Knowledge (XXG)

Ultrasonic grating

Source đź“ť

444:
of light using an ultrasonic grating was first observed by Debye and Sears in 1932. When ultrasonic waves are propagated in a liquid, the density varies from layer to layer due to periodic variation of pressure. This grating can determine the wavelength of monochromatic light and the speed of waves.
94:
The diffraction grating formed in this way is analogous to a conventional diffraction grating with lines ruled on a glass plate. The less dense antinodes refract light less and are analogous to the transmitting slits of a conventional grating. The denser nodes refract light more and are analogous
74:
When ultrasonic waves are generated in a liquid in a rectangular vessel, the wave can be reflected from the walls of the vessel. These reflected waves are called echoes. The direct and reflected waves are superimposed, forming a
547: 628:
if the other is known. We need not worry about the grating element since the nodes themselves act as slits, hence the distance between two slits are equal to the ultrasonic wave wavelength.
336: 388: 722: 259: 210: 626: 497: 597: 468: 572: 747: 674: 145: 169: 631:
This method determines the velocity of ultrasonic waves using monochromatic sources like sodium vapour lamps. The medium is usually a piezoelectric crystal such as
411: 282: 125: 433:
method determines the wavelength of monochromatic light using an acoustic or ultrasonic gratings. This method utilises the concept of
28: 831: 816: 505: 859: 290: 347: 682: 221: 177: 854: 849: 284:
is the velocity of the ultrasonic wave in the liquid we can calculate the velocity of the wave with:
602: 473: 879: 775: 88: 24: 580: 451: 791: 555: 730: 650: 827: 812: 499:
is the wavelength of the ultrasonic waves, then applying the principle of diffraction, we get
130: 154: 864: 783: 434: 63: 59: 36: 396: 32: 787: 779: 647:
oscillator. By adjusting the frequency of the oscillator, we can determine the velocity
844: 267: 110: 84: 873: 640: 430: 76: 795: 91:
to a parallel beam of light passed through the liquid at right angles to the wave.
766:
Kinoshita, S.; Yoshioka, S.; Miyazaki, J. (2008). "Physics of structural colors".
441: 426: 46:
An ultrasonic wave is a sound wave at a frequency greater than 20 kHz. The
35:
in a medium, which alters the physical properties of the medium (and hence the
636: 148: 104: 822:
Robert Lagemann, "The optical diffraction method", in Dudley Williams (ed),
414: 47: 643:. A mechanical stress is produced along an axis of the crystal using an 80: 43:
is a more general term that includes operation at audible frequencies.
632: 87:
is more than the density at an antinode. Hence, the liquid acts as a
147:
is the wavelength of the light passed through the grating that is
55: 51: 16:
Diffraction grating produced by interfering ultrasonic waves
644: 807:
Philip McCord Morse, "Light scattering by a sound beam",
470:
is the wavelength of a monochromatic light source, and
50:
cannot recognize ultrasonic waves, but animals such as
