Knowledge (XXG)

Acousto-optics

Source đź“ť

1497: 1524:
beam gives a limitation on the switching speed, and hence limits the modulation bandwidth. The finite velocity of the acoustic wave means the light cannot be fully switched on or off until the acoustic wave has traveled across the light beam. So to increase the bandwidth the light must be focused to a small diameter at the location of the acousto-optic interaction. This minimum focused size of the beam represents the limit for the bandwidth.
1520:
the intensity at the Bragg angle increases. So the acousto-optic device is modulating the output along the Bragg diffraction angle, switching it on and off. The device is operated as a modulator by keeping the acoustic wavelength (frequency) fixed and varying the drive power to vary the amount of light in the deflected beam.
2566:
Input light need not be polarized for a non-collinear design. Unpolarized input light is scattered into orthogonally polarized beams separated by the scattering angle for the particular design and wavelength. If the optical design provides an appropriate beam block for the unscattered light, then two
1519:
A simple method of modulating the optical beam travelling through the acousto-optic device is done by switching the acoustic field on and off. When off the light beam is undiverted, the intensity of light directed at the Bragg diffraction angle is zero. When switched on and Bragg diffraction occurs,
1001:
In contrast, Bragg diffraction occurs at higher acoustic frequencies, usually exceeding 100 MHz. The observed diffraction pattern generally consists of two diffraction maxima; these are the zeroth and the first orders. However, even these two maxima only appear at definite incidence angles close
69:
of a medium due to the presence of sound waves in that medium. Sound waves produce a refractive index grating in the material, and it is this grating that is "seen" by the light wave. These variations in the refractive index, due to the pressure fluctuations, may be detected optically by refraction,
1335:
takes over from Raman–Nath diffraction. It is simply a fact that as the acoustic frequency increases, the number of observed maxima is gradually reduced due to the angular selectivity of the acousto-optic interaction. Traditionally, the type of diffraction, Bragg or Raman–Nath, is determined by the
1523:
There are several limitations associated with the design and performance of acousto-optic modulators. The acousto-optic medium must be designed carefully to provide maximum light intensity in a single diffracted beam. The time taken for the acoustic wave to travel across the diameter of the light
2575:
An acousto-optic deflector spatially controls the optical beam. In the operation of an acousto-optic deflector the power driving the acoustic transducer is kept on, at a constant level, while the acoustic frequency is varied to deflect the beam to different angular positions. The acousto-optic
1532:
The principle behind the operation of acousto-optic tunable filters is based on the wavelength of the diffracted light being dependent on the acoustic frequency. By tuning the frequency of the acoustic wave, the desired wavelength of the optical wave can be diffracted acousto-optically.
2258: 970:
Raman–Nath diffraction is observed with relatively low acoustic frequencies, typically less than 10 MHz, and with a small acousto-optic interaction length, â„“, which is typically less than 1 cm. This type of diffraction occurs at an arbitrary angle of incidence,
2567:
beams (images) are formed in an optical passband that is nearly equivalent in both orthogonally linearly polarized output beams (differing by the Stokes and Anti-Stokes scattering parameter). Because of dispersion, these beams move slightly with scanning rf frequency.
2754:(AOMs). In an AOM, only the amplitude of the sound wave is modulated (to modulate the intensity of the diffracted laser beam), whereas in an AOD, both the amplitude and frequency are adjusted, making the engineering requirements tighter for an AOD than an AOM. 1861: 2561: 53: 1209: 771: 2691: 1470: 2043: 2131: 565: 883: 161:
and Nath (1937) have designed a general ideal model of interaction taking into account several orders. This model was developed by Phariseau (1956) for diffraction including only one diffraction order.
2435: 73:
The acousto-optic effect is extensively used in the measurement and study of ultrasonic waves. However, the growing principal area of interest is in acousto-optical devices for the deflection,
351: 1587:: the wedge angle between the input and output faces of the filter cell (the wedge angle is necessary for eliminating the angular shift of the diffracted beam caused by frequency changing); 1029:. The first order maximum or the Bragg maximum is formed due to a selective reflection of the light from the wave fronts of ultrasonic wave. The Bragg angle is given by the expression, 784:
given by the speed of the sound wave in the medium. Light which then passes through the transparent material, is diffracted due to this generated refraction index, forming a prominent
464:
medium. This then gives rise to the variation of the refractive index. For a plane acoustic wave propagating along the z axis, the change in the refractive index can be expressed as
1738: 2604: 1539:
The polarization of the incident light can be either ordinary or extraordinary. For the definition, we assume ordinary polarization. Here the following list of symbols is used,
2466: 1636: 1516:, properties of the optical wave may be modulated. The acousto-optic interaction also makes it possible to modulate the optical beam by both temporal and spatial modulation. 196: 2341: 1027: 996: 813: 2714: 2627: 2361: 1703: 1607: 1232: 930: 906: 666: 2381: 2314: 2287: 1585: 1559: 615: 2458: 1658: 1386: 1360: 384: 134:
has a history of similar duration, again starting with the ancient Greeks. In contrast, the acousto-optic effect has had a relatively short history, beginning with
2100: 2073: 1730: 1680: 1326: 1299: 595: 458: 276: 249: 2734: 2747:
was awarded to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman. Another application of acoustic-optical deflection is optical trapping of small molecules.
1536:
There are two types of the acousto-optic filters, the collinear and non-collinear filters. The type of filter depends on geometry of acousto-optic interaction.
2766:
is used as a standard to compare when measuring photoelastic coefficients. Lithium niobate is often used in high frequency devices. Softer materials, such as
2123: 1272: 1252: 950: 639: 428: 408: 222: 3098: 2927: 1035: 674: 2635: 2881: 1483:
limit the frequency range of acousto-optic interaction. As a consequence, the speed of operation of acousto-optic devices is also limited.
