Knowledge (XXG)

Acid-growth hypothesis

Source 📝

192:) When auxin level raise to a certain concentration, auxin will interact with F-Box protein and stimulate the auxin transcriptional repressors. This leads to degradation of auxin protein. Nevertheless, transcriptional response does not only regulate auxin itself but also mediate the gene expression for protein encoded for cell-wall modification (cell wall-remodelling agents). It was found that when treated plant with exogenous auxin, the expression of pectin methylesterases, 152:. Expansin is a pH-dependent hormone that could cause irreversible wall extension and wall stress relaxation without displaying any enzymatic activity. It is activated after detecting the acidification in cell wall solution, consequently breaking down hydrogen bonds or covalent bonds in the cell wall to allow 255:
species to more ancient members within the plant family tree is undeniable. Latter observations on different plant species could help identify conserved hormones and genes, or underlying mechanisms that support the theory, with the confirmation of SAUR19's role in auxin-induced hypocotyl elongation
231:
pH sensors, there is a lack of reliable method in quantifying the absolute apoplast pH value in plants. For instance, scientists made use of whole-organ resolution as part of their apoplastic pH measurement. However, such research methods on the cellular level wouldn't establish equivalent validity
210:
This acid-growth model has been updated to account for new mechanistic understanding. The decrease in apoplast pH value leads to cell-wall modification; the resulting increased extensibility of cell wall results in cell growth. The reduction in apoplastic pH is mediated by auxin-induced mechanisms.
126:
Within the 20-year timespan, many scientists have actively contributed to examining and reevaluating Hager's acid-growth hypothesis. Despite the accumulation of observations that evidently identify the final target of the auxin-induced action to be H-ATPase, which excretes H protons to the apoplast
239:
Limitations on particular plant organs: Most of the research has been limited to the aerial organs of plants. Instead of studying the growth-promoting effect that auxin brings to the aerial organs, David Pacheco Villalobos discovers the inhibitory effect auxin has on root
73:
Auxin was known to be a growth stimulant, but it was not until the year 1971 that Hager and Cleland proposed the "acid-growth hypothesis," which primarily suggested the correlation between auxin and apoplast acidification. The hypothesis states that susceptible
55:(SAUR) proteins, which in turn regulate protein phosphatases that modulate proton-pump activity. Acid growth is responsible for short-term (seconds to minutes) variation in growth rate, but many other mechanisms influence longer-term growth. 46:
then activates a range of enzymatic reactions which modifies the extensibility of plant cell walls. Since its formulation in 1971, the hypothesis has stimulated much research and debate. Most debates have concerned the signalling role of
82:
value. The following precise natural mechanism of the wall-loosening process; however, remained unknown at the time. With reference to auxin-induced elongation regarded as "acid-growth," Hager based his experiment on plasmolyzed
175:
Transcriptional modification is crucial in the growth and development of cells When a plant is treated with auxin treatment, auxin-induced transcriptional changes occurs within minutes, which indicates that both
78:
cells expel H protons through membrane-bound proton pumps into the apoplast (space between plant cell wall and cytoplasm) at an accelerated pace, causing a decrease in the apoplastic
144:
through possible hydrolysis of bonds. Back in the year 1971, Hager anticipated the possible existence of enzymes from his experiment which involves heat-killing and denaturation of
243:
Narrow coverage of plant species: Data that supported the early development of the theory initially originated from coleoptiles, epicotyls, and hypocotyls of a wide range of
494:
Hager A, Debus G, Edel HG, Stransky H, Serrano R (November 1991). "Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H(+)-ATPase".
993:
Pacheco-Villalobos D, Díaz-Moreno SM, van der Schuren A, Tamaki T, Kang YH, Gujas B, Novak O, Jaspert N, Li Z, Wolf S, Oecking C, Ljung K, Bulone V, Hardtke CS (May 2016).
101:
In auxin-treated coleoptile and stem (hypocotyl) sections, auxin induces proton extrusion into the apoplast, which could decrease the pH value by as much as one full unit.
