Knowledge (XXG)

Affine geometry of curves

Source 📝

1673: 1356: 1208: 1668:{\displaystyle {\dot {A}}={\begin{bmatrix}0&1&0&0&\cdots &0&0\\0&0&1&0&\cdots &0&0\\\vdots &\vdots &\vdots &\cdots &\cdots &\vdots &\vdots \\0&0&0&0&\cdots &1&0\\0&0&0&0&\cdots &0&1\\k_{1}&k_{2}&k_{3}&k_{4}&\cdots &k_{n-1}&0\end{bmatrix}}A=CA.} 1000: 764: 341: 1337: 1203:{\displaystyle 0=\det {\begin{bmatrix}{\dot {\mathbf {x} }},&{\ddot {\mathbf {x} }},&\dots ,&{\mathbf {x} }^{(n)}\end{bmatrix}}{\dot {}}\,=\det {\begin{bmatrix}{\dot {\mathbf {x} }},&{\ddot {\mathbf {x} }},&\dots ,&{\mathbf {x} }^{(n+1)}\end{bmatrix}}} 989: 527: 658: 235: 100: 622: 1237: 839: 560: 220: 167: 874: 458: 466: 759:{\displaystyle \det {\begin{bmatrix}{\dot {\mathbf {x} }},&{\ddot {\mathbf {x} }},&\dots ,&{\mathbf {x} }^{(n)}\end{bmatrix}}=\pm 1.} 336:{\displaystyle \det {\begin{bmatrix}{\dot {\mathbf {x} }},&{\ddot {\mathbf {x} }},&\dots ,&{\mathbf {x} }^{(n)}\end{bmatrix}}=\pm 1.} 463:
determines a mapping into the special affine group, known as a special affine frame for the curve. That is, at each point of the quantities
636:
along this map gives a complete set of affine structural invariants of the curve. In the plane, this gives a single scalar invariant, the
46: 1332:{\displaystyle A={\begin{bmatrix}{\dot {\mathbf {x} }},&{\ddot {\mathbf {x} }},&\dots ,&{\mathbf {x} }^{(n)}\end{bmatrix}}} 569: 1752: 1730: 116:
along a curve which plays a similar decisive role. The theory was developed in the early 20th century, largely from the efforts of
1683: 629: 112:. In affine geometry, the Frenet–Serret frame is no longer well-defined, but it is possible to define another canonical 1776: 105: 1781: 109: 37: 633: 21: 815: 777:≡3 (mod 4) then the sign of this determinant is a discrete invariant of the curve. A curve is called 536: 196: 143: 1229: 182: 41: 984:{\displaystyle \mathbf {x} ^{(n+1)}=k_{1}{\dot {\mathbf {x} }}+\cdots +k_{n-1}\mathbf {x} ^{(n-1)}.} 1686:
of the Maurer–Cartan form of the special linear group along the frame given by the first
358: 1748: 1726: 843: 637: 348: 117: 994:
That such an expression is possible follows by computing the derivative of the determinant
1771: 1740: 1765: 1708: 1703: 530: 113: 33: 227: 121: 17: 522:{\displaystyle \mathbf {x} ,{\dot {\mathbf {x} }},\dots ,\mathbf {x} ^{(n)}} 95:{\displaystyle {\mbox{SL}}(n,\mathbb {R} )\ltimes \mathbb {R} ^{n}.} 797: 29: 1745:
A Comprehensive introduction to differential geometry (Volume 2)
617:{\displaystyle {\dot {\mathbf {x} }},\dots ,\mathbf {x} ^{(n)}} 169:. Assume, as one does in the Euclidean case, that the first 193:) does not lie in any lower-dimensional affine subspace of 36:, and specifically the properties of such curves which are 1350:(still parameterized by special affine arclength). Then, 1380: 1252: 1117: 1018: 800:
is dextrorse, and a left-handed helix is sinistrorse.