1475:
which is known as the Klein–Cook parameter. Since, in general, only the first order diffraction maximum is used in acousto-optic devices,
1394: 2253:{\displaystyle (9)\ \nu (\alpha )=\nu _{110}{\sqrt {\cos ^{2}\alpha +\left({\frac {\nu _{001}}{\nu _{110}}}\right)^{2}\sin ^{2}\alpha }}} 1869: 2834: 470: 142:
by an acoustic wave, being propagated in a medium of interaction, in 1922. This was then confirmed with experimentation in 1932 by
821: 3172: 2740: 2460:
between the diffracted and non-diffracted beams defines the view field of the filter; it can be calculated from the formula,
2389: 2854:
Gal, M. (2005). "Modulation and switching of light" (Lecture Notes on Optoelectronics). The University of New South Wales.
3035: 2898: 104: 284: 154: 111:
applications, where optically generated and optical measurements of ultrasound gives a non-contact method of imaging.
202: 3217: 1856:{\displaystyle (7)\ n_{\varphi }={\frac {n_{0}n_{e}}{\sqrt {n_{0}^{2}\cos \varphi +n_{e}^{2}\sin ^{2}\varphi }}}} 99:
Along with the current applications, acousto-optics presents interesting possible application. It can be used in
2783: 3102: 2819: 2814: 2751: 960: 2744: 100: 2923: 2556:{\displaystyle (11)\ \beta =\arcsin \left({\frac {\lambda f_{0}}{n_{0}\nu }}\sin \alpha +\varphi \right)} 2805:, with slow acoustic waves make high efficiency devices at lower frequencies, and give high resolution. 2579: 461: 2576:
deflector makes use of the acoustic frequency dependent diffraction angle, where a change in the angle
668:
is the amplitude of variation in the refractive index generated by the acoustic wave, and is given as,
3202: 2988: 1614: 1513: 139: 85:, which have made the acousto-optic effect easier to observe and measure. Technical progress in both 81:
and frequency shifting of light beams. This is due to the increasing availability and performance of
3152: 2873: 2798: 2779: 785: 777: 181: 3212: 3132: 2767: 2319: 1005: 974: 791: 46: 3077: 3036:"Optical properties of solid and liquid medias subjected to high-frequency elastic vibrations" 3016: 2877: 2771: 2699: 2609: 2346: 1688: 1592: 1480: 1476: 1332: 1217: 964: 915: 891: 648: 618: 135: 78: 2366: 2292: 2265: 1570: 1544: 600: 3050: 3006: 2996: 2957: 2829: 2824: 2802: 2443: 1643: 1496: 1365: 1339: 359: 90: 66: 2078: 2051: 1708: 1665: 1479:
is preferable due to the lower optical losses. However, the acousto-optic requirements for
1304: 1277: 573: 436: 254: 227: 2719: 788:. This diffraction pattern corresponds with a conventional diffraction grating at angles 171: 3054: 2948:
Brillouin, L. (1922). "Diffusion of Light and X-rays by a Transparent Homogeneous Body".
2992: 3222: 3207: 3011: 2976: 2108: 1257: 1237: 935: 624: 413: 393: 207: 123: 86: 3196: 2102:) polarized beams are determined by taking into account their dispersive dependence. 1509: 147: 2763: 175: 2961: 26:
that studies the interactions between sound waves and light waves, especially the
1660:: the angle between deflected and non-deflected light at the central frequency; 158: 143: 127: 27: 909: 642: 108: 93: 74: 38: 2902: 1609:: the angle between the incident light wave vector and axis of the crystal; 2775: 1505: 1204:{\displaystyle (5)\ \sin \theta _{B}=-{\frac {\lambda f}{2n_{i}\nu }}\left,} 956: 199: 131: 3020: 2316:
are the sound velocities along the axes and , consecutively. The value of
1561:: the angle between the acoustic wave vector and the crystallographic axis 766:{\displaystyle (3)\ \Delta n=-{\frac {1}{2}}\sum _{j}n_{0}^{3}p_{zj}a_{j},} 3001: 224:. Photoelasticity is the variation of the optical indicatrix coefficients 52: 2686:{\displaystyle (12)\ \Delta \theta _{d}={\frac {\lambda }{\nu }}\Delta f} 1638:: the angle between the input face of the cell and acoustic wave vector; 781: 96:
has brought valuable benefits to acousto-optic components' improvements.
153:
The particular case of diffraction on the first order, under a certain
23: 387: 157:, (also predicted by Brillouin), has been observed by Rytow in 1935. 119: 1465:{\displaystyle (6)\ Q={\frac {2\pi \lambda \ell f^{2}}{n\nu ^{2}}},} 70:
diffraction, and interference effects; reflection may also be used.
2038:{\displaystyle (8)\ f_{i}(\varphi )={\frac {\nu }{\lambda }}\left} 1495: 460:
are a result of the acoustic wave which has been excited within a
82: 51: 42: 34: 31: 65:
In general, acousto-optic effects are based on the change of the
1504:
By varying the parameters of the acoustic wave, including the
560:{\displaystyle (2)\ n(z,t)=n_{0}+\Delta n\cos(\Omega t-Kz),\,} 1732:
of the filter are defined by the following set of equations,
1234:
is the wavelength of the incident light wave (in a vacuum),
1301:
is the refractive index for the incident optical wave, and
878:{\displaystyle (4)\ \Lambda \sin(\theta _{m})=m\lambda ,\,} 1328:
is the refractive index for the diffracted optical waves.
