818: 817: 812: 712: 710: 709: 704: 702: 678: 676: 675: 670: 668: 634: 632: 631: 626: 621: 620: 608: 607: 603: 590: 585: 584: 572: 571: 559: 404: 402: 401: 396: 394: 371:group cohomology 358: 356: 355: 350: 345: 344: 305: 303: 302: 297: 295: 294: 290: 267: 265: 264: 259: 248: 228: 224: 223: 211: 210: 206: 192: 187: 186: 174: 173: 169: 21: 1547: 1546: 1542: 1541: 1540: 1538: 1537: 1536: 1522: 1521: 1520: 1498: 1488:Springer-Verlag 1472: 1467: 1457:Springer-Verlag 1447: 1443:(4.03 ed.) 1435:Milne, James S. 1433: 1409: 1381: 1360: 1344: 1338: 1328:Springer-Verlag 1321: 1308: 1290:Fesenko, Ivan B 1288: 1282: 1276:Conrad, Keith, 1275: 1256:, eds. (1967), 1250:Cassels, J.W.S. 1248: 1243: 1223: 1219: 1214: 1213: 1206: 1199: 1198: 1194: 1187: 1180: 1179: 1175: 1166: 1162: 1155: 1151: 1127:10.4171/emss/45 1107: 1106: 1102: 1094: 1090: 1082: 1078: 1073: 1046: 1020: 1015: 1014: 965: 937: 924:JĂĽrgen Neukirch 831: 830: 803: 802: 775:quadratic forms 771: 765: 753:class formation 717:taken over all 715:p-adic integers 693: 692: 659: 658: 612: 591: 576: 563: 538: 537: 515: 508: 457:profinite group 430: 385: 384: 336: 331: 330: 316:reciprocity map 278: 273: 272: 215: 194: 178: 157: 152: 151: 129: 28: 23: 22: 15: 12: 11: 5: 1545: 1543: 1535: 1534: 1524: 1523: 1519: 1518: 1496: 1470: 1465: 1445: 1431: 1412:Satake, Ichiro 1407: 1390:(2): 165–177, 1379: 1358: 1342: 1336: 1319: 1306: 1286: 1273: 1262:Academic Press 1246: 1241: 1220: 1218: 1215: 1212: 1211: 1192: 1173: 1160: 1149: 1120:(1): 107–133. 1100: 1088: 1075: 1074: 1072: 1069: 1068: 1067: 1062: 1057: 1052: 1045: 1042: 1027: 1023: 964: 961: 956:BSD conjecture 945:Iwasawa theory 936: 933: 931:by Neukirch.) 889:Wolfgang Krull 838: 810: 767:Main article: 764: 761: 701: 667: 640:abelianization 636: 635: 624: 619: 615: 611: 606: 602: 598: 594: 589: 583: 579: 575: 570: 566: 562: 558: 554: 551: 548: 545: 513: 506: 440:of a local or 429: 426: 393: 348: 343: 339: 293: 289: 285: 281: 269: 268: 257: 254: 251: 247: 243: 240: 237: 234: 231: 227: 222: 218: 214: 209: 205: 201: 197: 191: 185: 181: 177: 172: 168: 164: 160: 127: 92:, and writing 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1544: 1533: 1530: 1529: 1527: 1515: 1511: 1507: 1503: 1499: 1493: 1489: 1484: 1479: 1475: 1471: 1468: 1462: 1458: 1454: 1450: 1446: 1442: 1441: 1436: 1432: 1429: 1425: 1421: 1417: 1413: 1408: 1405: 1401: 1397: 1393: 1389: 1385: 1384:Duke Math. J. 1380: 1377: 1373: 1369: 1365: 1361: 1355: 1351: 1347: 1343: 1339: 1333: 1329: 1325: 1320: 1317: 1313: 1309: 1303: 1299: 1295: 1291: 1287: 1281: 1280: 1274: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1244: 1238: 1234: 1230: 1226: 1222: 1221: 1216: 1205: 1204: 1196: 1193: 1186: 1185: 1177: 1174: 1170: 1167:Milne, J. S. 1164: 1161: 1158: 1153: 1150: 1145: 1141: 1137: 1133: 1128: 1123: 1119: 1115: 1111: 1104: 1101: 1097: 1092: 1089: 1085: 1080: 1077: 1070: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1047: 1043: 1041: 1025: 1021: 1012: 1008: 1004: 1000: 996: 991: 989: 985: 980: 976: 974: 970: 962: 960: 957: 953: 948: 946: 942: 934: 932: 930: 925: 921: 917: 913: 912:Bernard Dwork 909: 904: 902: 898: 894: 890: 886: 882: 878: 874: 870: 866: 862: 858: 857:David Hilbert 853: 850: 836: 828: 824: 808: 800: 794: 792: 788: 784: 780: 776: 770: 762: 760: 757: 754: 749: 747: 743: 739: 733: 731: 727: 723: 720: 719:prime numbers 716: 690: 686: 682: 655: 653: 649: 645: 641: 617: 613: 604: 600: 596: 592: 587: 581: 577: 568: 560: 556: 552: 546: 543: 536: 535: 534: 532: 528: 524: 520: 516: 509: 502: 498: 493: 490: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 446: 443: 