Knowledge (XXG)

Analog models of gravity

Source đź“ť

119:
enabled the observation of logarithmic phase singularities and the onset of Fermi-Dirac distributions, phenomena typically associated with quantum systems and gravitational theories. This approach provides valuable insights into the analogies between classical wave systems and quantum mechanical behaviors, expanding the possibilities for exploring gravitational analogs in a controlled laboratory environment.
470: 118:
Surface gravity waves have been recognized as a promising system for studying analog gravity models. Recent experiments have demonstrated that these waves can effectively simulate phase space horizons, drawing parallels to black hole physics. Specifically, the use of surface gravity water waves has
81:
medium. These analogs (or analogies) serve to provide new ways of looking at problems, permit ideas from other realms of science to be applied, and may create opportunities for practical experiments within the analog that can be applied back to the source phenomena.
90:
Analog models of gravity have been used in hundreds of published articles in the last decade. The use of these analogs can be traced back to the very start of scientific theories for gravity, with
106:
It has been shown that Bose-Einstein condensates (BEC) are a good platform to study analog gravity. Kerr (rotating) black holes have been implemented in a BEC of
511: 423:
Rozenman, Georgi Gary; Ullinger, Freyja; Zimmermann, Matthias; Efremov, Maxim A.; Shemer, Lev; Schleich, Wolfgang P.; Arie, Ady (2024-07-16).
248: 504: 66: 174: 530: 535: 497: 133: 74: 477: 381: 324: 267: 193: 31: 405: 371: 314: 283: 257: 183: 143: 43: 35: 446: 397: 340: 221: 107: 481: 436: 389: 360:"Quantum analogue of a Kerr black hole and the Penrose effect in a Bose-Einstein condensate" 332: 275: 211: 201: 148: 128: 95: 47: 385: 328: 271: 197: 358:
Solnyshkov, D. D.; Leblanc, C.; Koniakhin, S. V.; Bleu, O.; Malpuech, G. (2019-06-24).
216: 169: 138: 359: 240: 524: 424: 409: 336: 70: 287: 91: 302: 39: 17: 469: 441: 393: 279: 78: 59: 450: 401: 344: 51: 225: 206: 425:"Observation of a phase space horizon with surface gravity water waves" 319: 262: 188: 62: 376: 55: 301:
BarcelĂł, Carlos; Liberati, S; Visser, Matt (2001-03-14).
239:
Visser, Matt; BarcelĂł, Carlos; Liberati, Stefano (2002).
168:
BarcelĂł, Carlos; Liberati, Stefano; Visser, Matt (2011).
485: 303:"Analogue gravity from Bose-Einstein condensates" 114:Analog Gravity Models with Surface Gravity Waves 505: 8: 512: 498: 440: 375: 318: 261: 215: 205: 187: 160: 7: 466: 464: 241:"Analogue models of and for gravity" 484:. You can help Knowledge (XXG) by 249:General Relativity and Gravitation 25: 468: 139:Optical metric#Analogue gravity 1: 307:Classical and Quantum Gravity 73:in water; and propagation of 175:Living Reviews in Relativity 110:(a quantum fluid of light). 552: 463: 442:10.1038/s42005-024-01616-7 394:10.1103/PhysRevB.99.214511 337:10.1088/0264-9381/18/6/312 102:Bose-Einstein condensates 67:Bose–Einstein condensate 46:geometries) using other 28:Analog models of gravity 280:10.1023/A:1020180409214 480:-related article is a 429:Communications Physics 134:Transformation optics 75:electromagnetic waves 34:various phenomena of 386:2019PhRvB..99u4511S 329:2001CQGra..18.1137B 272:2001gr.qc....11111V 207:10.12942/lrr-2011-3 198:2011LRR....14....3B 531:General relativity 170:"Analogue Gravity" 144:Optical black hole 108:exciton-polaritons 36:general relativity 493: 492: 364:Physical Review B 256:(10): 1719–1734. 