Knowledge (XXG)

Alvis–Curtis duality

Source 📝

186: 98: 428: 616:
Kawanaka, N. (1982), "Fourier transforms of nilpotently supported invariant functions on a simple Lie algebra over a finite field",
671: 302: 410: 350: 676: 618: 29: 25: 534:; Lusztig, George (1983), "Duality for representations of a reductive group over a finite field. II", 420: 292: 279: 491:; Lusztig, George (1982), "Duality for representations of a reductive group over a finite field", 651: 536: 493: 450: 343: 576:"Fourier transforms of nilpotently supported invariant functions on a finite simple Lie algebra" 372:
Alvis, Dean (1979), "The duality operation in the character ring of a finite Chevalley group",
635: 597: 575: 555: 512: 469: 445: 424: 391: 41: 627: 587: 545: 502: 459: 381: 647: 609: 567: 524: 481: 438: 403: 643: 605: 563: 520: 477: 434: 399: 275: 33: 531: 488: 448:(1980), "Truncation and duality in the character ring of a finite group of Lie type", 665: 655: 550: 507: 464: 181:{\displaystyle \zeta ^{*}=\sum _{J\subseteq R}(-1)^{\vert J\vert }\zeta _{P_{J}}^{G}} 386: 82: 37: 414: 61: 17: 67:
Alvis–Curtis duality has order 2 and is an isometry on generalized characters.
639: 601: 559: 516: 473: 395: 592: 631: 89: 416:
Finite groups of Lie type. Conjugacy classes and complex characters.
245:
and then taking the space of invariants of the unipotent radical of
580:
Japan Academy. Proceedings. Series A. Mathematical Sciences
361:
on the regular unipotent elements and vanishing elsewhere.
419:, Pure and Applied Mathematics (New York), New York: 101: 180: 48:) and studied by his student Dean Alvis ( 73:, 8.2) discusses Alvis–Curtis duality in detail. 346:χ is (–1)χ, where Δ is the set of simple roots. 298: 374:Bulletin of the American Mathematical Society 60:) introduced a similar duality operation for 8: 151: 145: 291:The dual of the trivial character 1 is the 591: 549: 506: 463: 385: 199:of simple roots of the Coxeter system of 172: 165: 160: 144: 119: 106: 100: 57: 53: 274:. (The operation of truncation is the 70: 45: 49: 7: 81:The dual ζ* of a character ζ of a 14: 270:is the induced representation of 191:Here the sum is over all subsets 387:10.1090/S0273-0979-1979-14690-1 353:is the character taking value | 223:of ζ to the parabolic subgroup 141: 131: 1: 551:10.1016/0021-8693(83)90202-8 508:10.1016/0021-8693(82)90023-0 465:10.1016/0021-8693(80)90185-4 299:Deligne & Lusztig (1983) 236:, given by restricting ζ to 693: 574:Kawanaka, Noriaki (1981), 301:showed that the dual of a 303:Deligne–Lusztig character 619:Inventiones Mathematicae 351:Gelfand–Graev character 182: 672:Representation theory 421:John Wiley & Sons 183: 42:Charles W. Curtis 99: 22:Alvis–Curtis duality 593:10.3792/pjaa.57.461 293:Steinberg character 280:parabolic induction 177: 632:10.1007/BF01389363 537:Journal of Algebra 494:Journal of Algebra 451:Journal of Algebra 446:Curtis, Charles W. 344:cuspidal character 178: 156: 130: 52:). Kawanaka ( 430:978-0-471-90554-7 203:. The character ζ 115: 92:is defined to be 28:operation on the 684: 677:Duality theories 658: 612: 595: 570: 553: 527: 510: 484: 467: 441: 411:Carter, Roger W. 406: 389: 349:The dual of the 338: 337: 315: 314: 269: 268: 218: 217: 187: 185: 184: 179: 176: 171: 170: 169: 155: 154: 129: 111: 110: 40:, introduced by 692: 691: 687: 686: 685: 683: 682: 681: 662: 661: 615: 573: 532:Deligne, Pierre 530: 489:Deligne, Pierre 487: 444: 431: 409: 371: 368: 336: 333: 332: 