670: 247: 51: 1359: 1240: 1003: 877: 818: 661: 572: 539: 469: 361: 238: 199: 146: 49: 1667: 1331: 1202: 983: 833: 758: 616: 554: 521: 452: 335: 214: 161: 94: 1109: 1010: 841:is parameterized by affine arclength. Then the 662: 239: 346:Such a curve is said to be parametrized by its 8: 1625: 1608: 1596: 1584: 1572: 1375: 1361: 1360: 1358: 1309: 1303: 1302: 1277: 1275: 1274: 1258: 1256: 1255: 1247: 1239: 1174: 1168: 1167: 1142: 1140: 1139: 1123: 1121: 1120: 1112: 1105: 1096: 1095: 1075: 1069: 1068: 1043: 1041: 1040: 1024: 1022: 1021: 1013: 1002: 960: 955: 942: 918: 916: 915: 909: 884: 879: 876: 825: 821: 820: 817: 727: 721: 720: 695: 693: 692: 676: 674: 673: 665: 660: 648:The normalization of the curve parameter 602: 597: 576: 574: 573: 571: 546: 542: 541: 538: 507: 502: 481: 479: 478: 470: 468: 426: 421: 391: 389: 388: 371: 360: 304: 298: 297: 272: 270: 269: 253: 251: 250: 242: 237: 206: 202: 201: 198: 153: 149: 148: 145: 83: 79: 78: 67: 66: 50: 48: 566:of the space and a special linear basis 7: 796:In three-dimensions, a right-handed 793:in German) if it is −1. 14: 1304: 1278: 1259: 1169: 1143: 1124: 1070: 1044: 1025: 956: 919: 880: 834:{\displaystyle \mathbb {R} ^{n}} 722: 696: 677: 598: 577: 555:{\displaystyle \mathbb {R} ^{n}} 503: 482: 471: 422: 392: 372: 352:. For such a parameterization, 299: 273: 254: 215:{\displaystyle \mathbb {R} ^{2}} 162:{\displaystyle \mathbb {R} ^{n}} 1721:Guggenheimer, Heinrich (1977). 1678:In concrete terms, the matrix 1316: 1310: 1187: 1175: 1082: 1076: 973: 961: 897: 885: 734: 728: 609: 603: 514: 508: 447: 444: 438: 433: 427: 408: 402: 382: 376: 368: 365: 311: 305: 108:, the fundamental tool is the 71: 57: 1: 226:can be normalized by setting 1342:whose columns are the first 785:in German) if it is +1, and 652:was selected above so that 222:. Then the curve parameter 106:Euclidean geometry of curves 1217:is a linear combination of 781:(right winding, frequently 1798: 789:(left winding, frequently 624:attached to the point at 453:{\displaystyle t\mapsto } 110:Frenet–Serret frame 26:affine geometry of curves 634:Maurer–Cartan form 562:, consisting of a point 185:so that, in particular, 808:Suppose that the curve 1669: 1333: 1204: 985: 835: 760: 618: 556: 523: 454: 337: 216: 163: 96: 1777:Differential geometry 1747:. Publish or Perish. 1723:Differential Geometry 1670: 1334: 1205: 986: 836: 761: 619: 557: 533:for the affine space 524: 455: 338: 217: 164: 97: 22:differential geometry 1357: 1238: 1001: 875: 816: 659: 570: 537: 467: 359: 236: 197: 183:linearly independent 144: 47: 42:special affine group 1665: 1644: 1329: 1323: 1200: 1194: 1089: 981: 831: 756: 741: 644:Discrete invariant 614: 552: 519: 450: 333: 318: 212: 159: 92: 55: 1369: 1285: 1266: 1150: 1131: 1102: 1098: 1051: 1032: 926: 844:affine curvatures 703: 684: 584: 529:define a special 489: 399: 280: 261: 