Knowledge (XXG)

Application of silicon-germanium thermoelectrics in space exploration

Source 📝

404: 335: 95: 17: 754:
Lee, Eun Kyung; Yin, Liang; Lee, Yongjin; Lee, Jong Woon; Lee, Sang Jin; Lee, Junho; Cha, Seung Nam; Whang, Dongmok; Hwang, Gyeong S.; Hippalgaonkar, Kedar; Majumdar, Arun; Yu, Choongho; Choi, Byoung Lyong; Kim, Jong Min; Kim, Kinam (13 June 2012). "Large Thermoelectric Figure-of-Merits from SiGe
477:) with a cold junction temperature of 573 K (572 °F) compose the temperature gradient in the thermoelectric couple in the RTG. This mechanism provided the total electrical power to operate the spacecraft's instruments, communications and other power demands. The RTG on 354:
with phosphorus to provide thermoelectric polarity to the couple. The electrical and thermal currents of the system are separated by bonding the SiGe alloy thermocouple to a multifoil cold stack assembly of
86:
to fully meet the power demands of each spacecraft. The properties of the material and the remaining components of the RTG contribute towards the efficiency of this thermoelectric conversion.
1028:
Bennett, G.L; Lombardo, James; Hemler, Richard; Silverman, Gil; Whitmore C.; Amos, Wayne; Johnson, E.; Schock, Alfred; Zocher, Roy; Keenan, Thomas; Hagan, James; and Richard Englehart.
411:
SiGe has been used as a material in RTGs since 1976. Each mission that has used RTG technology involves exploration of far-reaching regions of the solar system. The most recent mission,
265:. Thermoelectric power generation requires a constantly maintained temperature difference among the junctions of the two dissimilar metals (i.e. Si and Ge) to produce a low power 584: 481:
will produce adequate electrical power for spacecraft operation until about the year 2020. Similar MHW-RTG models are also used on the two U.S. Air Force communications
1032:, AIAA 2006-4096, 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 26–29 June 2006, San Diego, California (Accessed 10 February 2015) 673:
Böttner, H. (August 2002). "Thermoelectric micro devices: Current state, recent developments and future aspects for technological progress and applications".
469:
heat of the plutonium to electrical power was accomplished through 312 silicon-germanium (SiGe) thermoelectric couples. A hot junction temperature of 1273
862:
Xie, Ming; Gruen, Dieter M. (18 November 2010). "Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies".
605: 281: 43: 690: 21: 630:
Tiwari, Pratibha; Gupta, Nishu; Gupta, K.M. (April 2013). "Advanced Thermoelectric Materials in Electrical and Electronic Applications".
379:
the legs of the SiGe thermocouples. In between the inner insulation system and the outer shell, copper connectors form the electrical
968: 814:; Ren, Zhifeng (10 December 2008). "Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys". 1042: 1002:
Fleurial, Jean-Pierre; Caillat, Thierry; Nesmith, Bill J.; Ewell, Richard C.; Woerner, David F.; Carr, Gregory C.; Jones, Loren E.
806:
Joshi, Giri; Lee, Hohyun; Lan, Yucheng; Wang, Xiaowei; Zhu, Gaohua; Wang, Dezhi; Gould, Ryan W.; Cuff, Diana C.; Tang, Ming Y.;
726: 1062: 898: 1077: 487: 482: 175: 1082: 384: 1072: 1067: 610: 528: 155: 372: 392: 202: 575:
are expected to meet or exceed the remaining power performance requirements for their deep-space missions.
600: 376: 351: 347: 205:(e.g. SiGe alloys) as a supplemental source of power for missions near the Sun can operate unprotected in 137: 103: 154:
SiGe alloy devices are mechanically rugged and can withstand severe shock and vibration due to its high
727:"Optimization of Silicon-Germanium Thermoelectric Modules for Transportation Corps Silent Boat Design" 823: 811: 764: 639: 512: 507: 501: 380: 304: 298: 292: 71: 66: 60: 807: 474: 403: 788: 696: 655: 1003: 929:
Raag, V.; Berlin, R.E. (December 1968). "A silicon-germanium solar thermoelectric generator".
879: 839: 780: 686: 466: 319: 170:
equipment and bonds easily to construct components. SiGe alloy devices can operate under high
110: 27: 899:"High efficiency thermoelectric devices fabricated using quantum well confinement techniques" 651: 938: 871: 831: 772: 678: 647: 334: 266: 234: 210: 83: 1004:"Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications" 975: 556: 446: 364: 286: 226: 140: 133: 31: 1030:
Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator
827: 768: 643: 94: 588: 531:. The GPHS-RTG employs identical heat-to-electrical conversion technology used in the 388: 148: 129: 106: 1056: 942: 737: 700: 659: 470: 343: 167: 118: 792: 755:
Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties".