542:{\displaystyle \lambda _{c}\sin \theta =n\lambda \,\!} 811:, pp. 809–816, Princeton University Press, 1986 733: 685: 653: 605: 583: 558: 508: 476: 454: 399: 350: 293: 270: 224: 180: 157: 133: 113: 741: 716: 668: 620: 591: 566: 541: 491: 462: 405: 382: 330: 276: 253: 204: 163: 139: 119: 738: 713: 665: 617: 588: 563: 538: 488: 459: 171:, then the nth order of the maximum is given by: 95:to the opaque part of a conventional grating. 331:{\displaystyle v/\nu =n\lambda /\sin \theta } 58:can. Ultrasonic waves can be produced by the 8: 383:{\displaystyle v=\nu n\lambda /\sin \theta } 717:{\displaystyle v_{c}=\eta \lambda _{c}\,\!} 826:, pp. 702–703, Academic Press, 1961 737: 732: 712: 706: 690: 684: 664: 658: 652: 616: 610: 604: 587: 582: 562: 557: 537: 513: 507: 487: 481: 475: 458: 453: 398: 366: 349: 314: 297: 292: 269: 237: 223: 179: 156: 132: 112: 254:{\displaystyle d=n\lambda /\sin \theta } 758: 205:{\displaystyle d\sin \theta =n\lambda } 7: 749:is the frequency of the oscillator. 103:The grating element is equal to the 39:) in a grid-like pattern. The term 107:of the ultrasonic waves—denoted by 14: 676:of the ultrasonic waves by using 621:{\displaystyle \lambda _{c}\,\!} 492:{\displaystyle \lambda _{c}\,\!} 768:Reports on Progress in Physics 1: 788:10.1088/0034-4885/71/7/076401 577:Thus we can calculate either 574:is the angle of diffraction. 860:Acousto-optical spectrometer 592:{\displaystyle \lambda \,\!} 463:{\displaystyle \lambda \,\!} 567:{\displaystyle \theta \,\!} 896: 742:{\displaystyle \eta \,\!} 669:{\displaystyle v_{c}\,\!} 140:{\displaystyle \lambda } 855:Acousto-optic deflector 850:Acousto-optic modulator 164:{\displaystyle \theta } 743: 718: 670: 622: 593: 568: 543: 493: 464: 407: 384: 332: 278: 255: 206: 165: 141: 121: 809:Theoretical Acoustics 744: 719: 671: 623: 594: 569: 544: 494: 465: 437:to obtain a grating. 408: 385: 333: 279: 256: 207: 166: 142: 122: 731: 683: 651: 603: 581: 556: 506: 474: 452: 406:{\displaystyle \nu } 397: 348: 291: 268: 222: 178: 155: 131: 111: 60:piezoelectric effect 780:2008RPPh...71g6401K 89:diffraction grating 83:of the liquid at a 25:diffraction grating 739: 714: 666: 618: 589: 564: 539: 489: 460: 440:The phenomenon of 421:Debye–Sears method 403: 380: 328: 274: 251: 202: 161: 137: 117: 21:ultrasonic grating 824:Molecular Physics 277:{\displaystyle v} 120:{\displaystyle d} 887: 865:Nonlinear optics 800: 799: 763: 748: 746: 745: 740: 723: 721: 720: 715: 711: 710: 695: 694: 675: 673: 672: 667: 663: 662: 627: 625: 624: 619: 615: 614: 598: 596: 595: 590: 573: 571: 570: 565: 548: 546: 545: 540: 518: 517: 498: 496: 495: 490: 486: 485: 469: 467: 466: 461: 435:piezoelectricity 412: 410: 409: 404: 389: 387: 386: 381: 370: 337: 335: 334: 329: 318: 301: 283: 281: 280: 275: 260: 258: 257: 252: 241: 211: 209: 208: 203: 170: 168: 167: 162: 146: 144: 143: 138: 126: 124: 123: 118: 64:magnetostriction 41:acoustic grating 37:refractive index 33:ultrasonic waves 27:produced by the 895: 894: 890: 889: 888: 886: 885: 884: 870: 869: 841: 804: 803: 765: 764: 760: 755: 729: 728: 702: 686: 681: 680: 654: 649: 648: 606: 601: 600: 579: 578: 554: 553: 509: 504: 