Knowledge (XXG)

Active disturbance rejection control

Source 📝

93: 117:
discontinuous function of the output estimate error. NESO are comparable to sliding mode observers in that both use a nonlinear function of output estimation error (rather than a linear function as in linear, high gain, and extended observers). A sliding mode observer's discontinuity is at the origin, but the NESO's discontinuity is at a preset error threshold.
107:
The primary objective of the tracking differentiator is to follow the transient profile of the reference signal, addressing the issue of sudden changes in the set point that occur in the conventional PID controller. Moreover, the tracking differentiator also mitigates the possible noise amplification
125:
The intuitiveness of PID control can be attributed to the simplicity of its error feedback. ADRC extends the PID by employing a nonlinear state error feedback, and because of this, seminal works referred to ADRC as nonlinear PID. Weighted state errors can also be used as feedback in a linearization
76:
in order to decouple the system from the actual perturbation acting on the plant. This disturbance rejection feature allows users to treat the considered system with a simpler model insofar as the negative effects of modeling uncertainty are compensated in real time. As a result, the operator does
116:
An extended state observer (ESO) keeps track of the system's states as well as external disturbances and unknown model's perturbations. As a result, ADRC does not rely on any particular mathematical model of disturbance. Nonlinear ESO (NESO) is a subtype of general ESO that uses a nonlinear
43:
for joint motion is vital in high-speed industrial robot applications. However, flexible robot structures can introduce unwanted vibrations, challenging PID controllers. ADRC offers a solution by real-time disturbance estimation and compensation, without needing a detailed model.
31:
used for designing controllers for systems with unknown dynamics and external disturbances. This approach only necessitates an estimated representation of the system's behavior to design controllers that effectively counteract disturbances without causing any overshooting.
85:
The ADRC consists of three main components: a tracking differentiator, a non-linear state error feedback and an extended state observer. The global convergence of ADRC has been proved for a class of general multiple-input multiple-output systems.
77:
not need a precise analytical description of the base system; one can model the unknown parts of the dynamics as internal disturbances in the base system.
39:
in many applications, such as the control of permanent magnet synchronous motors, thermal power plants and robotics. In particular, the precise control of
182: 99:
There also exists a special form of ADRC, known as error-form structure, which is used for comparing the ADRC with classical controllers such as PID.
65: 361: 92: 108:
that affects the derivative term of the PID controller by using numerical integration instead of numerical differentiation.
631: 64:
description of the base system to be controlled. This virtual state (sum of unknown part of model dynamics and external
387:"Practical active disturbance rejection control: Bumpless transfer, rate limitation, and incremental algorithm" 228:
Sira-Ramirez, Hebertt; Linares-Flores, Jesus; Garcia-Rodriguez, Carlos; Contreras-Ordaz, Marco Antonio (2014).
145:"Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors" 68:, usually denoted as a "total disturbance" or "generalized disturbance") is estimated online with an extended 651: 230:"On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach" 463: 322:
Fareh, Raouf; Khadraoui, Sofiane; Abdallah, Mahmoud Y.; Baziyad, Mohammed; Bettayeb, Maamar (2021).
28: 451: 591: 565: 534: 487: 343: 323: 304: 257: 210: 583: 526: 479: 432: 296: 249: 202: 575: 518: 471: 424: 335: 288: 241: 194: 156: 40: 144: 467: 553: 507:"On Convergence of the Nonlinear Active Disturbance Rejection Control for MIMO Systems" 339: 276: 73: 69: 57: 36: 645: 595: 362:"Beyond PID: Exploring Alternative Control Strategies for Field-Oriented Controllers" 347: 308: 214: 491: 538: 261: 53: 475: 61: 579: 412: 386: 292: 275:
Wu, Zhenlong; Gao, Zhiqiang; Li, Donghai; Chen, YangQuan; Liu, Yanhong (2021).
229: 506: 245: 587: 530: 483: 436: 300: 253: 206: 198: 428: 160: 89:
The following architecture is known as the output-form structure of ADRC:
522: 91: 635: 554:"ADRC in output and error form: connection, equivalence, performance" 324:"Active disturbance rejection control for robotic systems: A review" 570: 60:
representing everything that the user does not include in the
277:"On transitioning from PID to ADRC in thermal power plants" 552:
Madonski, Rafal; Herbst, Gernot; Stankovic, Momir (2023).
143:
Su, Yu Xin; Zheng, Chun Hong; Duan, Bao Yan (2005-05-31).
52:
To achieve robustness, ADRC is based on extension of the
35:
ADRC has been successfully used as an alternative to
632:
Active disturbance rejection control implementation