3072: 3070: 3068: 3066: 3064: 2430:{\displaystyle (10)\ \alpha _{\ell }=\varphi +\alpha } 433:
Specifically in the acousto-optic effect, the strains
2722: 2702: 2638: 2612: 2582: 2469: 2446: 2392: 2369: 2349: 2322: 2295: 2268: 2134: 2111: 2081: 2054: 1872: 1741: 1711: 1691: 1668: 1646: 1617: 1595: 1573: 1547: 1397: 1368: 1342: 1307: 1280: 1260: 1240: 1220: 1038: 1008: 977: 938: 918: 894: 824: 794: 677: 651: 627: 603: 576: 473: 439: 416: 396: 362: 287: 257: 230: 210: 184: 56:
A diffraction image showing the acousto-optic effect.
959:produces two distinct diffraction types. These are 2728: 2708: 2685: 2621: 2598: 2555: 2452: 2429: 2375: 2355: 2335: 2308: 2281: 2252: 2117: 2094: 2067: 2037: 1855: 1724: 1697: 1674: 1652: 1630: 1601: 1579: 1553: 1464: 1380: 1354: 1320: 1293: 1266: 1246: 1226: 1203: 1021: 990: 944: 924: 900: 877: 807: 765: 660: 633: 609: 589: 559: 452: 422: 402: 378: 345: 270: 243: 216: 190: 2762:All materials display the acousto-optic effect. 955:Light diffracted by an acoustic wave of a single 2977:"On the scattering of light by supersonic waves" 346:{\displaystyle (1)\ \Delta B_{i}=p_{ij}a_{j},\,} 170:The acousto-optic effect is a specific case of 2870:Laser Ultrasonics: Techniques and Applications 815:from the original direction, and is given by, 2868:Scruby, C.B.; Drain, L.E. (January 1, 1990). 776:The generated refractive index, (2), gives a 8: 932:is the wavelength of the acoustic wave and 122:has had a very long and full history, from 2716:is the optical wavelength of the beam and 174:, where there is a change of a material's 3127: 3125: 3123: 3121: 3119: 3099:"ELECTRO-OPTIC AND ACOUSTO-OPTIC DEVICES" 3010: 3000: 2721: 2701: 2667: 2658: 2637: 2611: 2606:as a function of the change in frequency 2590: 2581: 2521: 2509: 2499: 2468: 2445: 2409: 2391: 2368: 2348: 2327: 2321: 2300: 2294: 2273: 2267: 2236: 2226: 2214: 2204: 2198: 2178: 2172: 2166: 2133: 2110: 2086: 2080: 2059: 2053: 2004: 1985: 1980: 1967: 1962: 1956: 1926: 1907: 1889: 1871: 1838: 1828: 1823: 1801: 1796: 1784: 1774: 1767: 1758: 1740: 1716: 1710: 1690: 1667: 1645: 1622: 1616: 1594: 1572: 1546: 1450: 1435: 1416: 1396: 1367: 1341: 1312: 1306: 1285: 1279: 1259: 1239: 1219: 1182: 1177: 1164: 1159: 1141: 1131: 1120: 1114: 1091: 1073: 1061: 1037: 1013: 1007: 982: 976: 937: 917: 893: 874: 853: 823: 799: 793: 754: 741: 731: 726: 716: 702: 676: 650: 626: 602: 581: 575: 556: 511: 472: 444: 438: 415: 395: 367: 361: 342: 333: 320: 307: 286: 262: 256: 235: 229: 209: 183: 2863: 2861: 16:The study of sound and light interaction 2899:"Optics Highlights: 1. Ancient History" 2846: 1331:In general, there is no point at which 2739:AOD technology has made practical the 2736:is the velocity of the acoustic wave. 1274:is the velocity of the acoustic wave, 2125:, depends on the angle α, such that, 597:is the undisturbed refractive index, 7: 2048:Refractive indices of the ordinary ( 1388:respectively, where Q is given by, 130:and modern times. As with optics, 3055:10.1051/jphysrad:01932003010046400 2677: 2651: 2613: 2599:{\displaystyle \Delta \theta _{d}} 2583: 919: 837: 690: 652: 604: 535: 520: 300: 14: 3173:"The Nobel Prize in Physics 2001" 3153:"Acousto-optic effect: Deflector" 2750:AODs are essentially the same as 150:, and also by Lucas and Biquard. 2930:from the original on 3 July 2007 3133:"Acousto-optic effect: Filters" 3034:Lucas, R.; Biquard, P. (1932). 2975:Debye, P.; Sears, F.W. (1932). 1631:{\displaystyle \alpha _{\ell }} 2645: 2639: 2476: 2470: 2399: 2393: 2156: 2150: 2141: 2135: 2025: 2013: 1997: 1991: 1950: 1938: 1901: 1895: 1879: 1873: 1748: 1742: 1404: 1398: 1045: 1039: 952:is the integer order maximum. 