104:In the classical 54: 1789: 1758: 1736: 1674: 1672: 1671: 1666: 1649: 1648: 1636: 1635: 1613: 1612: 1601: 1600: 1589: 1588: 1577: 1576: 1371: 1370: 1362: 1338: 1336: 1335: 1330: 1328: 1327: 1320: 1319: 1308: 1307: 1287: 1286: 1281: 1276: 1268: 1267: 1262: 1257: 1209: 1207: 1206: 1201: 1199: 1198: 1191: 1190: 1173: 1172: 1152: 1151: 1146: 1141: 1133: 1132: 1127: 1122: 1104: 1103: 1097: 1094: 1093: 1086: 1085: 1074: 1073: 1053: 1052: 1047: 1042: 1034: 1033: 1028: 1023: 990: 988: 987: 982: 977: 976: 959: 953: 952: 928: 927: 922: 917: 914: 913: 901: 900: 883: 840: 838: 837: 832: 830: 829: 824: 765: 763: 762: 757: 746: 745: 738: 737: 726: 725: 705: 704: 699: 694: 686: 685: 680: 675: 638:affine curvature 623: 621: 620: 615: 613: 612: 601: 586: 585: 580: 575: 561: 559: 558: 553: 551: 550: 545: 528: 526: 525: 520: 518: 517: 506: 491: 490: 485: 480: 474: 459: 457: 456: 451: 437: 436: 425: 401: 400: 395: 390: 375: 349:affine arclength 342: 340: 339: 334: 323: 322: 315: 314: 303: 302: 282: 281: 276: 271: 263: 262: 257: 252: 221: 219: 218: 213: 211: 210: 205: 168: 166: 165: 160: 158: 157: 152: 140:) be a curve in 128:The affine frame 118:Wilhelm Blaschke 101: 99: 98: 93: 88: 87: 82: 70: 56: 52: 28:is the study of 1797: 1796: 1792: 1791: 1790: 1788: 1787: 1786: 1782:Affine geometry 1762: 1761: 1755: 1741:Spivak, Michael 1739: 1733: 1720: 1717: 1700: 1690:derivatives of 1643: 1642: 1637: 1621: 1619: 1614: 1604: 1602: 1592: 1590: 1580: 1578: 1568: 1565: 1564: 1559: 1554: 1549: 1544: 1539: 1534: 1528: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1491: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1454: 1453: 1448: 1443: 1438: 1433: 1428: 1423: 1417: 1416: 1411: 1406: 1401: 1396: 1391: 1386: 1376: 1355: 1354: 1346:derivatives of 1322: 1321: 1301: 1299: 1291: 1272: 1248: 1236: 1235: 1193: 1192: 1166: 1164: 1156: 1137: 1113: 1088: 1087: 1067: 1065: 1057: 1038: 1014: 999: 998: 954: 938: 905: 878: 873: 872: 868:are defined by 863: 853: 819: 814: 813: 806: 740: 739: 719: 717: 709: 690: 666: 657: 656: 646: 596: 568: 567: 540: 535: 534: 501: 465: 464: 420: 357: 356: 317: 316: 296: 294: 286: 267: 243: 234: 233: 200: 195: 194: 173:derivatives of 147: 142: 141: 130: 77: 45: 44: 12: 11: 5: 1795: 1793: 1785: 1784: 1779: 1774: 1764: 1763: 1760: 1759: 1753: 1737: 1731: 1716: 1713: 1712: 1711: 1706: 1699: 1696: 1676: 1675: 1664: 1661: 1658: 1655: 1652: 1647: 1641: 1638: 1634: 1631: 1628: 1624: 1620: 1618: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1566: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1529: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1492: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1455: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1418: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1381: 1379: 1374: 1368: 1365: 1340: 1339: 1326: 1318: 1315: 1312: 1306: 