413:"Comments on Active Disturbance Rejection Control" 183:"From PID to Active Disturbance Rejection Control" 234:IEEE Transactions on Control Systems Technology 8: 609:Han, J. (1994). "Nonlinear PID controller". 452:"On convergence of tracking differentiator" 417:IEEE Transactions on Industrial Electronics 391:IEEE Transactions on Industrial Electronics 187:IEEE Transactions on Industrial Electronics 149:IEEE Transactions on Industrial Electronics 569: 511:SIAM Journal on Control and Optimization 135: 25:automatic disturbance rejection control 505:Guo, Bao-Zhu; Zhao, Zhi-Liang (2013). 450:Guo, Bao-Zhu; Zhao, Zhi-Liang (2011). 7: 406: 404: 176: 174: 172: 170: 17:Active disturbance rejection control 340:10.1016/j.mechatronics.2021.102671 56:with an additional and fictitious 14: 456:International Journal of Control 121:Nonlinear state error feedback 1: 558:Control Theory and Technology 281:Control Theory and Technology 476:10.1080/00207179.2011.569954 668: 580:10.1007/s11768-023-00129-y 293:10.1007/s11768-021-00032-4 246:10.1109/TCST.2014.2298238 199:10.1109/TIE.2008.2011621 429:10.1109/TIE.2007.909047 385:Herbst, Gernot (2015). 161:10.1109/TIE.2005.847583 112:Extended state observer 103:Tracking differentiator 611:Acta Automatica Sinica 181:Han, Jingqing (2009). 96: 397:(3). IEEE: 1754–1762. 95: 48:Disturbance rejection 155:(3). IEEE: 814–823. 81:Control architecture 468:2011IJC....84..693G 97: 27:) is a model-free 523:10.1137/110856824 411:Dong Sun (2007). 366:www.mathworks.com 29:control technique 659: 619: 618: 606: 600: 599: 573: 549: 543: 542: 517:(2): 1727–1757. 502: 496: 495: 447: 441: 440: 423:(6): 3428–3429. 408: 399: 398: 382: 376: 375: 373: 372: 358: 352: 351: 319: 313: 312: 272: 266: 265: 240:(5): 2056–2063. 225: 219: 218: 178: 165: 164: 140: 72:and used in the 41:brushless motors 23:, also known as 667: 666: 662: 661: 660: 658: 657: 656: 642: 641: 628: 623: 622: 608: 607: 603: 551: 550: 546: 504: 503: 499: 449: 448: 444: 410: 409: 402: 384: 383: 379: 370: 368: 360: 359: 355: 321: 320: 316: 274: 273: 269: 227: 226: 222: 180: 179: 168: 142: 141: 137: 132: 123: 114: 105: 83: 50: 12: 11: 5: 665: 663: 655: 654: 652:Control theory 644: 643: 640: 639: 627: 626:External links 624: 621: 620: 601: 544: 497: 462:(4): 693–701. 442: 400: 377: 353: 314: 267: 220: 193:(3): 900–906. 166: 134: 133: 131: 128: 122: 119: 113: 110: 104: 101: 82: 79: 74:control signal 70:state observer 58:state variable 49: 46: 13: 10: 9: 6: 4: 3: 2: 664: 653: 650: 649: 647: 637: 633: 630: 629: 625: 617:(4): 487–490. 616: 612: 605: 602: 597: 593: 589: 585: 581: 577: 572: 567: 563: 559: 555: 548: 545: 540: 536: 532: 528: 524: 520: 516: 512: 508: 501: 498: 493: 489: 485: 481: 477: 473: 469: 465: 461: 457: 453: 446: 443: 438: 434: 430: 426: 422: 418: 414: 407: 405: 401: 396: 392: 388: 381: 378: 367: 363: 357: 354: 349: 345: 341: 337: 333: 329: 325: 318: 315: 310: 306: 302: 298: 294: 290: 286: 282: 278: 271: 268: 263: 259: 255: 251: 247: 243: 239: 235: 231: 224: 221: 216: 212: 208: 204: 200: 196: 192: 188: 184: 177: 175: 173: 171: 167: 162: 158: 154: 150: 146: 139: 136: 129: 127: 120: 118: 111: 109: 102: 100: 94: 90: 87: 80: 78: 75: 71: 67: 63: 59: 55: 47: 45: 42: 38: 33: 30: 26: 22: 18: 614: 610: 604: 564:(1): 56–71. 561: 557: 547: 514: 510: 500: 459: 455: 445: 420: 416: 394: 390: 380: 369:. Retrieved 365: 356: 331: 328:Mechatronics 327: 317: 284: 280: 270: 237: 233: 223: 190: 186: 152: 148: 138: 124: 115: 106: 98: 88: 84: 66:disturbances 62:mathematical 54:system model 51: 34: 24: 20: 16: 15: 287:(1): 3–18. 37:PID control 571:2211.07427 371:2023-08-19 334:: 102671. 130:References 596:253510300 588:2095-6983 531:0363-0129 484:0020-7179 437:0278-0046 348:244183528 309:233709932 301:2095-6983 254:1063-6536 215:206698917 207:1557-9948 646:Category 492:31030254 126:system. 539:5740371 464:Bibcode 262:1000762 636:MATLAB 594:  586:  537:  529:  490:  482:  435:  346:  307:  299:  260:  252:  213:  205:  592:S2CID 566:arXiv 535:S2CID 488:S2CID 344:S2CID 305:S2CID 258:S2CID 211:S2CID 584:ISSN 527:ISSN 480:ISSN 433:ISSN 297:ISSN 250:ISSN 203:ISSN 21:ADRC 19:(or 634:in 576:doi 519:doi 472:doi 425:doi 336:doi 289:doi 242:doi 195:doi 157:doi 648:: 615:20 613:. 590:. 582:. 574:. 562:21 560:. 556:. 533:. 525:. 515:51 513:. 509:. 486:. 478:. 470:. 460:84 458:. 454:. 431:. 421:54 419:. 415:. 403:^ 395:63 393:. 389:. 364:. 342:. 332:80 330:. 326:. 303:. 295:. 285:19 283:. 279:. 256:. 248:. 238:22 236:. 232:. 209:. 201:. 191:56 189:. 185:. 169:^ 153:52 151:. 147:. 638:. 598:. 578:: 568:: 541:. 521:: 494:. 474:: 466:: 439:. 427:: 374:. 350:. 338:: 311:. 291:: 264:. 244:: 217:. 197:: 163:. 159::

Index

control technique
PID control
brushless motors
system model
state variable
mathematical
disturbances
state observer
control signal

"Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors"
doi
10.1109/TIE.2005.847583




"From PID to Active Disturbance Rejection Control"
doi
10.1109/TIE.2008.2011621
ISSN
1557-9948
S2CID
206698917
"On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach"
doi
10.1109/TCST.2014.2298238
ISSN
1063-6536
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.