859: 846: 831: 825: 684: 678: 550: 532: 501: 489: 480: 474: 294: 288: 1: 2835:Schaefer–Bergmann diffraction 2343:is determined by the angles 1528:Acousto-optic tunable filter 191:{\displaystyle \varepsilon } 105:structural health monitoring 2962:10.1051/anphys/192209170088 2336:{\displaystyle \alpha _{1}} 1254:is the acoustic frequency, 1022:{\displaystyle \theta _{B}} 991:{\displaystyle \theta _{0}} 808:{\displaystyle \theta _{n}} 3239: 2924:"The History of Acoustics" 2741:Bose–Einstein condensation 1705:and the central frequency 1682:: the transducer length. 1500:An acousto-optic modulator 645:of the acoustic wave, and 2752:acousto-optic modulators 2709:{\displaystyle \lambda } 2622:{\displaystyle \Delta f} 2571:Acousto-optic deflectors 2356:{\displaystyle \varphi } 1698:{\displaystyle \varphi } 1602:{\displaystyle \varphi } 1227:{\displaystyle \lambda } 925:{\displaystyle \Lambda } 901:{\displaystyle \lambda } 661:{\displaystyle \Delta n} 2820:Acousto-optic deflector 2815:Acousto-optic modulator 2376:{\displaystyle \alpha } 2309:{\displaystyle v_{001}} 2282:{\displaystyle v_{110}} 1580:{\displaystyle \gamma } 1554:{\displaystyle \alpha } 1492:Acousto-optic modulator 610:{\displaystyle \Omega } 45:in general) through an 3078:"Acousto-optic effect" 2745:Nobel Prize in Physics 2730: 2710: 2687: 2623: 2600: 2557: 2454: 2453:{\displaystyle \beta } 2431: 2377: 2357: 2337: 2310: 2283: 2254: 2119: 2096: 2069: 2039: 1857: 1726: 1699: 1676: 1654: 1653:{\displaystyle \beta } 1632: 1603: 1581: 1555: 1501: 1466: 1382: 1381:{\displaystyle Q\ll 1} 1356: 1355:{\displaystyle Q\gg 1} 1322: 1295: 1268: 1248: 1228: 1205: 1023: 992: 961:Raman–Nath diffraction 946: 926: 902: 879: 809: 767: 662: 635: 611: 591: 561: 454: 424: 404: 380: 379:{\displaystyle p_{ij}} 347: 272: 245: 218: 192: 101:nondestructive testing 57: 3002:10.1073/pnas.18.6.409 2731: 2711: 2688: 2624: 2601: 2558: 2455: 2432: 2378: 2358: 2338: 2311: 2284: 2255: 2120: 2097: 2095:{\displaystyle n_{e}} 2075:) and extraordinary ( 2070: 2068:{\displaystyle n_{0}} 2040: 1858: 1727: 1725:{\displaystyle f_{i}} 1700: 1677: 1675:{\displaystyle \ell } 1655: 1633: 1604: 1582: 1556: 1499: 1487:Acousto-optic devices 1467: 1383: 1357: 1323: 1321:{\displaystyle n_{d}} 1296: 1294:{\displaystyle n_{i}} 1269: 1249: 1229: 1206: 1024: 993: 947: 927: 912:of the optical wave, 903: 880: 810: 768: 663: 636: 612: 592: 590:{\displaystyle n_{0}} 562: 455: 453:{\displaystyle a_{j}} 425: 405: 381: 348: 273: 271:{\displaystyle a_{j}} 251:caused by the strain 246: 244:{\displaystyle B_{i}} 219: 193: 55: 2874:Taylor & Francis 2729:{\displaystyle \nu } 2720: 2700: 2636: 2610: 2580: 2467: 2444: 2390: 2367: 2347: 2320: 2293: 2266: 2132: 2109: 2105:The sound velocity, 2079: 2052: 1870: 1739: 1709: 1689: 1685:The incidence angle 1666: 1644: 1615: 1593: 1571: 1545: 1395: 1366: 1340: 1305: 1278: 1258: 1238: 1218: 1036: 1006: 1002:to the Bragg angle, 975: 936: 916: 892: 822: 792: 675: 649: 625: 601: 574: 471: 437: 414: 394: 386:is the photoelastic 360: 285: 255: 228: 208: 182: 166:Acousto-optic effect 140:diffraction of light 3043:Journal de Physique 2993:1932PNAS...18..409D 2950:Annales de Physique 2799:mercury(I) chloride 2743:for which the 2001 1990: 1972: 1833: 1806: 1187: 1169: 786:diffraction pattern 778:diffraction grating 736: 89:and high frequency 2768:arsenic trisulfide 2726: 2706: 2683: 2619: 2596: 2553: 2450: 2427: 2373: 2353: 2333: 2306: 2279: 2250: 2115: 2092: 2065: 2035: 1976: 1958: 1853: 1819: 1792: 1722: 1695: 1672: 1650: 1628: 1599: 1577: 1551: 1502: 1462: 1378: 1352: 1318: 1291: 1264: 1244: 1224: 1201: 1173: 1155: 1019: 988: 942: 922: 898: 875: 805: 763: 722: 721: 658: 631: 607: 587: 557: 450: 420: 400: 376: 343: 268: 241: 214: 188: 155:angle of incidence 58: 47:ultrasonic grating 2883:978-0-7503-0050-6 2772:tellurium dioxide 2675: 2650: 