331: 327: 321: 313: 310: 309: 308: 288: 276:adjoint functor 267: 266: 257: 256: 255: 253: 244: 231: 216: 215: 206: 205: 204: 161: 140: 102: 97: 96: 79: 34:reductive group 12: 11: 5: 690: 688: 680: 679: 674: 664: 663: 660: 659: 626:(3): 411–435, 613: 586:(9): 461–464, 571: 544:(2): 540–545, 528: 501:(1): 284–291, 485: 458:(2): 320–332, 442: 429: 407: 380:(6): 907–911, 376:, New Series, 367: 364: 363: 362: 347: 342:The dual of a 340: 334: 323: 317: 311: 296: 287: 284: 262: 258: 249: 240: 232:of the subset 227: 211: 207: 189: 188: 175: 168: 164: 159: 153: 150: 147: 143: 139: 136: 133: 128: 125: 122: 118: 114: 109: 105: 78: 75: 13: 10: 9: 6: 4: 3: 2: 689: 678: 675: 673: 670: 669: 667: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 620: 614: 611: 607: 603: 599: 594: 589: 585: 581: 577: 572: 569: 565: 561: 557: 552: 547: 543: 539: 538: 533: 529: 526: 522: 518: 514: 509: 504: 500: 496: 495: 490: 486: 483: 479: 475: 471: 466: 461: 457: 453: 452: 447: 443: 440: 436: 432: 426: 422: 418: 417: 412: 408: 405: 401: 397: 393: 388: 383: 379: 375: 370: 369: 365: 360: 356: 352: 348: 345: 341: 330: 326: 320: 307: 304: 300: 297: 294: 290: 289: 285: 283: 281: 277: 273: 265: 261: 252: 248: 243: 239: 235: 230: 226: 222: 214: 210: 202: 198: 194: 173: 166: 162: 157: 148: 137: 134: 126: 123: 120: 116: 112: 107: 103: 95: 94: 93: 91: 88:with a split 87: 84: 76: 74: 72: 68: 65: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 623: 617: 583: 579: 541: 535: 498: 492: 455: 449: 415: 377: 373: 358: 354: 328: 324: 318: 305: 271: 263: 259: 250: 246: 241: 237: 233: 228: 224: 220: 212: 208: 200: 196: 192: 190: 85: 83:finite group 80: 71:Carter (1985 69: 66: 62:Lie algebras 38:finite field 21: 15: 195:of the set 18:mathematics 666:Categories 366:References 221:truncation 77:Definition 30:characters 656:119866092 640:0020-9910 602:0386-2194 560:0021-8693 517:0021-8693 474:0021-8693 396:0002-9904 158:ζ 135:− 124:⊆ 117:∑ 108:∗ 104:ζ 413:(1985), 286:Examples 254:, and ζ 648:0679766 610:0637555 568:0700298 525:0644236 482:0563231 439:0794307 404:0546315 219:is the 90:BN-pair 44: ( 36:over a 26:duality 654:  646:  638:  608:  600:  566:  558:  523:  515:  480:  472:  437:  427:  402:  394:  20:, the 652:S2CID 32:of a 24:is a 636:ISSN 598:ISSN 556:ISSN 513:ISSN 470:ISSN 425:ISBN 392:ISSN 316:is ε 58:1982 54:1981 50:1979 46:1980 628:doi 588:doi 546:doi 503:doi 460:doi 382:doi 282:.) 278:of 16:In 668:: 650:, 644:MR 642:, 634:, 624:69 622:, 606:MR 604:, 596:, 584:57 582:, 578:, 564:MR 562:, 554:, 542:81 540:, 521:MR 519:, 511:, 499:74 497:, 478:MR 476:, 468:, 456:62 454:, 435:MR 433:, 423:, 400:MR 398:, 390:, 64:. 56:, 630:: 590:: 548:: 505:: 462:: 384:: 378:1 359:q 357:| 355:Z 339:. 335:T 329:R 325:T 322:ε 319:G 312:T 306:R 295:. 272:G 264:J 260:P 251:J 247:P 242:J 238:P 234:J 229:J 225:P 213:J 209:P 201:G 197:R 193:J 174:G 167:J 163:P 152:| 149:J 146:| 142:) 138:1 132:( 127:R 121:J 113:= 86:G

Index

mathematics
duality
characters
reductive group
finite field
Charles W. Curtis
1980
1979
1981
1982
Lie algebras
Carter (1985
finite group
BN-pair
adjoint functor
parabolic induction
Steinberg character
Deligne & Lusztig (1983)
Deligne–Lusztig character
cuspidal character
Gelfand–Graev character
doi
10.1090/S0273-0979-1979-14690-1
ISSN
0002-9904
MR
0546315
Carter, Roger W.
Finite groups of Lie type. Conjugacy classes and complex characters.
John Wiley & Sons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.