140:
With H protons being excreted to the apoplast as one of the wall-loosening factors (WLF), scientists believed that the mechanism involves activation of
127:
and take in K ions through its rectifying K channel in the following years, the controversy has been carried over till today as an ongoing debate.
97:
for further re-examination. By 1900s, four core pieces of qualitative evidences solidified the core concept of the theory, as summarized below:
211:
With auxin acting as the primary signalling tool, it initiates apoplastic acidification via two mechanisms. Auxin stimulates the activity of the
215:(H-ATPase), acidifying the wall. Auxin changes the cell wall's composition directly by increasing the transcription of wall-modifying agents. 868:
Prat R, Gueissaz MB, Goldberg R (1984-12-01). "Effects of Ca2+ and Mg2+ on Elongation and H+ Secretion of Vigna radiata Hypocotyl Sections".
148:. However, it wasn't until 1992 when Simon McQueen-Mason and his collaborators discovered the most pH-responsive substance in the apoplast- 156:
slipping- a mechanism that allows microfibrils to slip into the cell wall matrix without extension. Meanwhile, it could also loosen the
117:(Fc) could also induce rapid cell elongation and growth, despite its primary role in promoting extensive acidification of the apoplast. 34:. It was originally proposed by Achim Hager and Robert Cleland in 1971. They hypothesized that the naturally occurring plant hormone, 111:
Acidic buffers of pH 5.0 could accelerate cell elongation at the same or even greater rate in comparison to that induced by auxin.
599:
Hager A (December 2003). "Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects".
1044:"Constitutive Expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in Tomato Confers Auxin-Independent Hypocotyl Elongation" 459:
Durand H, Rayle DL (June 1973). "Physiological evidence for auxin-induced hydrogen-ion secretion and the epidermal paradox".
251:
species. To note, it all began with observations from sunflower. The importance to expand the research territory beyond
212: 184:
is necessary for auxin-induced growth. One of the major mechanisms for auxin control in plant is the transport
93:). Subsequently, the wall-acidification model initiated continual controversy among scientists, and act as the 731:"Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize" 946:"Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor" 177: 529:
Rayle DL (March 1973). "Auxin-induced hydrogen-ion secretion in Avena coleoptiles and its implications".
181: 695: 227:
Measurement of pH value: Despite optimal high-sensitivity detection brought by the implementation of
1090: 233: 51:
and the molecular nature of cell wall modification. The current version holds that auxin activates
189: 185: 141: 1042:
Spartz AK, Lor VS, Ren H, Olszewski NE, Miller ND, Wu G, Spalding EP, Gray WM (February 2017).
1073: 1024: 975: 926: 850: 801: 760: 711: 668: 616: 581: 546: 511: 476: 441: 390: 325: 276: 89: 1063: 1055: 1014: 1006: 965: 957: 916: 908: 877: 840: 832: 791: 750: 742: 703: 658: 650: 608: 573: 538: 503: 468: 431: 421: 382: 355: 317: 145: 1108: 252: 105: 27: 699: 386: 359: 163:
within the cell wall to enable the cell to take in more water and expand via turgor and
1068: 1043: 1019: 995:"The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium" 994: 970: 945: 921: 896: 881: 845: 820: 755: 730: 23: 663: 638: 577: 436: 409: 1102: 281: 244: 228: 564:
Rayle DL, Cleland R (1977). "Control of plant cell enlargement by hydrogen ions".
373:
Du M, Spalding EP, Gray WM (2020-03-04). "Rapid Auxin-Mediated Cell Expansion".
248: 223:
There are several aspects of the theory that remain contentious. These include:
205: 160: 897:"Rapid apoplastic pH measurement in Arabidopsis leaves using a fluorescent dye" 735:
Proceedings of the National Academy of Sciences of the United States of America
612: 271: 232:
at the quantitative level due to the plausible leaking of the signal from the
153: 114: 75: 746: 686:
Cosgrove DJ (September 2000). "Loosening of plant cell walls by expansins".