2531: 2481: 2404: 2248: 2220: 2146: 2118:{\displaystyle v} 2028: 1915: 1884: 1851: 1850: 1753: 1481:Bragg diffraction 1477:Bragg diffraction 1457: 1409: 1333:Bragg diffraction 1267:{\displaystyle v} 1247:{\displaystyle f} 1148: 1101: 1050: 965:Bragg diffraction 945:{\displaystyle m} 836: 712: 710: 689: 634:{\displaystyle K} 619:angular frequency 485: 423:{\displaystyle j} 403:{\displaystyle i} 390:with components, 299: 217:{\displaystyle a} 79:signal processing 3230: 3218:Nonlinear optics 3187: 3186: 3184: 3183: 3169: 3163: 3162: 3160: 3159: 3149: 3143: 3142: 3140: 3139: 3129: 3114: 3113: 3111: 3110: 3101:. Archived from 3094: 3088: 3087: 3085: 3084: 3074: 3059: 3058: 3040: 3031: 3025: 3024: 3014: 3004: 2972: 2966: 2965: 2945: 2939: 2938: 2936: 2935: 2920: 2914: 2913: 2911: 2910: 2901:. Archived from 2894: 2888: 2887: 2865: 2856: 2855: 2851: 2830:Sonoluminescence 2825:Nonlinear optics 2803:lead(II) bromide 2735: 2733: 2732: 2727: 2715: 2713: 2712: 2707: 2692: 2690: 2689: 2684: 2676: 2668: 2663: 2662: 2648: 2628: 2626: 2625: 2620: 2605: 2603: 2602: 2597: 2595: 2594: 2562: 2560: 2559: 2554: 2552: 2548: 2532: 2530: 2526: 2525: 2515: 2514: 2513: 2500: 2479: 2459: 2457: 2456: 2451: 2436: 2434: 2433: 2428: 2414: 2413: 2402: 2382: 2380: 2379: 2374: 2362: 2360: 2359: 2354: 2342: 2340: 2339: 2334: 2332: 2331: 2315: 2313: 2312: 2307: 2305: 2304: 2288: 2286: 2285: 2280: 2278: 2277: 2259: 2257: 2256: 2251: 2249: 2241: 2240: 2231: 2230: 2225: 2221: 2219: 2218: 2209: 2208: 2199: 2183: 2182: 2173: 2171: 2170: 2144: 2124: 2122: 2121: 2116: 2101: 2099: 2098: 2093: 2091: 2090: 2074: 2072: 2071: 2066: 2064: 2063: 2044: 2042: 2041: 2036: 2034: 2030: 2029: 2009: 2008: 1989: 1984: 1971: 1966: 1957: 1931: 1930: 1916: 1908: 1894: 1893: 1882: 1862: 1860: 1859: 1854: 1852: 1843: 1842: 1832: 1827: 1805: 1800: 1791: 1790: 1789: 1788: 1779: 1778: 1768: 1763: 1762: 1751: 1731: 1729: 1728: 1723: 1721: 1720: 1704: 1702: 1701: 1696: 1681: 1679: 1678: 1673: 1659: 1657: 1656: 1651: 1637: 1635: 1634: 1629: 1627: 1626: 1608: 1606: 1605: 1600: 1586: 1584: 1583: 1578: 1565:of the crystal; 1560: 1558: 1557: 1552: 1512:, frequency and 1471: 1469: 1468: 1463: 1458: 1456: 1455: 1454: 1441: 1440: 1439: 1417: 1407: 1387: 1385: 1384: 1379: 1361: 1359: 1358: 1353: 1327: 1325: 1324: 1319: 1317: 1316: 1300: 1298: 1297: 1292: 1290: 1289: 1273: 1271: 1270: 1265: 1253: 1251: 1250: 1245: 1233: 1231: 1230: 1225: 1210: 1208: 1207: 1202: 1197: 1193: 1192: 1188: 1186: 1181: 1168: 1163: 1149: 1147: 1146: 1145: 1136: 1135: 1125: 1124: 1115: 1102: 1100: 1096: 1095: 1082: 1074: 1066: 1065: 1048: 1028: 1026: 1025: 1020: 1018: 1017: 997: 995: 994: 989: 987: 986: 951: 949: 948: 943: 931: 929: 928: 923: 907: 905: 904: 899: 884: 882: 881: 876: 858: 857: 834: 814: 812: 811: 806: 804: 803: 780:moving with the 772: 770: 769: 764: 759: 758: 749: 748: 735: 730: 720: 711: 703: 687: 667: 665: 664: 659: 640: 638: 637: 632: 616: 614: 613: 608: 596: 594: 593: 588: 586: 585: 566: 564: 563: 558: 516: 515: 483: 459: 457: 456: 451: 449: 448: 429: 427: 426: 421: 409: 407: 406: 401: 385: 383: 382: 377: 375: 374: 352: 350: 349: 344: 338: 337: 328: 327: 312: 311: 297: 277: 275: 274: 269: 267: 266: 250: 248: 247: 242: 240: 239: 223: 221: 220: 215: 197: 195: 194: 189: 67:refractive index 3238: 3237: 3233: 3232: 3231: 3229: 3228: 3227: 3193: 3192: 3191: 3190: 3181: 3179: 3171: 3170: 3166: 3157: 3155: 3151: 3150: 3146: 3137: 3135: 3131: 3130: 3117: 3108: 3106: 3096: 3095: 3091: 3082: 3080: 3076: 3075: 3062: 3038: 3033: 3032: 3028: 2974: 2973: 2969: 2947: 2946: 2942: 2933: 2931: 2922: 2921: 2917: 2908: 2906: 2896: 2895: 2891: 2884: 2867: 2866: 2859: 2853: 2852: 2848: 2843: 2811: 2795: 2791: 2787: 2760: 2718: 2717: 2698: 2697: 2654: 2634: 2633: 2608: 2607: 