563:. Based on performance, data and modeling for the SiGe alloy RTGs, the GPHS-RTGs on 213:. Such properties have made SiGe thermoelectrics convenient for power generation in 675:
Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02
519: 415:(2005), was originally set for a 3-year exploration, but was extended to 17 years. 310: 238: 171: 144: 78: 387:
design to connect the unicouples. The circuit loop arrangement minimizes the net
552: 262: 159: 434: 356: 277: 246: 218: 190: 174:(i.e. >1300 ˚C) without degradation due to their electronic stability, low 35: 682: 209:
and air environments under high temperatures due to their low sensitivity to
736:. TRECOM Technical Report 63-17. Accession Number: AD0412341. Archived from 430: 424: 270: 198: 179: 163: 82:
spacecraft. SiGe thermoelectric material converts enough radiated heat into
54: 48: 883: 843: 784: 591:(PbTe) thermocouples and Pu-238 dioxide for spacecraft power applications. 539:
missions, using SiGe thermocouples/unicouples and the Pu-238–fueled GPHS.
1029: 524: 360: 249:
act as the intermediary between the heat source and electrical assembly.
222: 532: 462: 450: 442: 438: 1013:. Jet Propulsion Laboratory/California Institute of Technology (2011). 875: 835: 776: 1043:"NASA's New Horizons Team Selects Potential Kuiper Belt Flyby Target" 458: 454: 368: 322:. The SiGe thermocouples/unicouples convert this heat to hundreds of 315: 230: 206: 125: 449:
fuel spheres for an operational life appropriate for exploration of
16: 560: 544: 402: 333: 242: 214: 93: 15: 323: 258: 194: 114: 39: 186: 233:, and alumina materials, provides the insulation between the 201:. However, thermoelectric energy conversion systems that use 34:
have been used for converting heat into electrical power in
548: 523:
on January 19, 2006. All of these spacecraft contain the
974:. Nuclear News. American Nuclear Society. Archived from 583:
Missions after 2010 requiring RTGs will instead use the
969:"U.S. Space Missions Using Radioisotope Power Systems" 967:
Furlong, Richard R.; Wahlquist, Earl J. (April 1999).
276:
A large array of SiGe thermocouples/unicouples form a
551:). The spacecraft's next destination will be a small 346:
attached to the outer shell consist of a SiGe alloy
585:
multi-mission radioisotope thermoelectric generator
42:missions since 1976. This material is used in the 217:. The multifoil cold stack assembly, composed of 338:Conceptual diagram of a thermocouple (unicouple) 132:properties. Their performance in thermoelectric 495:General purpose heat source (GPHS) applications 437:launched in August and September 1977 required 121:or unicouples), are used in space exploration. 997: 995: 505:spacecraft launched on October 18, 1989, the 8: 371:, and alumina components. Several layers of 193:performance deteriorates from high incident 147:, which has been shown to be near 2 in some 962: 960: 958: 956: 954: 952: 720: 718: 716: 714: 712: 710: 559:that orbits nearly a billion miles beyond 924: 922: 280:that was incorporated into the design of 241:of the system. The SiGe n-leg doped with 1024: 1022: 1020: 897:Jurgensmeyer, Austin Lee (Summer 2011). 606:Advanced Stirling Radioisotope Generator 622: 483:Lincoln Experimental Satellites 8 and 9 857: 855: 853: 652:10.4028/www.scientific.net/AMR.685.161 282:radioisotope thermoelectric generators 117:) thermoelectric couples (also called 44:radioisotope thermoelectric generators 419:Multi-hundred-watt (MHW) applications 257:SiGe thermocouples in an RTG convert 22:radioisotope thermoelectric generator 7: 136:production is characterized by high 906:Colorado State University Libraries 864:The Journal of Physical Chemistry B 525:general purpose heat source (GPHS) 14: 547:and its moons on July 14, 