439: 435: 427: 425: 423: 419: 414: 412: 408: 382: 377: 374: 372: 368: 364: 359: 346: 341: 337: 328: 324: 319: 317: 313: 309: 291: 287: 283: 279: 255: 249: 245: 241: 235: 232: 220: 216: 207: 203: 199: 195: 189: 183: 179: 175: 170: 166: 162: 158: 150: 149: 148: 146: 142: 139:, and taking 138: 134: 130: 123: 119: 115: 111: 107: 103: 100:extension of 99: 95: 91: 86: 84: 80: 76: 71: 67: 63: 59: 57: 53: 49: 45: 41: 37: 33: 19: 1477: 1452: 1439: 1419: 1415: 1387: 1383: 1349: 1323: 1293: 1278: 1257: 1232: 1202: 1195: 1183: 1176: 1168: 1163: 1152: 1117: 1113: 1103: 1091: 1079: 998: 994: 992: 981: 977: 966: 949: 938: 935:Applications 928: 905: 877:Helmut Hasse 865:Teiji Takagi 854: 851: 795: 783:Ernst Kummer 779:genus theory 772: 758: 750: 741: 734: 721: 688: 684: 656: 651: 643: 637: 526: 522: 518: 511: 504: 496: 494: 484: 480: 476: 472: 468: 464: 452: 448: 444: 442:global field 437: 433: 431: 415: 378: 375: 360: 326: 322: 320: 315: 311: 307: 270: 144: 140: 136: 125: 117: 109: 105: 101: 93: 89: 87: 60: 39: 35: 29: 1422:: 353–389, 1225:Artin, Emil 787:Kurt Hensel 781:', work of 777:and their ' 32:mathematics 1514:0956.11021 1428:0101.02902 1404:0067.01904 1376:0604.12014 1270:0153.07403 1229:Tate, John 1217:References 1084:Milne 2020 1060:Frobenioid 873:Emil Artin 1144:239667749 1136:2308-2151 1071:Citations 916:John Tate 574:→ 547:⁡ 411:CM-fields 236:⁡ 230:→ 159:θ 66:Kronecker 1526:Category 1476:(1999). 1451:(1986), 1437:(2020), 1348:(1986), 1231:(1990), 1044:See also 131:for the 96:for the 1506:1697859 1368:0863740 1316:1915966 1007:schemes 799:Shimura 763:History 679:or its 638:of the 459:, so a 434:maximal 62:Hilbert 1512:  1504:  1494:  1463:  1426:  1402:  1374:  1366:  1356:  1334:  1314:  1304:  1268:  1239:  1142:  1134:  827:Satake 823:Kawada 271:where 75:Takagi 56:global 1283:(PDF) 1207:(PDF) 1188:(PDF) 1140:S2CID 738:idele 108:over 79:Artin 70:Weber 52:local 1492:ISBN 1461:ISBN 1354:ISBN 1332:ISBN 1302:ISBN 1237:ISBN 1132:ISSN 997:and 825:and 648:norm 367:Tate 321:The 85:). 77:and 54:and 1510:Zbl 1424:Zbl 1400:Zbl 1392:doi 1372:Zbl 1266:Zbl 1122:doi 691:of 544:Gal 525:of 503:of 413:. 318:. 310:to 233:Gal 135:of 116:of 50:of 40:CFT 30:In 1528:: 1508:. 1502:MR 1500:. 1490:. 1480:. 1459:, 1418:, 1398:, 1388:22 1386:, 1370:, 1364:MR 1362:, 1330:. 1326:. 1312:MR 1310:, 1300:, 1264:, 1260:, 1252:; 1227:; 1138:. 1130:. 1116:. 1112:. 990:. 971:, 918:, 914:, 875:, 871:, 867:, 821:, 793:. 748:. 654:. 569:ab 533:) 424:. 34:, 1516:. 1420:7 1394:: 1340:. 1146:. 1124:: 1118:8 1026:1 1022:K 837:p 809:p 722:p 700:Q 689:G 666:Q 652:L 644:K 623:) 618:L 614:C 610:( 605:K 601:/ 597:L 593:N 588:/ 582:K 578:C 565:) 561:K 557:/ 553:L 550:( 527:K 523:L 519:K 514:K 512:C 507:K 505:C 497:G 485:K 481:K 477:K 473:K 469:K 465:G 453:G 449:K 445:K 438:A 392:Q 347:. 342:F 338:C 327:F 312:F 308:L 292:F 288:/ 284:L 280:N 256:, 253:) 250:F 246:/ 242:L 239:( 226:) 221:L 217:C 213:( 208:F 204:/ 200:L 196:N 190:/ 184:F 180:C 176:: 171:F 167:/ 163:L 145:F 141:L 137:F 128:F 126:C 118:F 110:F 106:K 102:F 94:K 90:F 38:( 20:)

Index

Abelian number field
mathematics
algebraic number theory
Galois extensions
local
global
Hilbert
Kronecker
Weber
Takagi
Artin
Chebotarev's theorem
maximal abelian unramified
ideal class group
Artin reciprocity law
idele class group
local class field theory
Tate
group cohomology
Kronecker–Weber theorem
complex multiplication
CM-fields
Langlands program
anabelian geometry
global field
profinite group
compact topological group
multiplicative group
profinite completion
Artin reciprocity map

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