1300: 1298: 1295: 1292: 1290: 1284: 1280: 1273: 1271: 1265: 1261: 1254: 1253: 1251: 1246: 1243: 1211: 1210: 1197: 1189: 1186: 1183: 1180: 1177: 1171: 1165: 1163: 1160: 1157: 1155: 1149: 1145: 1138: 1136: 1130: 1126: 1119: 1118: 1116: 1111: 1108: 1101: 1092: 1084: 1081: 1078: 1072: 1066: 1064: 1061: 1058: 1056: 1050: 1046: 1039: 1037: 1031: 1027: 1020: 1019: 1017: 1012: 1009: 1006: 992: 991: 980: 975: 972: 969: 966: 963: 958: 951: 948: 945: 941: 937: 934: 931: 925: 921: 912: 908: 904: 899: 896: 893: 890: 887: 882: 858: 851: 828: 823: 805: 802: 773:≡0 (mod 4) or 767: 766: 755: 752: 749: 744: 736: 733: 730: 724: 718: 716: 713: 710: 708: 702: 698: 691: 689: 683: 679: 672: 671: 669: 664: 645: 642: 640:of the curve. 611: 608: 605: 600: 595: 592: 589: 583: 579: 549: 544: 516: 513: 510: 505: 500: 497: 494: 488: 484: 477: 473: 461: 460: 449: 446: 443: 440: 435: 432: 429: 424: 419: 416: 413: 410: 407: 404: 398: 394: 387: 384: 381: 378: 374: 370: 367: 364: 344: 343: 332: 329: 326: 321: 313: 310: 307: 301: 295: 293: 290: 287: 285: 279: 275: 268: 266: 260: 256: 249: 248: 246: 241: 209: 204: 156: 151: 129: 126: 91: 86: 81: 76: 73: 69: 65: 62: 59: 13: 10: 9: 6: 4: 3: 2: 1794: 1783: 1780: 1778: 1775: 1773: 1770: 1769: 1767: 1756: 1754:0-914098-71-3 1750: 1746: 1742: 1738: 1734: 1732:0-486-63433-7 1728: 1724: 1719: 1718: 1714: 1710: 1709:Affine sphere 1707: 1705: 1702: 1701: 1697: 1695: 1693: 1689: 1685: 1681: 1662: 1659: 1656: 1653: 1650: 1645: 1639: 1632: 1629: 1626: 1622: 1616: 1609: 1605: 1597: 1593: 1585: 1581: 1573: 1569: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1413: 1408: 1403: 1398: 1393: 1388: 1383: 1377: 1372: 1366: 1363: 1353: 1352: 1351: 1349: 1345: 1324: 1313: 1296: 1293: 1288: 1282: 1269: 1263: 1249: 1244: 1241: 1234: 1233: 1232: 1231: 1228:Consider the 1226: 1224: 1220: 1216: 1195: 1184: 1181: 1178: 1161: 1158: 1153: 1147: 1134: 1128: 1114: 1106: 1099: 1090: 1079: 1062: 1059: 1054: 1048: 1035: 1029: 1015: 1007: 1004: 997: 996: 995: 978: 970: 967: 964: 949: 946: 943: 939: 935: 932: 929: 923: 910: 906: 902: 894: 891: 888: 871: 870: 869: 867: 861: 857: 850: 846: 845: 826: 811: 803: 801: 799: 794: 792: 788: 784: 780: 776: 772: 753: 750: 747: 742: 731: 714: 711: 706: 700: 687: 681: 667: 655: 654: 653: 651: 643: 641: 639: 635: 631: 627: 606: 593: 590: 587: 581: 565: 547: 532: 511: 498: 495: 492: 486: 475: 441: 430: 417: 414: 411: 405: 396: 385: 379: 362: 355: 354: 353: 351: 350: 330: 327: 324: 319: 308: 291: 288: 283: 277: 264: 258: 244: 232: 231: 230: 229: 225: 207: 192: 188: 184: 180: 176: 172: 154: 139: 135: 127: 125: 123: 119: 115: 111: 107: 102: 89: 84: 74: 63: 60: 43: 39: 35: 31: 27: 23: 19: 1744: 1722: 1704:Moving frame 1691: 1687: 1679: 1677: 1347: 1343: 1341: 1227: 1222: 1218: 1214: 1212: 993: 865: 859: 855: 848: 842: 809: 807: 795: 791:hopfenwendig 790: 786: 782: 778: 774: 770: 768: 649: 647: 625: 563: 531:affine frame 462: 347: 345: 223: 190: 186: 178: 174: 170: 137: 133: 131: 114:moving frame 103: 34:affine space 25: 18:mathematical 15: 787:sinistrorse 228:determinant 122:Jean Favard 1766:Categories 1715:References 783:weinwendig 40:under the 1725:. Dover. 