2586: 2578: 2577: 2573: 2517: 2516: 2505: 2501: 2498: 2494: 2465: 2464: 2442: 2441: 2405: 2388: 2387: 2365: 2364: 2345: 2344: 2323: 2318: 2317: 2296: 2291: 2290: 2269: 2264: 2263: 2232: 2210: 2200: 2194: 2193: 2174: 2162: 2130: 2129: 2107: 2106: 2082: 2077: 2076: 2055: 2050: 2049: 2000: 1922: 1921: 1917: 1885: 1868: 1867: 1834: 1780: 1770: 1769: 1754: 1737: 1736: 1712: 1707: 1706: 1687: 1686: 1664: 1663: 1642: 1641: 1618: 1613: 1612: 1591: 1590: 1569: 1568: 1543: 1542: 1530: 1494: 1489: 1446: 1442: 1431: 1418: 1393: 1392: 1364: 1363: 1338: 1337: 1308: 1303: 1302: 1281: 1276: 1275: 1256: 1255: 1236: 1235: 1216: 1215: 1154: 1150: 1137: 1127: 1126: 1116: 1107: 1103: 1087: 1083: 1075: 1057: 1034: 1033: 1009: 1004: 1003: 978: 973: 972: 934: 933: 914: 913: 890: 889: 849: 820: 819: 795: 790: 789: 750: 737: 673: 672: 647: 646: 623: 622: 599: 598: 577: 572: 571: 507: 469: 468: 440: 435: 434: 412: 411: 392: 391: 363: 358: 357: 329: 316: 303: 283: 282: 258: 253: 252: 231: 226: 225: 206: 205: 180: 179: 172:photoelasticity 168: 138:predicting the 117: 63: 22:is a branch of 17: 12: 11: 5: 3236: 3234: 3226: 3225: 3220: 3215: 3210: 3205: 3195: 3194: 3189: 3188: 3177:NobelPrize.org 3164: 3144: 3115: 3089: 3060: 3026: 2987:(6): 409–414. 2967: 2940: 2915: 2889: 2882: 2857: 2845: 2844: 2842: 2839: 2838: 2837: 2832: 2827: 2822: 2817: 2810: 2807: 2793: 2789: 2785: 2759: 2756: 2725: 2705: 2694: 2693: 2682: 2679: 2674: 2671: 2666: 2661: 2657: 2653: 2647: 2644: 2641: 2618: 2615: 2593: 2589: 2585: 2572: 2569: 2564: 2563: 2551: 2547: 2544: 2541: 2538: 2535: 2529: 2524: 2520: 2512: 2508: 2504: 2497: 2493: 2490: 2487: 2484: 2478: 2475: 2472: 2449: 2438: 2437: 2426: 2423: 2420: 2417: 2412: 2408: 2401: 2398: 2395: 2372: 2352: 2330: 2326: 2303: 2299: 2276: 2272: 2261: 2260: 2247: 2244: 2239: 2235: 2229: 2224: 2217: 2213: 2207: 2203: 2197: 2192: 2189: 2186: 2181: 2177: 2169: 2165: 2161: 2158: 2155: 2152: 2149: 2143: 2140: 2137: 2114: 2089: 2085: 2062: 2058: 2046: 2045: 2033: 2027: 2024: 2021: 2018: 2015: 2012: 2007: 2003: 1999: 1996: 1993: 1988: 1983: 1979: 1975: 1970: 1965: 1961: 1955: 1952: 1949: 1946: 1943: 1940: 1937: 1934: 1929: 1925: 1920: 1914: 1911: 1906: 1903: 1900: 1897: 1892: 1888: 1881: 1878: 1875: 1864: 1863: 1849: 1846: 1841: 1837: 1831: 1826: 1822: 1818: 1815: 1812: 1809: 1804: 1799: 1795: 1787: 1783: 1777: 1773: 1766: 1761: 1757: 1750: 1747: 1744: 1719: 1715: 1694: 1671: 1649: 1625: 1621: 1598: 1576: 1550: 1529: 1526: 1493: 1490: 1488: 1485: 1473: 1472: 1461: 1453: 1449: 1445: 1438: 1434: 1430: 1427: 1424: 1421: 1415: 1412: 1406: 1403: 1400: 1377: 1374: 1371: 1351: 1348: 1345: 1315: 1311: 1288: 1284: 1263: 1243: 1223: 1212: 1211: 1200: 1196: 1191: 1185: 1180: 1176: 1172: 1167: 1162: 1158: 1153: 1144: 1140: 1134: 1130: 1123: 1119: 1113: 1110: 1106: 1099: 1094: 1090: 1086: 1081: 1078: 1072: 1069: 1064: 1060: 1056: 1053: 1047: 1044: 1041: 1016: 1012: 985: 981: 941: 921: 897: 886: 885: 873: 870: 867: 864: 861: 856: 852: 848: 845: 842: 839: 833: 830: 827: 802: 798: 774: 773: 762: 757: 753: 747: 744: 740: 734: 729: 725: 719: 715: 709: 706: 701: 698: 695: 692: 686: 683: 680: 657: 654: 630: 606: 584: 580: 568: 567: 555: 552: 549: 546: 543: 540: 537: 534: 531: 528: 525: 522: 519: 514: 510: 506: 503: 500: 497: 494: 491: 488: 482: 479: 476: 447: 443: 419: 399: 373: 370: 366: 354: 353: 341: 336: 332: 326: 323: 319: 315: 310: 306: 302: 296: 293: 290: 265: 261: 238: 234: 213: 187: 167: 164: 126:, through the 124:ancient Greece 116: 113: 87:crystal growth 62: 59: 20:Acousto-optics 15: 13: 10: 9: 6: 4: 3: 2: 3235: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3200: 3198: 3178: 3174: 3168: 3165: 3154: 3148: 3145: 3134: 3128: 3126: 3124: 3122: 3120: 3116: 3105:on 2004-10-18 3104: 3100: 3093: 