157: 94: 84: 1077: 1028: 979: 930: 854: 836: 805: 764: 715: 672: 620: 550: 515: 480: 445: 394: 329: 108:(pH~7) into the apoplast could inhibit auxin-induced elongation and growth. 654: 1010: 961: 796: 779: 729:
Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (October 2006).
266: 193: 149: 39: 1059: 585: 426: 542: 507: 472: 321: 164: 912: 707: 639:"Two endogenous proteins that induce cell wall extension in plants" 48: 35: 31: 38:(indole-3-acetic acid, IAA), induces H proton extrusion into the 410:"Enhancement of wall loosening and elongation by acid solutions" 43: 821:"Pectin methylesterases and pectin dynamics in pollen tubes" 637:
McQueen-Mason S, Durachko DM, Cosgrove DJ (November 1992).
196:
and other protein that changes cell wall's shape and size.
79: 944:
Gjetting KS, Ytting CK, Schulz A, Fuglsang AT (May 2012).
256:
in tomatoes being one of the more recent discoveries.
22:
is a theory that explains the expansion dynamics of
346:Cleland R (1971-06-01). "Cell Wall Extension". 308:Hager A, Menzel H, Krauss A (March 1971). "". 8: 778:Arsuffi G, Braybrook SA (5 January 2018). 1067: 1018: 969: 920: 844: 795: 754: 662: 435: 425: 236:into those originating from the apoplast. 566:Current Topics in Developmental Biology 293: 188:response through singling from F-box ( 632: 630: 59:History and development of the theory 7: 895:Villiers F, Kwak JM (January 2013). 819:Bosch M, Hepler PK (December 2005). 341: 339: 303: 301: 299: 297: 387:10.1146/annurev.pp.22.060171.001213 360:10.1146/annurev.pp.22.060171.001213 882:10.1093/oxfordjournals.pcp.a076858 14: 375:Annual Review of Plant Physiology 348:Annual Review of Plant Physiology 950:Journal of Experimental Botany 901:Plant Signaling & Behavior 784:Journal of Experimental Botany 780:"Acid growth: an ongoing trip" 136:Discovery of hydrolytic enzyme 122:Constraints and interpretation 1: 578:10.1016/S0070-2153(08)60746-2 408:Rayle DL, Cleland R (1970). 213:plasma-membrane proton pump 1125: 203: 42:. Such derived apoplastic 870:Plant and Cell Physiology 613:10.1007/s10265-003-0110-x 601:Journal of Plant Research 104:Infiltration of neutral 747:10.1073/pnas.0605979103 171:Transcriptional control 837:10.1105/tpc.105.037473 20:acid-growth hypothesis 655:10.1105/tpc.4.11.1425 200:Modern interpretation 1011:10.1105/tpc.15.01057 1060:10.1104/pp.16.01514 700:2000Natur.407..321C 427:10.1104/pp.46.2.250 234:endomembrane system 131:Ongoing development 69:Emergence of theory 962:10.1093/jxb/ers040 797:10.1093/jxb/erx390 543:10.1007/BF00390285 508:10.1007/BF00202963 473:10.1007/BF00387475 322:10.1007/BF00386886 219:Unsolved questions 190:regulatory protein 142:hydrolytic enzymes 53:small auxin-up RNA 913:10.4161/psb.22587 277:Plant development 146:enzyme inhibitors 90:Helianthus annuus 64:Early development 1116: 1093: 1088: 1082: 1081: 1071: 1054:(2): 1453–1462. 