2015 ( 98:Components of the SiGe unicouple 549:see JHU Applied Physics website 375:silica fiber yarn electrically 330:Thermocouple/unicouple assembly 269:electric current without extra 20:Essential components of a SiGe 543:made its historic flyby past 407:RTG Space Exploration Timeline 1: 517:on October 15, 1997, and the 176:thermal expansion coefficient 943:10.1016/0013-7480(68)90033-8 734:Radio Corporation of America 284:(RTGs) used in the missions 158:(i.e. >7000 psi) and low 632:Advanced Materials Research 383:, which uses a two-string, 273:or external power sources. 197:and high temperatures from 1099: 245:and SiGe p-leg doped with 1011:U.S. Department of Energy 725:Dingwall, F. (May 1963). 611:Radioisotope heater units 529:U.S. Department of Energy 683:10.1109/ICT.2002.1190368 527:RTG commissioned by the 511:on October 6, 1990, the 344:thermocouples/unicouples 203:thermoelectric materials 38:designed for deep-space 808:Dresselhaus, Mildred S. 318:dioxide fuel undergoes 314:. On these spacecraft, 1063:Nuclear power in space 601:Thermoelectric cooling 555:object (KBO) known as 408: 385:series-parallel wiring 350:with boron and a SiGe 339: 99: 24: 1078:Spacecraft components 406: 337: 326:of electrical power. 97: 19: 677:. pp. 511–518. 465:. Conversion of the 1083:Inorganic chemistry 870:(45): 14339–14342. 828:2008NanoL...8.4670J 769:2012NanoL..12.2918L 644:2012AdMaR.443.1587Z 587:(MMRTG) containing 399:Application history 162:. SiGe material is 160:dislocation density 1073:Nuclear technology 439:multi-hundred-watt 409: 340: 100: 46:(RTGs) that power 25: 1068:Thermoelectricity 1045:. 28 August 2015. 931:Energy Conversion 876:10.1021/jp9117387 836:10.1021/nl8026795 822:(12): 4670–4674. 777:10.1021/nl300587u 743:on March 4, 2016. 692:978-0-7803-7683-0 445:) RTG containing 111:silicon-germanium 28:Silicon-germanium 1090: 1047: 1046: 1039: 1033: 1026: 1015: 1014: 1008: 999: 990: 989: 987: 986: 980: 973: 964: 947: 946: 926: 917: 916: 914: 912: 903: 894: 888: 887: 859: 848: 847: 803: 797: 796: 763:(6): 2918–2923. 751: 745: 744: 742: 731: 722: 705: 704: 670: 664: 663: 627: 253:Power generation 239:thermal currents 211:radiation damage 156:tensile strength 143:(ZT) under high 141:figures-of-merit 84:electrical power 1098: 1097: 1093: 1092: 1091: 1089: 1088: 1087: 1053: 1052: 1051: 1050: 1041: 1040: 1036: 1027: 1018: 1006: 1001: 1000: 993: 984: 982: 978: 971: 966: 965: 950: 928: 927: 920: 910: 908: 901: 896: 895: 891: 861: 860: 851: 805: 804: 800: 753: 752: 748: 740: 729: 724: 723: 708: 693: 672: 671: 667: 629: 628: 624: 619: 597: 581: 579:RTG alternative 557:486958 Arrokoth 497: 447:plutonium oxide 421: 401: 365:stainless steel 332: 255: 227:stainless steel 92: 32:thermoelectrics 12: 11: 5: 1096: 1094: 1086: 1085: 1080: 1075: 1070: 1065: 1055: 1054: 1049: 1048: 1034: 1016: 991: 948: 937:(4): 161–168. 918: 889: 849: 798: 746: 706: 691: 665: 621: 620: 618: 615: 614: 613: 608: 603: 596: 593: 589:lead telluride 580: 577: 496: 493: 420: 417: 400: 397: 389:magnetic field 331: 328: 267:closed circuit 261:directly into 254: 251: 166:with standard 151:-SiGe models. 149:nanostructured 130:thermoelectric 107:semiconductors 91: 88: 13: 10: 9: 6: 4: 3: 2: 1095: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1058: 1044: 1038: 1035: 1031: 1025: 1023: 1021: 1017: 1012: 1005: 998: 996: 992: 981:on 2018-10-16 977: 970: 963: 961: 959: 957: 955: 953: 949: 944: 940: 936: 932: 925: 923: 919: 907: 900: 893: 890: 885: 881: 877: 873: 869: 865: 858: 856: 854: 850: 845: 841: 837: 833: 829: 825: 821: 817: 813: 809: 802: 799: 794: 790: 786: 782: 778: 774: 770: 766: 762: 758: 750: 747: 739: 735: 728: 721: 719: 717: 715: 713: 711: 707: 702: 698: 694: 688: 684: 680: 676: 669: 666: 661: 657: 653: 