3090: 3079: 3073: 3071: 3069: 3067: 3065: 3061: 3056: 3052: 3048: 3044: 3037: 3030: 3027: 3022: 3018: 3013: 3008: 3003: 2998: 2994: 2990: 2986: 2982: 2978: 2971: 2968: 2963: 2959: 2955: 2951: 2944: 2941: 2929: 2925: 2919: 2916: 2905:on 2007-05-12 2904: 2900: 2897:Taylor, L.S. 2893: 2890: 2885: 2879: 2875: 2871: 2864: 2862: 2858: 2850: 2847: 2840: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2812: 2808: 2806: 2804: 2800: 2796: 2781: 2780:lead silicate 2777: 2773: 2769: 2765: 2757: 2755: 2753: 2748: 2746: 2742: 2737: 2723: 2703: 2680: 2672: 2669: 2664: 2659: 2655: 2642: 2632: 2631: 2630: 2629:is given as, 2616: 2591: 2587: 2570: 2568: 2549: 2545: 2542: 2539: 2536: 2533: 2527: 2522: 2518: 2510: 2506: 2502: 2495: 2491: 2488: 2485: 2482: 2473: 2463: 2462: 2461: 2447: 2424: 2421: 2418: 2415: 2410: 2406: 2396: 2386: 2385: 2384: 2370: 2350: 2328: 2324: 2301: 2297: 2274: 2270: 2245: 2242: 2237: 2233: 2227: 2222: 2215: 2211: 2205: 2201: 2195: 2190: 2187: 2184: 2179: 2175: 2167: 2163: 2159: 2153: 2147: 2138: 2128: 2127: 2126: 2112: 2103: 2087: 2083: 2060: 2056: 2031: 2022: 2019: 2016: 2010: 2005: 2001: 1994: 1986: 1981: 1977: 1973: 1968: 1963: 1959: 1953: 1947: 1944: 1941: 1935: 1932: 1927: 1923: 1918: 1912: 1909: 1904: 1898: 1890: 1886: 1876: 1866: 1865: 1847: 1844: 1839: 1835: 1829: 1824: 1820: 1816: 1813: 1810: 1807: 1802: 1797: 1793: 1785: 1781: 1775: 1771: 1764: 1759: 1755: 1745: 1735: 1734: 1733: 1717: 1713: 1692: 1683: 1669: 1661: 1647: 1639: 1623: 1619: 1610: 1596: 1588: 1574: 1566: 1564: 1548: 1540: 1537: 1534: 1527: 1525: 1521: 1517: 1515: 1511: 1507: 1498: 1491: 1486: 1484: 1482: 1478: 1459: 1451: 1447: 1443: 1436: 1432: 1428: 1425: 1422: 1419: 1413: 1410: 1401: 1391: 1390: 1389: 1375: 1372: 1369: 1349: 1346: 1343: 1334: 1329: 1313: 1309: 1286: 1282: 1261: 1241: 1221: 1198: 1194: 1189: 1183: 1178: 1174: 1170: 1165: 1160: 1156: 1151: 1142: 1138: 1132: 1128: 1121: 1117: 1111: 1108: 1104: 1097: 1092: 1088: 1084: 1079: 1076: 1070: 1067: 1062: 1058: 1054: 1051: 1042: 1032: 1031: 1030: 1014: 1010: 999: 983: 979: 968: 966: 962: 958: 953: 939: 911: 895: 871: 868: 865: 862: 854: 850: 843: 840: 828: 818: 817: 816: 800: 796: 787: 783: 779: 760: 755: 751: 745: 742: 738: 732: 727: 723: 717: 713: 707: 704: 699: 696: 693: 681: 671: 670: 669: 655: 644: 628: 620: 582: 578: 553: 547: 544: 541: 538: 529: 526: 523: 517: 512: 508: 504: 498: 495: 492: 486: 477: 467: 466: 465: 463: 445: 441: 431: 430:= 1,2,...,6. 417: 397: 389: 371: 368: 364: 339: 334: 330: 324: 321: 317: 313: 308: 304: 291: 281: 280: 279: 263: 259: 236: 232: 211: 204: 201: 185: 177: 173: 165: 163: 160: 156: 151: 149: 145: 141: 137: 133: 129: 125: 121: 114: 112: 110: 106: 102: 97: 95: 92: 91:piezoelectric 88: 84: 80: 76: 71: 68: 60: 54: 50: 48: 44: 40: 36: 33: 29: 25: 21: 3180:. Retrieved 3176: 3167: 3156:. Retrieved 3147: 3136:. Retrieved 3107:. Retrieved 3103:the original 3092: 3081:. Retrieved 3046: 3042: 3029: 2984: 2980: 2970: 2953: 2949: 2943: 2932:. Retrieved 2918: 2907:. Retrieved 2903:the original 2892: 2869: 2849: 2764:Fused silica 2761: 2749: 2738: 2695: 2574: 2565: 2439: 2262: 2104: 2047: 1684: 1662: 1640: 1611: 1589: 1567: 1562: 1541: 1538: 1535: 1531: 1522: 1518: 1514:polarization 1503: 1474: 1330: 1213: 1000: 969: 954: 887: 775: 569: 432: 355: 176:permittivity 169: 152: 118: 98: 72: 64: 61:Introduction 19: 18: 3203:Diffraction 3097:Simcik, J. 3049:: 464–477. 1336:conditions 462:transparent 198:, due to a 128:renaissance 94:transducers 28:diffraction 3197:Categories 3182:2020-12-14 3158:2007-08-07 3138:2007-08-07 3109:2004-10-28 3083:2007-08-07 2956:: 88–122. 