16:(Redirected from 543: 536:Relativity stubs 514: 507: 500: 472: 465: 455: 454: 444: 420: 414: 413: 379: 355: 349: 348: 322: 313:(6): 1137–1156. 298: 292: 291: 265: 245: 236: 230: 229: 219: 209: 191: 165: 149:Sonic black hole 48:physical systems 30:are attempts to 21: 18:Analogue gravity 551: 550: 546: 545: 544: 542: 541: 540: 521: 520: 519: 518: 461: 459: 458: 422: 421: 417: 357: 356: 352: 300: 299: 295: 243: 238: 237: 233: 167: 166: 162: 157: 129:Acoustic metric 125: 116: 104: 88: 23: 22: 15: 12: 11: 5: 549: 547: 539: 538: 533: 523: 522: 517: 516: 509: 502: 494: 491: 490: 473: 457: 456: 415: 370:(21): 214511. 350: 293: 231: 159: 158: 156: 153: 152: 151: 146: 141: 136: 131: 124: 121: 115: 112: 103: 100: 87: 84: 24: 14: 13: 10: 9: 6: 4: 3: 2: 548: 537: 534: 532: 529: 528: 526: 515: 510: 508: 503: 501: 496: 495: 489: 487: 483: 479: 474: 471: 467: 462: 452: 448: 443: 438: 434: 430: 426: 419: 416: 411: 407: 403: 399: 395: 391: 387: 383: 378: 373: 369: 365: 361: 354: 351: 346: 342: 338: 334: 330: 326: 321: 320:gr-qc/0011026 316: 312: 308: 304: 297: 294: 289: 285: 281: 277: 273: 269: 264: 263:gr-qc/0111111 259: 255: 251: 250: 242: 235: 232: 227: 223: 218: 213: 208: 203: 199: 195: 190: 189:gr-qc/0505065 185: 181: 177: 176: 171: 164: 161: 154: 150: 147: 145: 142: 140: 137: 135: 132: 130: 127: 126: 122: 120: 113: 111: 109: 101: 99: 97: 93: 85: 83: 80: 76: 72: 71:gravity waves 68: 64: 61: 57: 53: 49: 45: 41: 37: 33: 29: 19: 486:expanding it 475: 460: 432: 428: 418: 367: 363: 353: 310: 306: 296: 253: 247: 234: 179: 173: 163: 117: 105: 89: 54:in a moving 44:cosmological 27: 26: 40:black holes 525:Categories 478:relativity 435:(1): 165. 377:1809.05386 155:References 79:dielectric 60:superfluid 451:2399-3650 410:119077097 402:2469-9950 345:0264-9381 52:acoustics 288:14342213 226:28179830 182:(3): 3. 123:See also 96:Einstein 50:such as 382:Bibcode 325:Bibcode 268:Bibcode 217:5255896 194:Bibcode 86:History 38:(e.g., 449:  408:  400:  343:  286:  224:  214:  92:Newton 63:helium 476:This 406:S2CID 372:arXiv 315:arXiv 284:S2CID 258:arXiv 244:(PDF) 184:arXiv 77:in a 65:, or 56:fluid 32:model 482:stub 447:ISSN 398:ISSN 341:ISSN 222:PMID 94:and 437:doi 390:doi 333:doi 276:doi 212:PMC 202:doi 42:or 527:: 445:. 431:. 427:. 404:. 396:. 388:. 380:. 368:99 366:. 362:. 339:. 331:. 323:. 311:18 309:. 305:. 282:. 274:. 266:. 254:34 252:. 246:. 220:. 210:. 200:. 192:. 180:14 178:. 172:. 98:. 69:; 58:, 513:e 506:t 499:v 488:. 453:. 439:: 433:7 412:. 392:: 384:: 374:: 347:. 335:: 327:: 317:: 290:. 278:: 270:: 260:: 228:. 204:: 196:: 186:: 20:)

Index

Analogue gravity
model
general relativity
black holes
cosmological
physical systems
acoustics
fluid
superfluid
helium
Bose–Einstein condensate
gravity waves
electromagnetic waves
dielectric
Newton
Einstein
exciton-polaritons
Acoustic metric
Transformation optics
Optical metric#Analogue gravity
Optical black hole
Sonic black hole
"Analogue Gravity"
Living Reviews in Relativity
arXiv
gr-qc/0505065
Bibcode
2011LRR....14....3B
doi
10.12942/lrr-2011-3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