503: 477: 472: 471: 450: 449: 423: 395: 394: 346: 345: 289: 288: 266: 265: 220: 219: 176: 175: 153: 152: 129: 128: 109: 108: 101: 72: 17: 12: 11: 5: 893: 891: 883: 882: 872: 871: 868: 867: 862: 857: 852: 847: 845:Acousto-optics 840: 837: 836: 835: 820: 802: 801: 757: 756: 754: 751: 736: 725: 724: 709: 705: 701: 698: 693: 689: 661: 657: 613: 609: 586: 561: 550: 549: 536: 533: 530: 527: 524: 521: 516: 512: 484: 480: 457: 422: 419: 402: 391: 390: 379: 376: 373: 369: 365: 362: 359: 356: 353: 339: 338: 327: 324: 321: 317: 313: 310: 307: 304: 300: 296: 273: 262: 261: 250: 247: 244: 240: 236: 233: 230: 227: 213: 212: 201: 198: 195: 192: 189: 186: 183: 160: 136: 116: 100: 97: 71: 68: 15: 13: 10: 9: 6: 4: 3: 2: 892: 881: 878: 877: 875: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 842: 838: 833: 829: 825: 821: 818: 814: 810: 806: 805: 797: 793: 789: 785: 781: 777: 774:(7): 076401. 773: 769: 762: 759: 752: 750: 734: 707: 703: 699: 696: 691: 687: 679: 678: 677: 659: 655: 646: 642: 641:Rochelle salt 638: 634: 629: 611: 607: 584: 575: 559: 534: 531: 528: 525: 522: 519: 514: 510: 502: 501: 500: 482: 478: 455: 446: 443: 438: 436: 432: 428: 420: 418: 417:of the wave. 416: 400: 377: 374: 371: 367: 363: 360: 357: 354: 351: 344: 343: 342: 325: 322: 319: 315: 311: 308: 305: 302: 298: 294: 287: 286: 285: 271: 248: 245: 242: 238: 234: 231: 228: 225: 218: 217: 216: 199: 196: 193: 190: 187: 184: 181: 174: 173: 172: 158: 150: 134: 114: 106: 98: 96: 92: 90: 86: 82: 78: 77:standing wave 69: 67: 65: 61: 57: 53: 49: 44: 42: 38: 34: 30: 26: 23:is a type of 22: 823: 808: 771: 767: 761: 726: 630: 576: 551: 447: 439: 424: 392: 340: 263: 214: 151:by an angle 102: 93: 73: 45: 40: 29:interference 20: 18: 880:Diffraction 442:diffraction 99:Mathematics 832:0080859763 817:0691024014 753:References 637:tourmaline 149:diffracted 105:wavelength 735:η 704:λ 700:η 608:λ 585:λ 560:θ 535:λ 526:θ 523:⁡ 511:λ 479:λ 456:λ 415:frequency 401:ν 378:θ 375:⁡ 364:λ 358:ν 326:θ 323:⁡ 312:λ 303:ν 249:θ 246:⁡ 235:λ 200:λ 191:θ 188:⁡ 159:θ 135:λ 70:Mechanism 48:human ear 874:Category 839:See also 796:53068819 776:Bibcode 413:is the 81:density 79:. The 830:  815:  794:  727:where 633:quartz 552:Where 393:where 792:S2CID 639:, or 431:Sears 427:Debye 127:. If 828:ISBN 813:ISBN 425:The 341:or, 85:node 62:and 56:dogs 54:and 52:bats 784:doi 599:or 520:sin 448:If 372:sin 320:sin 264:If 243:sin 215:or 185:sin 31:of 19:An 876:: 790:. 782:. 772:71 770:. 645:RF 635:, 66:. 834:. 819:. 798:. 786:: 778:: 708:c 697:= 692:c 688:v 660:c 656:v 612:c 532:n 529:= 515:c 483:c 429:– 368:/ 361:n 355:= 352:v 316:/ 309:n 306:= 299:/ 295:v 272:v 239:/ 232:n 229:= 226:d 197:n 194:= 182:d 115:d

Index

diffraction grating
interference
ultrasonic waves
refractive index
human ear
bats
dogs
piezoelectric effect
magnetostriction
standing wave
density
node
diffraction grating
wavelength
diffracted
frequency
Debye
Sears
piezoelectricity
diffraction
quartz
tourmaline
Rochelle salt
RF
Bibcode
2008RPPh...71g6401K
doi
10.1088/0034-4885/71/7/076401
S2CID
53068819

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