2934:2007-08-07 2909:2007-08-07 2841:References 2440:The angle 910:wavelength 643:wavenumber 278:given by, 200:mechanical 109:biomedical 75:modulation 39:ultrasound 3213:Acoustics 2778:glasses, 2776:tellurite 2758:Materials 2724:ν 2704:λ 2678:Δ 2673:ν 2670:λ 2656:θ 2652:Δ 2614:Δ 2588:θ 2584:Δ 2546:φ 2540:α 2537:⁡ 2528:ν 2503:λ 2492:⁡ 2483:β 2448:β 2425:α 2419:φ 2411:ℓ 2407:α 2371:α 2351:φ 2325:α 2246:α 2243:⁡ 2212:ν 2202:ν 2188:α 2185:⁡ 2164:ν 2154:α 2148:ν 2023:α 2017:φ 2011:⁡ 1995:φ 1982:φ 1974:− 1954:± 1948:α 1942:φ 1936:⁡ 1928:φ 1913:λ 1910:ν 1899:φ 1848:φ 1845:⁡ 1814:φ 1811:⁡ 1760:φ 1693:φ 1670:ℓ 1648:β 1624:ℓ 1620:α 1597:φ 1575:γ 1549:α 1506:amplitude 1448:ν 1429:ℓ 1426:λ 1423:π 1373:≪ 1347:≫ 1222:λ 1171:− 1129:λ 1118:ν 1098:ν 1077:λ 1071:− 1059:θ 1055:⁡ 1011:θ 980:θ 957:frequency 920:Λ 896:λ 869:λ 851:θ 844:⁡ 838:Λ 797:θ 714:∑ 700:− 691:Δ 653:Δ 605:Ω 542:− 536:Ω 530:⁡ 521:Δ 301:Δ 186:ε 136:Brillouin 132:acoustics 3021:16587705 2928:Archived 2809:See also 782:velocity 3012:1076242 2989:Bibcode 908:is the 641:is the 617:is the 115:History 24:physics 3019:  3009:  2880:  2696:where 2649:  2489:arcsin 2480:  2403:  2145:  1883:  1752:  1408:  1214:where 1049:  888:where 835:  688:  570:where 484:  388:tensor 356:where 298:  203:strain 120:Optics 83:lasers 3223:Waves 3208:Light 3039:(PDF) 1510:phase 159:Raman 148:Sears 144:Debye 43:sound 35:light 32:laser 3017:PMID 2981:PNAS 2878:ISBN 2774:and 2363:and 2289:and 1362:and 963:and 146:and 107:and 41:(or 3051:doi 3007:PMC 2997:doi 2958:doi 2534:sin 2302:001 2275:110 2234:sin 2216:110 2206:001 2176:cos 2168:110 2002:sin 1933:cos 1836:sin 1808:cos 1052:sin 841:sin 527:cos 37:by 30:of 3199:: 3175:. 3118:^ 3063:^ 3047:71 3045:. 3041:. 3015:. 3005:. 2995:. 2985:18 2983:. 2979:. 2954:17 2952:. 2926:. 2876:. 2872:. 2860:^ 2801:, 2797:, 2794:33 2790:12 2788:As 2786:55 2784:Ge 2782:, 2770:, 2643:12 2474:11 2397:10 2383:, 1508:, 998:. 967:. 621:, 178:, 103:, 77:, 49:. 3185:. 3161:. 3141:. 3112:. 3086:. 3057:. 3053:: 3023:. 2999:: 2991:: 2964:. 2960:: 2937:. 2912:. 2886:. 2792:S 2681:f 2665:= 2660:d 2646:) 2640:( 2617:f 2592:d 2550:) 2543:+ 2523:0 2519:n 2511:0 2507:f 2496:( 2486:= 2477:) 2471:( 2422:+ 2416:= 2400:) 2394:( 2329:1 2298:v 2271:v 2238:2 2228:2 2223:) 2196:( 2191:+ 2180:2 2160:= 2157:) 2151:( 2142:) 2139:9 2136:( 2113:v 2088:e 2084:n 2061:0 2057:n 2032:] 2026:) 2020:+ 2014:( 2006:2 1998:) 1992:( 1987:2 1978:n 1969:2 1964:0 1960:n 1951:) 1945:+ 1939:( 1924:n 1919:[ 1905:= 1902:) 1896:( 1891:i 1887:f 1880:) 1877:8 1874:( 1840:2 1830:2 1825:e 1821:n 1817:+ 1803:2 1798:0 1794:n 1786:e 1782:n 1776:0 1772:n 1765:= 1756:n 1749:) 1746:7 1743:( 1718:i 1714:f 1563:z 1460:, 1452:2 1444:n 1437:2 1433:f 1420:2 1414:= 1411:Q 1405:) 1402:6 1399:( 1376:1 1370:Q 1350:1 1344:Q 1314:d 1310:n 1287:i 1283:n 1262:v 1242:f 1199:, 1195:] 1190:) 1184:2 1179:d 1175:n 1166:2 1161:i 1157:n 1152:( 1143:2 1139:f 1133:2 1122:2 1112:+ 1109:1 1105:[ 1093:i 1089:n 1085:2 1080:f 1068:= 1063:B 1046:) 1043:5 1040:( 1015:B 984:0 940:m 872:, 866:m 863:= 860:) 855:m 847:( 832:) 829:4 826:( 801:n 761:, 756:j 752:a 746:j 743:z 739:p 733:3 728:0 724:n 718:j 708:2 705:1 697:= 694:n 685:) 682:3 679:( 656:n 629:K 583:0 579:n 554:, 551:) 548:z 545:K 539:t 533:( 524:n 518:+ 513:0 509:n 505:= 502:) 499:t 496:, 493:z 490:( 487:n 481:) 478:2 475:( 446:j 442:a 418:j 410:, 398:i 372:j 369:i 365:p 340:, 335:j 331:a 325:j 322:i 318:p 314:= 309:i 305:B 295:) 292:1 289:( 264:j 260:a 237:i 233:B 212:a

Index

physics
diffraction
laser
light
ultrasound
sound
ultrasonic grating

refractive index
modulation
signal processing
lasers
crystal growth
piezoelectric
transducers
nondestructive testing
structural health monitoring
biomedical
Optics
ancient Greece
renaissance
acoustics
Brillouin
diffraction of light
Debye
Sears
angle of incidence
Raman
photoelasticity
permittivity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