649: 645: 641: 637: 633: 626: 623: 616: 612: 609: 607: 604: 602: 599: 598: 594: 592: 590: 586: 578: 576: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 526: 522: 521: 516: 515: 510: 509: 504: 503: 494: 492: 490: 489: 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 433: 432: 427: 426: 418: 416: 414: 405: 398: 396: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 353: 349: 345: 336: 329: 327: 325: 321: 320:natural decay 317: 313: 312: 307: 306: 301: 300: 295: 294: 289: 288: 283: 279: 274: 272: 268: 264: 260: 252: 250: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 195:particle flux 192: 188: 183: 181: 177: 173: 169: 168:metallurgical 165: 161: 157: 152: 150: 146: 142: 139: 138:dimensionless 135: 131: 128:present good 127: 122: 120: 119:thermocouples 116: 112: 108: 105: 96: 89: 87: 85: 81: 80: 75: 74: 69: 68: 63: 62: 57: 56: 51: 50: 45: 41: 37: 33: 29: 23: 18: 1037: 1010: 983:. Retrieved 976:the original 934: 930: 909:. Retrieved 905: 892: 867: 863: 819: 816:Nano Letters 815: 801: 760: 757:Nano Letters 756: 749: 738:the original 733: 674: 668: 635: 631: 625: 582: 573:New Horizons 572: 568: 564: 541:New Horizons 540: 536: 520:New Horizons 518: 513: 506: 500: 498: 486: 478: 429: 423: 422: 413:New Horizons 412: 410: 341: 311:New Horizons 309: 303: 297: 291: 285: 275: 256: 184: 182:resistance. 172:temperatures 153: 145:temperatures 123: 101: 79:New Horizons 77: 72: 65: 59: 53: 47: 26: 638:: 161–165. 553:Kuiper Belt 373:Astroquartz 352:p-leg doped 348:n-leg doped 263:electricity 1057:Categories 985:2015-03-17 812:Chen, Gang 617:References 435:spacecraft 357:molybdenum 278:thermopile 247:phosphorus 235:electrical 219:molybdenum 191:solar cell 109:, such as 90:Properties 36:spacecraft 701:195862812 660:111227236 535:from the 431:Voyager 2 425:Voyager 1 393:generator 271:circuitry 199:heat flux 185:Near the 180:oxidation 178:and high 164:malleable 55:Voyager 2 49:Voyager 1 911:March 9, 884:20196558 844:19367858 793:20551131 785:22548377 595:See also 533:MHW-RTGs 377:insulate 361:tungsten 223:tungsten 102:Heavily 824:Bibcode 765:Bibcode 640:Bibcode 569:Cassini 565:Ulysses 537:Voyager 514:Cassini 508:Ulysses 502:Galileo 488:LES-8/9 479:Voyager 463:Neptune 451:Jupiter 391:of the 381:circuit 305:Cassini 299:Ulysses 293:Galileo 287:Voyager 73:Cassini 67:Ulysses 61:Galileo 30:(SiGe) 882:  842:  791:  783:  699:  689:  658:  473:(1832 461:, and 459:Uranus 455:Saturn 369:copper 316:Pu-238 308:, and 231:copper 207:vacuum 126:alloys 76:, and 1007:(PDF) 979:(PDF) 972:(PDF) 902:(PDF) 789:S2CID 741:(PDF) 730:(PDF) 697:S2CID 656:S2CID 561:Pluto 545:Pluto 467:decay 324:Watts 243:boron 215:space 134:power 124:SiGe 104:doped 913:2023 880:PMID 840:PMID 781:PMID 687:ISBN 571:and 499:The 428:and 342:The 259:heat 237:and 115:SiGe 40:NASA 939:doi 872:doi 868:114 832:doi 773:doi 679:doi 648:doi 636:685 491:). 443:MHW 187:Sun 1059:: 1019:^ 1009:. 994:^ 951:^ 933:. 921:^ 904:. 878:. 866:. 852:^ 838:. 830:. 818:. 810:; 787:. 779:. 771:. 761:12 759:. 732:. 709:^ 695:. 685:. 654:. 646:. 634:. 567:, 475:°F 457:, 453:, 395:. 367:, 363:, 359:, 302:, 296:, 290:, 229:, 225:, 221:, 189:, 70:, 64:, 58:, 52:, 988:. 945:. 941:: 935:8 915:. 886:. 874:: 846:. 834:: 826:: 820:8 795:. 775:: 767:: 703:. 681:: 662:. 650:: 642:: 485:( 471:K 441:( 113:(

Index


radioisotope thermoelectric generator
Silicon-germanium
thermoelectrics
spacecraft
NASA
radioisotope thermoelectric generators
Voyager 1
Voyager 2
Galileo
Ulysses
Cassini
New Horizons
electrical power

doped
semiconductors
silicon-germanium
SiGe
thermocouples
alloys
thermoelectric
power
dimensionless
figures-of-merit
temperatures
nanostructured
tensile strength
dislocation density
malleable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.