1048:Plant Physiology 1039: 1033: 1032: 1022: 990: 984: 983: 973: 941: 935: 934: 924: 892: 886: 885: 876:(8): 1459–1467. 865: 859: 858: 848: 816: 810: 809: 799: 775: 769: 768: 758: 741:(40): 14664–71. 726: 720: 719: 708:10.1038/35030000 683: 677: 676: 666: 634: 625: 624: 596: 590: 589: 561: 555: 554: 526: 520: 519: 491: 485: 484: 456: 450: 449: 439: 429: 405: 399: 398: 370: 364: 363: 343: 334: 333: 305: 87:from sunflower ( 1124: 1123: 1119: 1118: 1117: 1115: 1114: 1113: 1099: 1098: 1097: 1096: 1089: 1085: 1041: 1040: 1036: 992: 991: 987: 943: 942: 938: 894: 893: 889: 867: 866: 862: 831:(12): 3219–26. 818: 817: 813: 777: 776: 772: 728: 727: 723: 694:(6802): 321–6. 685: 684: 680: 649:(11): 1425–33. 636: 635: 628: 598: 597: 593: 563: 562: 558: 528: 527: 523: 493: 492: 488: 458: 457: 453: 407: 406: 402: 372: 371: 367: 345: 344: 337: 307: 306: 295: 290: 263: 221: 208: 202: 173: 138: 133: 124: 71: 66: 61: 12: 11: 5: 1122: 1120: 1112: 1111: 1101: 1100: 1095: 1094: 1083: 1034: 1005:(5): 1009–24. 999:The Plant Cell 985: 956:(8): 3207–18. 936: 887: 860: 825:The Plant Cell 811: 790:(2): 137–146. 770: 721: 678: 643:The Plant Cell 626: 607:(6): 483–505. 591: 556: 521: 486: 451: 420:(2): 250–253. 400: 365: 354:(1): 197–222. 335: 292: 291: 289: 286: 285: 284: 282:Plant hormones 279: 274: 269: 262: 259: 258: 257: 241: 237: 220: 217: 204:Main article: 201: 198: 172: 169: 137: 134: 132: 129: 123: 120: 119: 118: 112: 109: 102: 70: 67: 65: 62: 60: 57: 13: 10: 9: 6: 4: 3: 2: 1121: 1110: 1107: 1106: 1104: 1092: 1087: 1084: 1079: 1075: 1070: 1065: 1061: 1057: 1053: 1049: 1045: 1038: 1035: 1030: 1026: 1021: 1016: 1012: 1008: 1004: 1000: 996: 989: 986: 981: 977: 972: 967: 963: 959: 955: 951: 947: 940: 937: 932: 928: 923: 918: 914: 910: 907:(1): e22587. 906: 902: 898: 891: 888: 883: 879: 875: 871: 864: 861: 856: 852: 847: 842: 838: 834: 830: 826: 822: 815: 812: 807: 803: 798: 793: 789: 785: 781: 774: 771: 766: 762: 757: 752: 748: 744: 740: 736: 732: 725: 722: 717: 713: 709: 705: 701: 697: 693: 689: 682: 679: 674: 670: 665: 660: 656: 652: 648: 644: 640: 633: 631: 627: 622: 618: 614: 610: 606: 602: 595: 592: 587: 583: 579: 575: 571: 567: 560: 557: 552: 548: 544: 540: 536: 532: 525: 522: 517: 513: 509: 505: 502:(4): 527–37. 501: 497: 490: 487: 482: 478: 474: 470: 467:(2): 185–93. 466: 462: 455: 452: 447: 443: 438: 433: 428: 423: 419: 415: 414:Plant Physiol 411: 404: 401: 396: 392: 388: 384: 380: 376: 369: 366: 361: 357: 353: 349: 342: 340: 336: 331: 327: 323: 319: 315: 311: 304: 302: 300: 298: 294: 287: 283: 280: 278: 275: 273: 270: 268: 265: 264: 260: 254: 250: 246: 242: 238: 235: 230: 226: 225: 224: 218: 216: 214: 207: 199: 197: 195: 191: 187: 183: 179: 178:transcription 170: 168: 166: 162: 159: 155: 151: 147: 143: 135: 130: 128: 121: 116: 113: 110: 107: 103: 100: 99: 98: 96: 92: 91: 86: 81: 77: 68: 63: 58: 56: 54: 50: 45: 44:acidification 41: 37: 33: 29: 25: 21: 16: 1086: 1051: 1047: 1037: 1002: 998: 988: 953: 949: 939: 904: 900: 890: 873: 869: 863: 828: 824: 814: 787: 783: 773: 738: 734: 724: 691: 687: 681: 646: 642: 604: 600: 594: 569: 565: 559: 537:(1): 63–73. 