1630:− 1617:⋯ 1552:⋯ 1515:⋯ 1488:⋮ 1483:⋮ 1478:⋯ 1473:⋯ 1468:⋮ 1463:⋮ 1458:⋮ 1441:⋯ 1404:⋯ 1367:˙ 1294:… 1283:¨ 1264:˙ 1159:… 1148:¨ 1129:˙ 1100:˙ 1060:… 1049:¨ 1030:˙ 968:− 947:− 933:⋯ 924:˙ 804:Curvature 779:dextrorse 751:± 712:… 701:¨ 682:˙ 591:… 582:˙ 496:… 487:˙ 415:… 397:˙ 366:↦ 328:± 289:… 278:¨ 259:˙ 75:⋉ 38:invariant 20:field of 1743:(1999). 1698:See also 1684:pullback 1213:so that 630:pullback 1682:is the 632:of the 628:. The 16:In the 1772:Curves 1751:  1729:  1230:matrix 1221:′, …, 181:) are 32:in an 30:curves 24:, the 854:, …, 798:helix 1749:ISBN 1727:ISBN 132:Let 120:and 1110:det 1011:det 864:of 812:in 769:If 663:det 240:det 1768:: 1694:. 1225:. 862:−1 847:, 754:1. 331:1. 124:. 53:SL 1757:. 1735:. 1692:x 1688:n 1680:C 1663:. 1660:A 1657:C 1654:= 1651:A 1646:] 1640:0 1633:1 1627:n 1623:k 1610:4 1606:k 1598:3 1594:k 1586:2 1582:k 1574:1 1570:k 1562:1 1557:0 1547:0 1542:0 1537:0 1532:0 1525:0 1520:1 1510:0 1505:0 1500:0 1495:0 1451:0 1446:0 1436:0 1431:1 1426:0 1421:0 1414:0 1409:0 1399:0 1394:0 1389:1 1384:0 1378:[ 1373:= 1364:A 1348:x 1344:n 1325:] 1317:) 1314:n 1311:( 1305:x 1297:, 1289:, 1279:x 1270:, 1260:x 1250:[ 1245:= 1242:A 1223:x 1219:x 1215:x 1196:] 1188:) 1185:1 1182:+ 1179:n 1176:( 1170:x 1162:, 1154:, 1144:x 1135:, 1125:x 1115:[ 1107:= 1091:] 1083:) 1080:n 1077:( 1071:x 1063:, 1055:, 1045:x 1036:, 1026:x 1016:[ 1008:= 1005:0 979:. 974:) 971:1 965:n 962:( 957:x 950:1 944:n 940:k 936:+ 930:+ 920:x 911:1 907:k 903:= 898:) 895:1 892:+ 889:n 886:( 881:x 866:x 860:n 856:k 852:1 849:k 827:n 822:R 810:x 775:n 771:n 748:= 743:] 735:) 732:n 729:( 723:x 715:, 707:, 697:x 688:, 678:x 668:[ 650:s 626:x 610:) 607:n 604:( 599:x 594:, 588:, 578:x 564:x 548:n 543:R 515:) 512:n 509:( 504:x 499:, 493:, 483:x 476:, 472:x 448:] 445:) 442:t 439:( 434:) 431:n 428:( 423:x 418:, 412:, 409:) 406:t 403:( 393:x 386:, 383:) 380:t 377:( 373:x 369:[ 363:t 325:= 320:] 312:) 309:n 306:( 300:x 292:, 284:, 274:x 265:, 255:x 245:[ 224:t 208:2 203:R 191:t 189:( 187:x 179:t 177:( 175:x 171:n 155:n 150:R 138:t 136:( 134:x 90:. 85:n 80:R 72:) 68:R 64:, 61:n 58:(

Index

mathematical
differential geometry
curves
affine space
invariant
special affine group
Euclidean geometry of curves
Frenet–Serret frame
moving frame
Wilhelm Blaschke
Jean Favard
linearly independent
determinant
affine arclength
affine frame
pullback
Maurer–Cartan form
affine curvature
helix
affine curvatures
matrix
pullback
Moving frame
Affine sphere
ISBN
0-486-63433-7
Spivak, Michael
ISBN
0-914098-71-3
Categories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.