534: 530: 524: 499: 495: 489: 464: 460: 454: 417: 413: 403: 378: 374: 368: 351: 347: 316:(1): 47–75. 313: 309: 222: 209: 174: 161:microfibrils 139: 125: 88: 72: 52: 19: 17: 15: 572:: 187–214. 381:: 379–402. 240:elongation. 229:fluorescent 206:Acid growth 182:translation 115:Fusiococcin 288:References 272:Plant cell 253:angiosperm 154:xyloglucan 85:hypocotyls 76:coleoptile 194:expansins 186:inhibitor 158:cellulose 95:blueprint 1103:Category 1078:27999086 1029:27169463 980:22407646 931:23221761 855:16322606 806:29211894 765:16984999 716:11014181 673:11538167 621:12937999 551:24458665 516:24186531 481:24458722 446:16657445 395:32131604 330:24488103 267:Meristem 261:See also 150:expansin 40:apoplast 1091:Table 1 1069:5291034 1020:4904674 971:3350929 922:3745564 846:1315365 756:1595409 696:Bibcode 245:monocot 165:osmosis 1109:Auxins 1076:  1066:  1027:  1017:  978:  968:  929:  919:  853:  843:  804:  763:  753:  714:  688:Nature 671:  664:160229 661:  619:  584:  549:  531:Planta 514:  496:Planta 479:  461:Planta 444:  437:396573 434:  393:  328:  310:Planta 106:buffer 32:plants 28:organs 586:20280 249:dicot 49:auxin 36:auxin 24:cells 1074:PMID 1025:PMID 976:PMID 927:PMID 851:PMID 802:PMID 761:PMID 712:PMID 669:PMID 617:PMID 582:PMID 547:PMID 512:PMID 477:PMID 442:PMID 391:PMID 326:PMID 247:and 180:and 26:and 18:The 1064:PMC 1056:doi 1052:173 1015:PMC 1007:doi 966:PMC 958:doi 917:PMC 909:doi 878:doi 841:PMC 833:doi 792:doi 751:PMC 743:doi 739:103 704:doi 692:407 659:PMC 651:doi 609:doi 605:116 574:doi 539:doi 535:114 504:doi 500:185 469:doi 465:114 432:PMC 422:doi 383:doi 356:doi 318:doi 314:100 30:in 1105:: 1072:. 1062:. 1050:. 1046:. 1023:. 1013:. 1003:28 1001:. 997:. 974:. 964:. 954:63 952:. 948:. 925:. 915:. 903:. 899:. 874:25 872:. 849:. 839:. 829:17 827:. 823:. 800:. 788:69 786:. 782:. 759:. 749:. 737:. 733:. 710:. 702:. 690:. 667:. 657:. 645:. 641:. 629:^ 615:. 603:. 580:. 570:11 568:. 545:. 533:. 510:. 498:. 475:. 463:. 440:. 430:. 418:46 416:. 412:. 389:. 379:71 377:. 352:22 350:. 338:^ 324:. 312:. 296:^ 167:. 80:pH 1080:. 1058:: 1031:. 1009:: 982:. 960:: 933:. 911:: 905:8 884:. 880:: 857:. 835:: 808:. 794:: 767:. 745:: 718:. 706:: 698:: 675:. 653:: 647:4 623:. 611:: 588:. 576:: 553:. 541:: 518:. 506:: 483:. 471:: 448:. 424:: 397:. 385:: 362:. 358:: 332:. 320::

Index

cells
organs
plants
auxin
apoplast
acidification
auxin
coleoptile
pH
hypocotyls
Helianthus annuus
blueprint
buffer
Fusiococcin
hydrolytic enzymes
enzyme inhibitors
expansin
xyloglucan
cellulose
microfibrils
osmosis
transcription
translation
inhibitor
regulatory protein
expansins
Acid growth
plasma-membrane proton pump
fluorescent
endomembrane system

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.